Topology, Problem Set 8

Definition 1: A space X is said to be **completely normal** if every subspace of X is normal. **Definition 2:** Two subsets A, B of a space X are called **separated** if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. **Definition 3:** Let X be a space and let $Y \subset X$ be a subspace. We say that Y is a **retract** of X if there is a continuous map $r: X \to Y$ such that r(y) = y for $y \in Y$.

- (1) Show that if X is regular then every pair of points of X have neighbourhoods whose closures are disjoint.
- (2) Show that every order topology is regular.
- (3) Show that a closed subset of a normal space is normal.
- (4) Show that every regular Lindelof space is normal.
- (5) Is \mathbb{R}^{ω} normal in the product topology?
- (6) Show that X is completely normal if and only if for every pair of separated sets A and B, there exist disjoint open sets containing them.
- (7) Which of the following spaces are completely normal?
 - (a) A subspace of a completely normal space.
 - (b) The product of two completely normal spaces.
 - (c) A well-ordered set in the order topology.
 - (d) A metric space.
 - (e) A compact Hausdorff space.
 - (f) A regular space with a countable basis.
 - (g) The space \mathbb{R}_l .
- (8) Let $X = I^{I}$, where I = [0, 1] (with product topology). We note that X is compact using Tychonoff theorem. It is also Hausdorff. So X is normal. However, show that X is not metrizable. This shows that normality does not characterize metrizability.
- (9) Show that every metrizable space is first countable. Give an example of a metric space that is **not** second countable.
- (10) Show that the Tietze extension theorem implies the Urysohn lemma.
- (11) Show that a connected regular space having more than one point is uncountable.
- (12) Show that a connected normal space having more than one point is uncountable.
- (13) Give an example of a connected, Hausdorff, countable space.
- (14) Let X be a regular space with a countable basis. Let $U \subset X$ be open.
 - (a) Show that U equals a countable union of closed sets of X.

(b) Show that there is continuous function $f: X \to [0, 1]$ such that f(x) > 0 for $x \in U$ and f(x) = 0 for $x \notin U$.

- (15) (a) Show that X is Hausdorff and Y is a retract of X, then Y is closed in X.
 - (b) Let A be a two-point set in \mathbb{R}^2 . Show that A is **not** a retract of \mathbb{R}^2 .

(c) Let S^1 be the unit circle in \mathbb{R}^2 . Show that S^1 is a retract of $\mathbb{R}^2 - \{0\}$. What is your guess regarding S^1 being a retract of \mathbb{R}^2 ?