Commutative Algebra, Problem Set 10

- (1) Show that any finitely generated ideal in a valuation ring is principal.
- (2) Let A be a DVR with quotient field k. Show that A is a maximal propert subring of k.
- (3) Show that a valuation ring which is not a field, is noetherian if and only if it is a DVR.
- (4) Let (A, \mathfrak{m}) be a local domain which is not a field such that \mathfrak{m} is principal and $\bigcap_{n=1}^{\infty} \mathfrak{m}^n = 0$. Show that A is a DVR.
- (5) Let A be a Dedekind domain and let S be a multiplicative set in A. Show that $S^{-1}A$ is either a Dedekind domain or the quotient field of A.
- (6) Let k be a field and let A = k[X, Y]. Let $f \in A$ be an irreducible polynomial such that f(0,0) = 0. Write f = l + g where l is the linear part of f. In other words, l = aX + bY for some $a, b \in k$ and $g \in (X, Y)^2$. Let R = A/(f) and P = (X, Y)R. Prove that R_P is a DVR if and only of $l \neq 0$.
- (7) Let A be a Dedekind domain and let $f = a_n x^n + \ldots + a_1 x + a_0$ be a polynomial over A. Define the *content* of f to be the ideal $c(f) = (a_0, \ldots, a_n)$. Prove the Gauss lemma: c(fg) = c(f)c(g) for $f, g \in A[x]$.
- (8) Let A be a Dedekind domain and let I be a nonzero ideal. Show that every ideal in A/I is principal. Conclude that every ideal of A can be generated by at most two elements. (Hint: Use Chinese reminder theorem)
- (9) Show that a Dedekind domain is a UFD if and only if it is a PID.
- (10) Let A be the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{10}]$. Show that A is a Dedekind domain, but not a PID.
- (11) Let k be a field. Let $B = k[X_1, X_2, ...]$ and $A = k[X_n^n, X_n^{n+1}|n \ge 1] \subset B$. Let S be the subset of A consisting of polynomials that, as elements of B, do not have any variable as a factor. Then S is multiplicative. Set $R = S^{-1}A$.
 - Verify that R is a noetherian ring of dimension 1 by proving that the only primes of R are 0 and $P_n = (X_n^n, X_n^{n+1})R$ for every n. Show that the integral closure of R is $S^{-1}B$. Finally prove that $S^{-1}B$ is not finitely

Show that the integral closure of R is $S^{-1}B$. Finally prove that $S^{-1}B$ is not finitely generated as an R-module. Note that the localized module $(S^{-1}B)_{R\setminus P_n}$ is minimally generated by n elements over R_{P_n} .