Commutative Algebra, Problem Set 5

- (1) Let R be a ring such that for every maximal ideal $P \subset R$ the local ring R_P is noetherian. Further assume that for every $a \in R$, there are only finitely many maximal ideals containing x. Show that R is noetherian.
- (2) Let A be a ring and let $S \subset A$ be a multiplicative set. Let $I \subset A$ be an ideal. Show the following:
 - (a) $I^{ec} = \bigcup_{s \in S} (I:s)$. So $I^e = S^{-1}A$ if and only if $I \cap S \neq \emptyset$.
 - (b) I is a contracted ideal if and only if no element of S is a zero divisor in A/I.
 - (c) The operation S^{-1} commutes with formation of finite sums, products, intersections and radicals.
- (3) Let $A \to B$ be a ring homomorphism and let $P \subset A$ be a prime ideal. Show that P is a contraction of a prime ideal of B if and only if $P^{ec} = P$.
- (4) Let $S \subset A$ and let M be a finitely generated A-module. Show that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that sM = 0.
- (5) Consider the ring R of all sequences with entries in $\mathbb{Z}/2\mathbb{Z}$ that are eventually constant (with coordinate wise addition and multiplication). Show that R is not noetherian. Is it an integral domain? Show that every prime ideal of R is maximal. (Hint: observe that it is a Boolean ring)

Consider the ideals

$$M_i = \{\{a_n\} | a_i = 0\} \text{ and } M_\infty = \{\{a_n\} | a_i = 0 \text{ for large } n\}$$

Show that each M_i and M_{∞} are minimal primes of R. So a nonnoetherian ring, in general, doesn't have only finitely many minimal primes.

- (6) Let $f : R \to S$ be a ring homomorphism. Show that the induced map of topological spaces $f^{\sharp} : Spec \ S \to Spec \ R$ is continuous.
- (7) If $S \subset A$ is multiplicative, show that $Spec(A_S)$ is homeomorphic to the subspace $\{P \in Spec \ A | A \cap S = \emptyset\}.$
- (8) Let R be a ring and let $P \subset R$ be a prime ideal. Show that V(P) is an irreducible closed subset of Spec R. Conversely, show that any irreducible closed subset of Spec R can be written in the form V(P) for a prime ideal P in R.
- (9) If I is an ideal of A, then Spec(A/I) is homeomorphic to the closed subset V(I) of SpecA.
- (10) Let $I \subset R$ be an ideal. Show that $V(I) = \emptyset \Leftrightarrow I = R$.
- (11) Show that Spec A is quasi-compact for any ring A.
- (12) Let $f : A \to B$ be a ring homomorphism and let $f^{\sharp} : Spec \ B \to Spec \ A$ be the associated continuous map of topological spaces. Show that:
 - (a) Every prime of A is a contracted ideal $\Leftrightarrow f^{\sharp}$ is surjective.
 - (b) Every prime of B is an extended ideal $\Rightarrow f^{\sharp}$ is injective.

Is the converse to (b) true?

- (13) If A and B are rings, then show that $Spec(A \times B)$ can be identified with disjoint union $Spec A \coprod Spec B$, with both closed and open in $Spec(A \times B)$.
- (14) Show that the (Krull) dimension of the polynomial ring k[X] over a field k is 1.

For the next problem assume that the dimension of the polynomial ring $k[X_1, \ldots, X_n]$ over a field k is n.

- (15) Find the dimension of the following rings:

 - (a) $R_1 = k[X,Y]/(XY)$ (b) $R_2 = k[X,Y]/(X^2,XY)$ (c) $R_3 = R_1/(x)$ (d) $R_4 = \mathbb{R}[X,Y]/(X^2+1)$ (e) $R_5 = \mathbb{R}[X,Y]_{(X^2+1)}$ (f) $P_1 = \mathbb{R}[X,Y]_{(X^2+1)}$

 - (f) $R_6 = \mathbb{Z}_{p\mathbb{Z}}$, where p is a prime (g) $R_7 = \mathbb{Z}_S$, where $S = \{1, 3, 9, 27, \ldots\}$