Commutative Algebra, Problem Set 6

(1) Let $(A, \mathfrak{m}) \subset(B, \mathfrak{n})$ be local rings. Show that $\mathfrak{m} \subset \mathfrak{n} \Leftrightarrow \mathfrak{m}=\mathfrak{n} \cap A$. If this is the case, we say B dominates A.
(2) Let A be an integral domain with quotient field k. We say that A is a valuation ring of k if for every $0 \neq x \in k$, either $x \in A$ or $x^{-1} \in A$.
(a) Show that a valuation ring is local.
(b) If $A \subset B \subset k$ and A is a valuation ring of k, then B is a valuation ring of k.
(c) Show that A is a valuation ring \Leftrightarrow for any two ideals $I, J \subset A$, either $I \subset J$ or $J \subset I$.
(3) Let k be an algebraically closed field.
(a) Describe the topological space Spec $k[X]$.
(b) Describe the subspace max-Spec $k[X]$.
(c) What are the points in Spec $k[X]$ that are not in max-Spec $k[X]$.
(4) Consider the subring R of $k(X)$ where k is a field defined as: $R=\left\{\left.\frac{f(X)}{g(X)} \right\rvert\, g(0) \neq 0\right\}$.

Show that R is a local ring with maximal ideal generated by X. Is R a valuation ring?
(5) Let R be an integral domain containing a field k. Further assume that dimension of R as a k-vector space is finite. Show that R is a field.
(6) Let $A \subset B \subset C$ be rings. Suppose that C is a finitely generated A-algebra and a finitely generated B-module and A is noetherian. Show that B is a finitely generated A-algebra.

Is this true if C is not a finitely generated B-module? What if A is not noetherian?
(7) Let k be a field and let $R=k[X, Y] /\left(X^{2}, X Y\right)$. Let A be the localization of R at the maximal ideal (x, y) of R. Denote the unique maximal ideal of A by \mathfrak{m}. Show that every element of \mathfrak{m} is a zero divisor and that A has dimension 1.
(8) Let (R, \mathfrak{m}, k) be a noetherian local domain such that \mathfrak{m} is a principal ideal. Consider the function $f(n)=\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right), n \geq 1$. Here dim_{k} is the dimension as k-vector space. Show that $f(n)$ is eventually constant, and moreover this constant is either 1 or 0 .

