Commutative Algebra, Problem Set 7

- (1) Show that a UFD is integrally closed.
- (2) Suppose that $A \subset B$ is an integral extension of rings and that B is a finitely generated algebra over A. Show that B is a finitely generated A-module.
- (3) Let $A \subset B$ be an integral extension. If $a \in A$ is a unit in B show that a is a unit in A. Is this true without the assumption of integrality?
- (4) Let $A \subset B$ be an integral extension of integral domains. Show that A is a field if and only if B is a field.
- (5) Let $A \subset B$ be such that $B \setminus A$ is closed under multiplication. Show that A is integrally closed in B.
- (6) Let A be an integral domain with the field of fractions k. An element $x \in k$ is said to be *almost integral* if there exists an element $0 \neq a \in A$ such that $ax^n \in A$ for all n > 0.

Show that if $x \in k$ is integral then it is almost integral. Prove the converse when A is noetherian.

- (7) Let $n \in \mathbb{Z}$. Find the integral closure of $A = \mathbb{Z}[\sqrt{n}]$ following the steps below:
 - (a) Reduce to the case that n is square-free.
 - (b) Show that \sqrt{n} is integral over \mathbb{Z} . Conclude that the integral closure of A is the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{n}]$. Denote by B the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{n}]$.
 - (c) Let $\alpha = a + b\sqrt{n}$ with $a, b \in \mathbb{Q}$. Minimal polynomial of α over \mathbb{Q} is $x^2 Trace(\alpha) + Norm(\alpha)$, where $Trace(\alpha) = 2a$ and $Norm(\alpha) = a^2 b^2n$. Thus $\alpha \in B$ if and only if $Trace(\alpha)$ and $Norm(\alpha)$ are integers.
 - (d) Show that if $\alpha \in B$ then $a \in \frac{1}{2}\mathbb{Z}$. If a = 0, show that $\alpha \in B$ if and only if $b \in \mathbb{Z}$. If a = 1/2 and $\alpha \in B$, show that $b \in \frac{1}{2}\mathbb{Z}$. Thus, repeatedly subtracting integers and multiples of \sqrt{n} from α , we may assume a = b = 0 or a = b = 1/2.
 - (e) Finally show that the integral closure of A is $\mathbb{Z}[\sqrt{n}]$ if $n \not\equiv 1 \pmod{4}$ and is $\mathbb{Z}[1/2 + 1/2\sqrt{n}]$ if $n \equiv 1 \pmod{4}$.