Topology, Problem Set 2

Definition 1: Let X be a vector space over \mathbb{R} . A norm on X is a function $|| || : X \to \mathbb{R}$ such that:

(a) $||x|| \ge 0$ for all $x \in X$ and $||x|| = 0 \Leftrightarrow x = 0$;

(b) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$;

(c) ||rx|| = |r|||x|| for $r \in \mathbb{R}$ and $x \in X$.

A vector space with a norm is called a **normed vector space**.

- (1) Show that for functions $f : \mathbb{R} \to \mathbb{R}$, the ϵ - δ definition of continuity is equivalent to the open set definition.
- (2) Show that the subspace (a, b) of \mathbb{R} is homeomorphic to (0, 1) and the subspace [a, b] of \mathbb{R} is homeomorphic to [0, 1]
- (3) Find a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.
- (4) Let $A \subset X$. Let $f : A \to Y$ be a continuous map. Let Y be Hausdorff. Show that if f may be extended to a continuous map $g : \overline{A} \to Y$, then g is uniquely determined by f.
- (5) Let $\{A_{\alpha}\}$ be a collection of subsets of X such that $X = \bigcup_{\alpha} A_{\alpha}$. Suppose that $f: X \to Y$ is a map such that $f|A_{\alpha}$ is continuous for all α .
 - (a) Show that if the collection $\{A_{\alpha}\}$ is finite and each set A_{α} is closed, then f is continuous.
 - (b) Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but f is not continuous.
 - (c) An indexed family of sets $\{A_{\alpha}\}$ is called **locally finite** if each point x of X has a neighbourhood that intersects A_{α} for only finitely many values of α . Show that if the family $\{A_{\alpha}\}$ is locally finite and each A_{α} is closed, then f is continuous.
- (6) Let $f : X \to \mathbb{R}$ be continuous. Let $Y = \{x \in X | f(x) \neq 0\}$. Suppose that Y is nonempty (we say that f is not *identically zero*). Prove that the function $1/f : Y \to \mathbb{R}$ defined by (1/f)(x) = 1/f(x) is continuous.
- (7) Let $\{X_{\alpha}\}$ be a collection of topological spaces and $X = \prod_{\alpha} X_{\alpha}$. Show that the product topology is the coarsest (smallest) topology on X relative to which each projection map $\pi_{\alpha} : X \to X_{\alpha}$ is continuous.
- (8) Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are *eventually* zero: that is, all sequences (x_1, x_2, \ldots) such that $x_i \neq 0$ for only finitely many values of *i*. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} (in both box and product topologies)?
- (9) A topological space X is called **separable** if it has a countable dense subset. Show that \mathbb{R}^n and \mathbb{C}^n are separable. What about \mathbb{R}^J for an arbitrary index set J (under box and product topologies)?
- (10) Let X be a normed vector space over \mathbb{R} . Define a function $d : X \times X \to \mathbb{R}$ by d(x,y) = ||x y||. Show that d is a metric on X. Thus every normed vector space has a natural structure of a metric space.

Definition 2: A metric space X is **complete** if every Cauchy sequence in X converges.

Definition 3: A normed vector space is called a **Banach space** if it is complete as a metric space.

(11) Is \mathbb{R} a Banach space?

(12) Let S be a nonempty set. A function $f: S \to \mathbb{R}$ is **bounded** if there exists a $M \in \mathbb{R}$ such that |f(x)| < M for all $x \in S$. Equivalently, $\sup_{x \in S} |f(x)| < \infty$.

Let X be the set of all bounded real functions on S. Then X has a natural structure of a real vector space. Define a function $|| || : X \to \mathbb{R}$ by setting $||f|| = \sup_{x \in S} |f(x)|$. Show that this defines a norm on X. Then show that X is a Banach space.