Commutative Algebra, Problem Set 4

(1) Let $S \subset A$ be multiplicative. Show that the canonical map $A \rightarrow A_{S}$ is an isomorphism if and only if S consists of units.
(2) Let $a \in A$ and $S=\left\{1, a, a^{2}, \ldots\right\}$. Let $A[X]$ be the polynomial ring in one variable over A. Show that the localized ring A_{S} is isomorphic to $A[X] /(a X-1)$.
(3) Describe all intermediate rings $\mathbb{Z} \subset R \subset \mathbb{Q}$. Hint: realize them as localizations of \mathbb{Z} at appropriate multiplicative sets.
(4) Let R and S be two rings.
(a) Describe the prime ideals of the product ring $R \times S$.
(b) Prove that R and S are localizations of $R \times S$.
(c) Show that $(R \times S)_{P \times S} \cong R_{P}$ for a prime ideal P in R.
(5) Give an example of a ring A and a multiplicative set S in A to show that the following is not an equivalence relation on $A \times S:(a, s) \sim(b, t)$ if $a t=b s$.
(6) Let A be a ring and let $S \subset A$ be multiplicative. Suppose that $0 \rightarrow M^{\prime} \rightarrow M \rightarrow$ $M^{\prime \prime} \rightarrow 0$ is an exact sequence of A-modules. Show that $0 \rightarrow S^{-1} M^{\prime} \rightarrow S^{-1} M \rightarrow$ $S^{-1} M^{\prime \prime} \rightarrow 0$ is an exact sequence of $S^{-1} A$-modules.
(7) Suppose that A_{P} has no nonzero nilpotent elements for every prime P in A. Show that A has no nonzero nilpotent elements.
(8) Find an example of a ring A such that A_{P} is an integral domain for every prime ideal P, but A is not an integral domain.
(9) Find a ring A and distinct multiplicative sets S and T such that $S^{-1} A=T^{-1} A$.
(10) Let $S \subset A$ be multiplicative. Define $T=\{t \in A \mid a t \in S$ for some $a \in A\}$. Show that T is a maximal element in the family of multiplicative sets T such that $S^{-1} A=T^{-1} A$. T is called the saturation of S.
(11) A multiplicative set S is called saturated if $a b \in S \Leftrightarrow a, b \in S$. Show that a multiplicative set
(a) S is saturated if and only its saturation is S.
(b) S is saturated if and only if the complement of S is a union of prime ideals.
(12) Let $R=\mathbb{Z}$ and let $S=\mathbb{Z}-\{0\}$. Consider the R-modules $M_{n}=\mathbb{Z} / n \mathbb{Z}$, for $n \geq 2$. Show that $S^{-1} M_{n}=0$ for all n. On the other hand, show that $S^{-1}\left(\prod_{n} M_{n}\right) \neq 0$.
(13) Let $P \subset R$ be a prime ideal and let $n \geq 1$. Define the n-th symbolic power, $P^{(n)}$, of P as: $P^{(n)}=\left\{r \in R \mid s r \in P^{n}\right.$ for some $\left.s \in R \backslash P\right\}$.
(a) Show that $P=P^{(1)}$ and $P \subset P^{(n)}$ for all $n \geq 2$.
(b) Show that $P^{(n)}=f^{-1}\left(P^{n} R_{P}\right)$, where R_{P} is the localization of R at the prime ideal P and $f: R \rightarrow R_{P}$ is the natural map.
(c) Show that for each $n \geq 1, P^{(n)}$ is a primary ideal with radical P.
(d) If P is maximal show that $P^{n}=P^{(n)}$ for all $n \geq 1$.
(e) Show that in general $P \neq P^{(n)}$ for $n \geq 2$ using the example below:

Let k be a field and let $R=k[X, Y, Z] /\left(X Z-Y^{2}\right)=k[x, y, z]$. Consider the ideal $P=(x, y)$. Show that P is prime and that $P^{n} \neq P^{(n)}$ for $n \geq 2$.

