Commutative Algebra, Problem Set 3

- (1) If a ring R is artinian, then is the polynomial ring R[X] also artinian?
- (2) If R[X] is noetherian, then is R noetherian?
- (3) Is \mathbb{Q}/\mathbb{Z} artinian as a \mathbb{Z} -module?
- (4) Let (R, \mathfrak{m}) be a local ring. Prove that either $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for all n or $\mathfrak{m}^n = 0$ for some n. Prove also that in the second case, R is artinian.
- (5) Show that in an artinian ring every prime ideal is maximal.
- (6) Show that an artinian ring has only finitely many maximal ideals.
- (7) Let R be a noetherian ring and let $I \subset R$ be a radical ideal (i.e. $I = \sqrt{I}$). Show that I is a finite intersection of prime ideals.
- (8) Let I be a radical ideal in a ring R. Let $I = P_1 \cap P_2 \cap \ldots \cap P_n$ be a minimal representation of I as an intersection of prime ideals. This means that no P_i can be omitted from the above representation. Then show that each P_i is a minimal prime of I (that is: minimal among all primes containing I). Further show that this representation of I as an intersection of prime is unique (with minimality condition).
- (9) Let $I \subset R$ be a proper ideal. We say that I is *primary* if the following condition holds:

let $x, y \in R$; if $xy \in I$, then either $x \in I$ or $y^n \in I$ for some $n \ge 1$.

Now let $I \subset R$ be an ideal. Show that I is primary if and only if all the zero divisors of R/I are nilpotent.

- (10) What are the primary ideals of \mathbb{Z} ?
- (11) Let k be a field and let R = k[X, Y]. Consider the ideals $I_1 = (X^n, Y^m)$ where n, m are some positive integers and $I_2 = (XY, Y^2)$. Are these ideals primary?
- (12) Let $R = k[X, Y, Z]/(XY Z^2)$. Denote the residues of X, Y, Z by x, y, z, so that R = k[x, y, z]. Let I = (x, z) be an ideal of R. Show that I is prime and I^2 is not primary.
- (13) Show that the radical of a primary ideal is prime. Is this true without the primary assumption?
- (14) Let $I \subset R$. If the radical of I is a maxima ideal, show that I is primary. If the radical of I is a prime ideal, then is it true that I is primary? If I is primary, then is the radical of I maximal?