Commutative Algebra, Problem Set 3

(1) If a ring R is artinian, then is the polynomial ring $R[X]$ also artininan?
(2) If $R[X]$ is noetherian, then is R noetherian?
(3) Is \mathbb{Q} / \mathbb{Z} artinian as a \mathbb{Z}-module?
(4) Let (R, \mathfrak{m}) be a local ring. Prove that either $\mathfrak{m}^{n} \neq \mathfrak{m}^{n+1}$ for all n or $\mathfrak{m}^{n}=0$ for some n. Prove also that in the second case, R is artinian.
(5) Show that in an artinian ring every prime ideal is maximal.
(6) Show that an artinian ring has only finitely many maximal ideals.
(7) Let R be a noetherian ring and let $I \subset R$ be a radical ideal (i.e. $I=\sqrt{I}$). Show that I is a finite intersection of prime ideals.
(8) Let I be a radical ideal in a ring R. Let $I=P_{1} \cap P_{2} \cap \ldots \cap P_{n}$ be a minimal representation of I as an intersection of prime ideals. This means that no P_{i} can be omitted from the above representation. Then show that each P_{i} is a minimal prime of I (that is: minimal among all primes containing I). Further show that this representation of I as an intersection of primes is unique (with minimality condition).
(9) Let $I \subset R$ be a proper ideal. We say that I is primary if the following condition holds:
let $x, y \in R$; if $x y \in I$, then either $x \in I$ or $y^{n} \in I$ for some $n \geq 1$.
Now let $I \subset R$ be an ideal. Show that I is primary if and only if all the zero divisors of R / I are nilpotent.
(10) What are the primary ideals of \mathbb{Z} ?
(11) Let k be a field and let $R=k[X, Y]$. Consider the ideals $I_{1}=\left(X^{n}, Y^{m}\right)$ where n, m are some positive integers and $I_{2}=\left(X Y, Y^{2}\right)$. Are these ideals primary?
(12) Let $R=k[X, Y, Z] /\left(X Y-Z^{2}\right)$. Denote the residues of X, Y, Z by x, y, z, so that $R=k[x, y, z]$. Let $I=(x, z)$ be an ideal of R. Show that I is prime and I^{2} is not primary.
(13) Show that the radical of a primary ideal is prime. Is this true without the primary assumption?
(14) Let $I \subset R$. If the radical of I is a maxima ideal, show that I is primary. If the radical of I is a prime ideal, then is it true that I is primary? If I is primary, then is the radical of I maximal?

