Topology, Problem Set 11

Definition 1: A space X is said to be **contractible** if the identity map $i_X : X \to X$ is homotopic to some constant map $X \to X$.

Definition 2: A subset A of \mathbb{R}^n is said to be **star convex** if for some point a_0 of A, all the line segments joining a_0 to other points of A lie in A.

- (1) Suppose that X is a convex set in \mathbb{R}^n ; that is: for all $x, y \in X$, the line segment joining them lies in X. Show that any two paths in X having the same end points are path homotopic.
- (2) Given spaces X, Y, let [X, Y] denote the set of homotopy classes of continuous maps of X into Y.
 - (a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
 - (b) Show that if Y is path connected, the set [I, Y] has a single element.
- (3) Show that I and \mathbb{R} are contractible.
- (4) Show that a contractible space is path connected.
- (5) Show that, if Y is contractible, then for any X, the set [X, Y] has a single element.
- (6) Show that, if X is contractible and Y is path connected, then [X, Y] has a single element.
- (7) Find a star convex set that is not convex.
- (8) Show that if A is star convex, then it is simply connected.
- (9) Show that if A is star convex, any two paths in A having same initial and final points are path homotopic.
- (10) Let x_0, x_1 be two points in a path connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.
- (11) Let $A \subset X$ and let $r : X \to A$ be a retraction. Given $a_0 \in A$, show that $r_* : \pi_1(X, a_0) \to \pi_1(A, a_0)$ is surjective.
- (12) Let A be a subset of \mathbb{R}^n and let $h: (A, a_0) \to (Y, y_0)$ be a continuous map. Show that if h is extendable to a continuous map of \mathbb{R}^n into Y, then h_* is the zero homomorphism.
- (13) Let X be a space. Show that the following are equivalent.
 - (a) Every continuous map $S^1 \to X$ is homotopic to a constant map.
 - (b) Every continuous map $S^1 \to X$ extends to a continuous map $\hat{B}^2 \to X$.
 - (c) $\pi_1(X, x_0) = 0$ for all $x_0 \in X$.