Topology, Problem Set 8

Definition 1: A space X is said to be completely normal if every subspace of X is normal. Definition 2: Two subsets A, B of a space X are called separated if $\bar{A} \cap B=A \cap \bar{B}=\emptyset$. Definition 3: Let X be a space and let $Y \subset X$ be a subspace. We say that Y is a retract of X if there is a continuous map $r: X \rightarrow Y$ such that $r(y)=y$ for $y \in Y$.
(1) Show that if X is regular then every pair of points of X have neighbourhoods whose closures are disjoint.
(2) Show that every order topology is regular.
(3) Show that a closed subset of a normal space is normal.
(4) Show that every regular Lindelof space is normal.
(5) Is \mathbb{R}^{ω} normal in the product topology?
(6) Show that X is completely normal if and only if for every pair of separated sets A and B, there exist disjoint open sets containing them.
(7) Which of the following spaces are completely normal?
(a) A subspace of a completely normal space.
(b) The product of two completely normal spaces.
(c) A well-ordered set in the order topology.
(d) A metric space.
(e) A compact Hausdorff space.
(f) A regular space with a countable basis.
(g) The space \mathbb{R}_{l}.
(8) Let $X=I^{I}$, where $I=[0,1]$ (with product topology). We note that X is compact using Tychonoff theorem. It is also Hausdorff. So X is normal. However, show that X is not metrizable. This shows that normality does not characterize metrizability.
(9) Show that every metrizable space is first countable. Give an example of a metric space that is not second countable.
(10) Show that the Tietze extension theorem implies the Urysohn lemma.
(11) Show that a connected regular space having more than one point is uncountable.
(12) Show that a connected normal space having more than one point is uncountable.
(13) Give an example of a connected, Hausdorff, countable space.
(14) Let X be a regular space with a countable basis. Let $U \subset X$ be open.
(a) Show that U equals a countable union of closed sets of X.
(b) Show that there is continuous function $f: X \rightarrow[0,1]$ such that $f(x)>0$ for $x \in U$ and $f(x)=0$ for $x \notin U$.
(15) (a) Show that X is Hausdorff and Y is a retract of X, then Y is closed in X.
(b) Let A be a two-point set in \mathbb{R}^{2}. Show that A is not a retract of \mathbb{R}^{2}.
(c) Let S^{1} be the unit circle in \mathbb{R}^{2}. Show that S^{1} is a retract of $\mathbb{R}^{2}-\{0\}$. What is your guess regarding S^{1} being a retract of \mathbb{R}^{2} ?

