Commutative Algebra, Problem Set 8

- (1) Let $f: A \to B$ be an integral homomorphism of rings (f need not be injective). This means that B is integral over f(A). Show that the induced map of topological spaces $f^*: Spec \ A \to Spec \ B$ is closed.
- (2) Let A be a subring of B and B is integral over A. Suppose that $f : A \to K$ is a homomorphism into an algebraically closed field K. Show that f can be extended to B.
- (3) Let $A \subset B$ be an integral extension of rings and suppose that either A or B has finite dimension. Show that A and B have same dimension.
- (4) Suppose that $A \subset B$ is an extension of rings for which the going-down theorem holds. Let P be a prime in B and let $Q = P \cap A$. Show that $\dim(B_P) \ge \dim(A_Q)$.
- (5) Suppose that $A \subset B$ is an integral extension of rings. Let P be a prime in B and let $Q = P \cap A$. Show that $\dim(B_P) \leq \dim(A_Q)$.
- (6) Integral closure of ideals:

Let A be a domain and let I be an ideal. The integral closure of I in A is defined to be the set of elements $a \in A$ satisfying an equation of the form:

 $a^n + r_1 a^{n-1} + \ldots + r_n = 0$, where $r_j \in I^j$, the *j*-th power of *I*.

Show that a is integral over I if and only if there is a finitely generated A-module N, not annihilated by any element of A such that $aN \subset IN$. Use this to show that the integral closure of I in A is an ideal.

- (7) If A is a domain, show that every radical ideal is integrally closed in A.
- (8) Let $f : A \to B$ be an inclusion of rings. Let $f^* : Spec \ B \to Spec \ A$ be the associated map of topological spaces. Consider the following statements:
 - (a) f^* is a closed map.
 - (b) f has the going-up property.
 - (c) Let $P \subset B$ be a prime ideal and $Q = P \cap A$. Then $f^* : Spec(B/P) \to Spec(A/Q)$ is surjective.

Prove that $(a) \Rightarrow (b) \Leftrightarrow (c)$.

- (9) Let $f : A \to B$ be an inclusion of rings. Let $f^* : Spec \ B \to Spec \ A$ be the associated map of topological spaces. Show that the following statements are equivalent:
 - (a) f has the going-down property.
 - (b) Let $P \subset B$ be a prime ideal and $Q = P \cap A$. Then $f^* : Spec(B_P) \to Spec(A_Q)$ is surjective.
- (10) Let A be a ring and let G be a finite group of automorphisms of A. Let A^G be the ring of invariants. Show that A is integral over A^G .
- (11) (In the situation of the previous problem) Let Q be a prime ideal of A^G . Let F be the set of primes of A that contract to Q. If $g \in G$ and $P \in F$, show that $g(P) \in F$. Hence G acts on F. Show that this action of G on F is transitive. Conclude that F is finite.
- (12) Let A be an integrally closed domain and let K be its quotient field. Let L be a finite Galois extension of K and let G be the Galois group of the extension. Finally let B be the integral closure of A in L.

Show that $q \in G \Rightarrow q(B) = B$ and that $A = B^G$.

Use this to show that $Spec \ B \to Spec \ A$ has finite fibers (meaning that given a prime $Q \subset A$, there are only a finitely many primes $P \subset B$ such that $P \cap A = Q$).

(13) Take the same set up as in the previous problem, but assume only that $K \subset L$ is a finite extension. Show that $Spec \ B \to Spec \ A$ has finite fibers in this case also. Hint: consider two cases: L is separable over K and L is purely inseparable over K.