Commutative Algebra, Problem Set 11

Definition: Let $P \subset A$ be a prime ideal. The height of P is the Krull dimension of the local ring A_{P}.
(1) Let A be noetherian local ring. Suppose that there exists a principal prime ideal in A of height at least 1. Prove that A is an integral domain.
(2) Let A be a noetherian integral domain. Show that A is a UFD if and only if every height one prime ideal of A is principal.
(3) Let (A, \mathfrak{m}, k) be a noetherian local ring of Krull dimension d. Show that $d \leq$ $\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$ with equality if and only if \mathfrak{m} is generated by d elements.
(4) Let A be the polynomial ring $k\left[x_{1}, x_{2}, \ldots\right]$ over a field. Let m_{1}, m_{2}, \ldots be an increasing sequence of positive integers such that $m_{i+1}-m_{i}>m_{i}-m_{i-1}$ for all $i \geq 2$. For $i \geq 1$, let P_{i} be the prime ideal $\left(x_{m_{i}+1}, x_{m_{i}+2} \ldots, x_{m_{i+1}}\right)$ and let $S=A \backslash\left(\cup_{i \geq 1} P_{i}\right)$.

Show that S is multiplicative. Then show that the ring $S^{-1} A$ is noetherian (use Problem Set 5, Problem 1) but has infinite Krull dimension (consider the ideals $\left.P_{i}\left(S^{-1} A\right)\right)$.
(5) Find a ring A and a non-unit $x \in A$ such that $\operatorname{dim}(A /(x))<\operatorname{dim}(A)-1$.

One possible approach is the following: Take $R=k[x, y]$ and consider two prime ideals P_{1} and P_{2} of height 1 and 2 respectively such that P_{1} and P_{2} are incomparable. Then take $S=R \backslash\left(P_{1} \cup P_{2}\right)$ and $A=S^{-1} R$. Argue that the maximal ideals of A are $P_{1} A$ and $P_{2} A$. Conclude that A has dimension 2. Finally find an element x in A such that $A /(x)$ is a field.
(6) Let k be a field and let $A=k[X, Y]$ be the polynomial ring in two variables. Consider A as a graded ring with $A_{0}=k, \operatorname{deg}(X)=1$ and $\operatorname{deg}(Y)=2$.

Let $h(n)=\operatorname{dim}_{k}\left(A_{n}\right)$ be the Hilbert function of A. Show that $h(n)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and that this function is not represented by a polynomial for $n \gg 0$. Find the Poincare series of A with respect to h.

This shows that the Hilbert function is not always represented by a polynomial.
(7) In this problem we work with graded rings A over a field in the usual grading (that is: variables have degree 1). Consider the two functions:
$h(n)=\operatorname{dim}_{k}\left(A_{n}\right)$ and $f(n)=\operatorname{dim}_{k}\left(A_{0}\right)+\operatorname{dim}_{k}\left(A_{1}\right)+\ldots+\operatorname{dim}_{k}\left(A_{n}\right)$.
Compute these functions and find the polynomials which represent them.
(a) $A=k[X] /\left(X^{2}\right)$,
(b) $A=k[X, Y] /\left(X^{2}\right)$,
(c) $A=k[X, Y] /\left(X^{2}, X Y\right)$,
(d) $A=k[X, Y, Z] /(X+Y)$.

Compare the degrees of these polynomials with the dimension of the ring in question.
(8) Let $R=k[X, Y]_{(X, Y)}$ and $A=R /\left(x y^{2}\right)$. Let $I=\left(x^{2}, y\right) \subset A$. Find the polynomial which represents the function $\lambda\left(A / I^{n}\right)$ for $n \gg 0$.
(9) Let $A=k[X, Y]_{(X, Y)}$ and let $\mathfrak{m}=(x, y)$ be the maximal ideal. Compute the Hilbert function $\lambda\left(A / \mathfrak{m}^{n}\right)$ and the corresponding Hilbert polynomial.
(10) Let $R=k[X, Y, Z]_{(X, Y, Z)}$. Let $f \in R$ be a homogeneous polynomial of degree d and monic in x (monic in x means that if f is a treated as a polynomial in x, then the leading coefficient is a unit).

Let $A=R /(f)$. Denote by \mathfrak{m} the maximal ideal of the local ring A. Let $I=(y, z)$ be an ideal of A. Show that I is \mathfrak{m}-primary. Compute Hilbert function $\lambda\left(A / I^{n}\right)$ and the corresponding polynomial .

