Linear Algebraic Groups, Homework 1

- (1) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is not an integral domain (hint: it is isomorphic to $\mathbb{C} \times \mathbb{C}$).
- (2) Let $\phi : X \to Y$ be a morphism of affine varieties. Suppose that $\phi(X)$ is dense in Y. Show that the morphism of rings $\phi^* : K[Y] \to K[X]$ is injective.
- (3) Show that \mathbb{G}_a and \mathbb{G}_m are not isomorphic.
- (4) Prove that the only automorphisms (as algebraic groups) of \mathbb{G}_m are identity and inverse maps and Aut $\mathbb{G}_a \cong K^*$.
- (5) Prove that the G^0 is stable under all automorphisms of G.
- (6) Let A be a finite dimensional K-algebra (dimension of A as a K-vector space is finite). Consider the group Aut(A) of algebra automorphisms of A. Show that Aut(A) is a closed subgroup of GL(A). Hence Aut(A) is an algebraic group.
- (7) Is $GL(n, \mathbb{R})$ a closed subgroup of $GL(n, \mathbb{C})$?
- (8) Let $N \subset GL(n, K)$ be the group of **monomial** matrices (matrices having exactly one nonzero entry in each row and column). Prove that N is a closed subgroup of GL(n, K), with $N^0 = D(n, K)$ and $[N : N^0] = n!$.
- (9) Let X be an irreducible affine variety over \mathbb{C} of positive dimension. Show that X can not be written as a union of countably many proper closed subsets of X. (First use induction on n to prove this for $X = \mathbb{A}^n$ and then use Noether's normalization lemma for arbitrary X).
- (10) Let G be a closed subgroup of GL(n, K) (i.e., G is a linear algebraic group). For any $m \ge 1$, let G_m be the subset of G consisting of elements of order m. Show that G_m closed in G for all m (first show this for GL(n, K); think eigenvalues and diagonalization).
- (11) Let G be a complex linear algebraic group such that every element of G has finite order. Show that G is finite (use previous two problems).