Topology, Problem Set 3

(1) Show that if $\prod_{\alpha} X_{\alpha}$ is connected and nonempty, then each X_{α} is connected.
(2) Show that \mathbb{R}^{ω} is not connected in box topology by showing that the set A of all bounded sequences is both open and closed. What happens if \mathbb{R}^{ω} has uniform topology?
(3) A space is totally disconnected if its only connected subsets are one-point sets. Show that a finite Hausdorff space is totally disconnected.
(4) Is it true that if X has discrete topology, then X is totally disconnected? Does the converse hold?
(5) Show that an infinite set X is connected in finite complement topology. In fact, show that any two nonempty open sets in X have nonempty intersection.
(6) Is \mathbb{R}_{l} connected?
(7) Let $\left\{A_{n}\right\}$ be a sequence of connected subsets of X such that $A_{n} \cap A_{n+1} \neq \emptyset$ for all n. Show that $\cup A_{n}$ is connected.
(8) Show that X is connected if and only if for every two points in X, there is some connected subspace of X which contains both.
(9) Let X be connected. Suppose that there is a nonconstant continuous function f : $X \rightarrow \mathbb{R}$. Show that X is uncountable.
(10) Show that a Banach space is connected (refer to PS 2 for a definition) by writing it as a union of connected subspaces with mutually nonempty intersection.
(11) Suppose that X has a countable basis (we say in this case that X is second countable). Show that X is separable.
(12) Show that the following subspaces are closed:
(a) $A=\{(x, y) \mid x y=1\}$ in \mathbb{R}^{2};
(b) $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ in \mathbb{R}^{2};
(c) $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$ in \mathbb{R}^{3};
(d) $B^{2}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ in \mathbb{R}^{2}.
S^{1} is called a circle, S^{2} is called a sphere and B^{2} is called a ball.
(13) Determine if the following pairs of spaces are homeomorphic.
(a) \mathbb{R} and \mathbb{R}^{2};
(b) $S^{1}-\{(0,1)\}$ and \mathbb{R};
(c) $S^{2}-\{(0,0,1)\}$ and \mathbb{R}^{2};
(d) \mathbb{R} and $\mathbb{R}-\{10\}$;
(e) \mathbb{R}_{l} and \mathbb{R}.
(14) On Wednesday, 18th January, in class, we argued that a product of connected spaces is connected and our argument seemed to work for both product and box topologies. But this is not true : (- see problem (2). Find out what is wrong in our "proof".

