Commutative Algebra, Problem Set 9

- (1) Let I be an irreducible ideal in a ring A. Show that the following are equivalent.(a) I is primary.
 - (b) For every multiplicative set S in A, $(S^{-1}I)^c = (I:x)$ for some $x \in S$.
 - (c) The sequence $(I:x^n)$ stabilizes for every x in A.
- (2) If I is a radical ideal, show that I has no embedded prime ideals.
- (3) Let A = k[X, Y, Z] be a polynomial ring in 3 variables over a field k. Consider the three ideals: $P_1 = (X, Y), P_2 = (X, Z)$ and $\mathfrak{m} = (X, Y, Z)$. Let $I = P_1 P_2$. Show that $I = P_1 \cap P_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of I. Determine the isolated and embedded primes.
- (4) Let I be a decomposable ideal in a ring A. Let P be a maximal element in the set of ideals of the form (I : x) where $x \in A$ and $x \notin I$. Show that P is an associate prime of I.
- (5) Let *I* be an ideal in a Noetherian ring *A*. Consider two minimal decompositions of *I* as intersections of irreducible ideals: $I = \bigcap_{i=1}^{r} J_i = \bigcap_{j=1}^{s} K_j$.

Show that r = s and (possibly after reindexing) $\sqrt{J_i} = \sqrt{K_i}$ for all *i*. Here the meaning of "minimal" is identical to the meaning of minimal primary

decomposition.

- (6) Let A = k[X, Y, Z] be a polynomial ring in 3 variables over a field k. Let $I = (XY, X YZ), Q_1 = (X, Z)$ and $Q_2 = (Y^2, X YZ)$. Show that $I = Q_1 \cap Q_2$ is a minimal primary decomposition.
- (7) Let A be a ring and let P be a prime ideal. Denote by $P^{(n)}$ the n-th symbolic power of P. Show that:
 - (a) If P^n is decomposable, then $P^{(n)}$ is its *P*-primary component.
 - (b) If $P^{(n)}P^{(m)}$ is decomposable, then $P^{(m+n)}$ is its P-primary component.
- (8) Let A be a noetherian ring. Let $\mathfrak{m} \subset A$ be a maximal ideal. The following are equivalent for an ideal Q:
 - (a) Q is **m**-primary.
 - (b) $\sqrt{Q} = \mathfrak{m}.$
 - (c) $\mathfrak{m}^n \subset Q \subset \mathfrak{m}$ for some $n \ge 1$.
- (9) Show that in a noetherian ring every ideal contains a power of its radical.
- (10) Let (A, \mathfrak{m}) be a noetherian local domain of dimension 1. Show that
 - (a) if I is a nonzero ideal then I is \mathfrak{m} -primary and $\mathfrak{m}^n \subset I$ for some $n \geq 1$.
 - (b) $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for all $n \ge 0$.
- (11) Let I, J be two ideals in a ring A such that \sqrt{I} and \sqrt{J} are coprime. Show that I and J are also coprime.