Commutative Algebra, Problem Set 10

(1) Show that any finitely generated ideal in a valuation ring is principal.
(2) Let A be a DVR with quotient field k. Show that A is a maximal propert subring of k.
(3) Show that a valuation ring which is not a field, is noetherian if and only if it is a DVR.
(4) Let (A, \mathfrak{m}) be a local domain which is not a field such that \mathfrak{m} is principal and $\cap_{n=1}^{\infty} \mathfrak{m}^{n}=$ 0 . Show that A is a DVR.
(5) Let A be a Dedekind domain and let S be a multiplicative set in A. Show that $S^{-1} A$ is either a Dedekind domain or the quotient field of A.
(6) Let k be a field and let $A=k[X, Y]$. Let $f \in A$ be an irreducible polynomial such that $f(0,0)=0$. Write $f=l+g$ where l is the linear part of f. In other words, $l=a X+b Y$ for some $a, b \in k$ and $g \in(X, Y)^{2}$. Let $R=A /(f)$ and $P=(X, Y) R$.

Prove that R_{P} is a DVR if and only of $l \neq 0$.
(7) Let A be a Dedekind domain and let $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial over A. Define the content of f to be the ideal $c(f)=\left(a_{0}, \ldots, a_{n}\right)$. Prove the Gauss lemma: $c(f g)=c(f) c(g)$ for $f, g \in A[x]$.
(8) Let A be a Dedekind domain and let I be a nonzero ideal. Show that every ideal in A / I is principal. Conclude that every ideal of A can be generated by at most two elements. (Hint: Use Chinese reminder theorem)
(9) Show that a Dedekind domain is a UFD if and only if it is a PID.
(10) Let A be the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{10}]$. Show that A is a Dedekind domain, but not a PID.
(11) Let k be a field. Let $B=k\left[X_{1}, X_{2}, \ldots\right]$ and $A=k\left[X_{n}^{n}, X_{n}^{n+1} \mid n \geq 1\right] \subset B$. Let S be the subset of A consisting of polynomials that, as elements of B, do not have any variable as a factor. Then S is multiplicative. Set $R=S^{-1} A$.

Verify that R is a noetherian ring of dimension 1 by proving that the only primes of R are 0 and $P_{n}=\left(X_{n}^{n}, X_{n}^{n+1}\right) R$ for every n.

Show that the integral closure of R is $S^{-1} B$. Finally prove that $S^{-1} B$ is not finitely generated as an R-module. Note that the localized module $\left(S^{-1} B\right)_{R \backslash P_{n}}$ is minimally generated by n elements over $R_{P_{n}}$.

