Topology, Problem Set 6

Definition: A collection \mathcal{C} of closed subsets of a space X is said to satisfy the finite intersection property if for every finite subcollection $\left\{C_{1}, \ldots, C_{n}\right\}$ of \mathcal{C}, the intersection $C_{1} \cap \ldots \cap C_{n}$ is nonempty.
(1) Is \mathbb{R} compact in the finite complement topology?
(2) Define a topology on \mathbb{R} by declaring that a set is open if it is empty or its complement is countable. Is \mathbb{R} compact in this topology? What about the subspace $[0,1]$?
(3) Show that every compact subset of a metric space is bounded in that metric and is closed. Find a metric space in which not every closed bounded set is compact.
(4) Let A and B be compact sets in a Hausdorff space X. Show that there exist disjoint open sets U and V containing A and B respectively.
(5) Suppose that $f: X \rightarrow Y$ is continuous with X compact and Y Hausdorff. Show that f is a closed map.
(6) Suppose that Y is compact. Then show that the projection map $\pi_{1}: X \times Y \rightarrow X$ is closed.
(7) Show that X is compact if and only if for every collection \mathcal{C} of closed subsets of X satisfying the finite intersection property, the intersection $\cap_{C \in \mathcal{C}} C$ of all elements of \mathcal{C} is nonempty.
(8) Let X be an ordered set in which every closed interval is compact. Show that X has the least upper bound property.
(9) Let X be compact Hausdorff space. Show that if $\left\{A_{n}\right\}$ is a countable collection of closed sets in X, each of which has empty interior in X, then there is a point of X which is not in any A_{n}.
(10) Let $A_{0}=[0,1]$ in \mathbb{R}. Let A_{1} be obtained from A_{0} by deleting the "middle third " $\left(\frac{1}{3}, \frac{2}{3}\right)$. Let A_{2} be obtained from A_{1} by deleting its "middle thirds" $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$. In general. define A_{n} by:

$$
A_{n}=A_{n-1}-\bigcup_{k=0}^{n-1}\left(\frac{1+3^{k}}{3^{n}}, \frac{2+3^{k}}{3^{n}}\right)
$$

Now let $C=\cap_{n} A_{n}$. C is called the Cantor set. Show that.
(a) C is totally disconnected;
(b) C is compact;
(c) each set A_{n} is a union of finitely many disjoint closed intervals of length $\frac{1}{3^{n}}$ and the end points of these intervals lie in C.
(d) every point of C is a limit point of C;
(e) C is uncountable;
(11) Show that the space $\prod_{n=1}^{\infty}[0,1]$ is not compact in box topology.
(12) A countably compact space is a space in which every countable open cover has a finite subcover. Prove that a second countable space is countably compact if and only if it is compact.
(13) Let $\left\{A_{n}\right\}$ be a nested collection of subsets of a space X; that is $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$. Assume that each A_{n} is nonempty and compact. Show that $\cap_{n} A_{n}$ is nonempty.
(14) Let $f: X \rightarrow Y$ be a bijective continuous map with X compact and Y Hausdorff. Show that f is a homeomorphism.
(15) Suppose that a compact metric space X is a union of two of its open sets U and V. Prove that there exists a real number δ such that every subset of X of diametre less than δ is contained in U or V.
(16) Show that in a Hausdorff space arbitrary intersection of compact sets is compact.
(17) Show that a finite union of compact sets in a space X is compact.

