Commutative Algebra, Problem Set 9

(1) Let I be an irreducible ideal in a ring A. Show that the following are equivalent.
(a) I is primary.
(b) For every multiplicative set S in $A,\left(S^{-1} I\right)^{c}=(I: x)$ for some $x \in S$.
(c) The sequence $\left(I: x^{n}\right)$ stabilizes for every x in A.
(2) If I is a radical ideal, show that I has no embedded prime ideals.
(3) Let $A=k[X, Y, Z]$ be a polynomial ring in 3 variables over a field k. Consider the three ideals: $P_{1}=(X, Y), P_{2}=(X, Z)$ and $\mathfrak{m}=(X, Y, Z)$. Let $I=P_{1} P_{2}$. Show that $I=P_{1} \cap P_{2} \cap \mathfrak{m}^{2}$ is a minimal primary decomposition of I. Determine the isolated and embedded primes.
(4) Let I be a decomposable ideal in a ring A. Let P be a maximal element in the set of ideals of the form $(I: x)$ where $x \in A$ and $x \notin I$. Show that P is an associate prime of I.
(5) Let I be an ideal in a Noetherian ring A. Consider two minimal decompositions of I as intersections of irreducible ideals: $I=\cap_{i=1}^{r} J_{i}=\cap_{j=1}^{s} K_{j}$.

Show that $r=s$ and (possibly after reindexing) $\sqrt{J_{i}}=\sqrt{K_{i}}$ for all i.
Here the meaning of "minimal" is identical to the meaning of minimal primary decomposition.
(6) Let $A=k[X, Y, Z]$ be a polynomial ring in 3 variables over a field k. Let $I=$ $(X Y, X-Y Z), Q_{1}=(X, Z)$ and $Q_{2}=\left(Y^{2}, X-Y Z\right)$. Show that $I=Q_{1} \cap Q_{2}$ is a minimal primary decomposition.
(7) Let A be a ring and let P be a prime ideal. Denote by $P^{(n)}$ the n-th symbolic power of P. Show that:
(a) If P^{n} is decomposable, then $P^{(n)}$ is its P-primary component.
(b) If $P^{(n)} P^{(m)}$ is decomposable, then $P^{(m+n)}$ is its P-primary component.
(8) Let A be a noetherian ring. Let $\mathfrak{m} \subset A$ be a maximal ideal. The following are equivalent for an ideal Q :
(a) Q is \mathfrak{m}-primary.
(b) $\sqrt{Q}=\mathfrak{m}$.
(c) $\mathfrak{m}^{n} \subset Q \subset \mathfrak{m}$ for some $n \geq 1$.
(9) Show that in a noetherian ring every ideal contains a power of its radical.
(10) Let (A, \mathfrak{m}) be a noetherian local domain of dimension 1 . Show that
(a) if I is a nonzero ideal then I is \mathfrak{m}-primary and $\mathfrak{m}^{n} \subset I$ for some $n \geq 1$.
(b) $\mathfrak{m}^{n} \neq \mathfrak{m}^{n+1}$ for all $n \geq 0$.
(11) Let I, J be two ideals in a ring A such that \sqrt{I} and \sqrt{J} are coprime. Show that I and J are also coprime.

