Topology, Problem Set 3

- (1) Show that if $\prod_{\alpha} X_{\alpha}$ is connected and nonempty, then each X_{α} is connected.
- (2) Show that \mathbb{R}^{ω} is not connected in box topology by showing that the set A of all bounded sequences is both open and closed. What happens if \mathbb{R}^{ω} has uniform topology?
- (3) A space is **totally disconnected** if its only connected subsets are one-point sets. Show that a finite Hausdorff space is totally disconnected.
- (4) Is it true that if X has discrete topology, then X is totally disconnected? Does the converse hold?
- (5) Show that an infinite set X is connected in finite complement topology. In fact, show that any two nonempty open sets in X have nonempty intersection.
- (6) Is \mathbb{R}_l connected?
- (7) Let $\{A_n\}$ be a sequence of connected subsets of X such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\cup A_n$ is connected.
- (8) Show that X is connected if and only if for every two points in X, there is some connected subspace of X which contains both.
- (9) Let X be connected. Suppose that there is a nonconstant continuous function f: $X \to \mathbb{R}$. Show that X is uncountable.
- (10) Show that a Banach space is connected (refer to PS 2 for a definition) by writing it as a union of connected subspaces with mutually nonempty intersection.
- (11) Suppose that X has a countable basis (we say in this case that X is second count**able**). Show that X is separable.
- (12) Show that the following subspaces are closed:
 - (a) $A = \{(x, y) | xy = 1\}$ in \mathbb{R}^2 ;

(b)
$$S^1 = \{(x, y) | x^2 + y^2 = 1\}$$
 in \mathbb{R}^2

- (c) $S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$ in \mathbb{R}^3 ; (d) $B^2 = \{(x, y) | x^2 + y^2 \le 1\}$ in \mathbb{R}^2 .
- S^1 is called a **circle**, S^2 is called a **sphere** and B^2 is called a **ball**.
- (13) Determine if the following pairs of spaces are homeomorphic.
 - (a) \mathbb{R} and \mathbb{R}^2 ;
 - (b) $S^1 \{(0, 1)\}$ and \mathbb{R} ;
 - (c) $S^2 \{(0, 0, 1)\}$ and \mathbb{R}^2 ;
 - (d) \mathbb{R} and $\mathbb{R} \{10\}$;
 - (e) \mathbb{R}_l and \mathbb{R} .
- (14) On Wednesday, 18th January, in class, we argued that a product of connected spaces is connected and our argument seemed to work for both product and box topologies. But this is not true : (– see problem (2). Find out what is wrong in our "proof".