Algebra I, Fall 2011
 Assignment 4
 Due: Monday, Sep 26

(1) Let G be a group. Prove that the relation $a \sim b$ if $b=g a g^{-1}$ for some $g \in G$ is an equivalence relation on G.
(2) Does every group of order 35 contain an element of order 5 ? of order 7 ?
(3) Does every group whose order is a power of a prime p contain an element of order p ?
(4) A finite group G contains an element x of order 10 and also an element y of order 6 . What can be said about the order of G ?
(5) A group G of order 22 contains elements x and y where $x \neq 1$ and y is not a power of x. Prove that the subgroup generated by these elements is the whole group G.
(6) Prove that every subgroup of index 2 is a normal subgroup. Show by example that a subgroup of index 3 need not be normal.
(7) For which integers n does 2 have a multiplicative inverse in $\mathbb{Z} / \mathbb{Z} n$?
(8) Solve the congruence $2 x \equiv 5$ modulo 9 and modulo 6.
(9) Chinese Reminder Theorem: Let a, b, u, v be integers and assume that the greatest common divisor of a and b is 1 . Then show that there exists an integer x such that $x \equiv u$ modulo a and $x \equiv v$ modulo b. Do the case $u=0$ and $v=1$ first.
(10) Prove that the 2-cycle $\sigma=(12)$ and the n-cycle $\tau=(12 \ldots n)$ generate the symmetric group S_{n}.

Hint:Use conjugation of σ by τ. Also use the result from the last assignment that all 2-cycles generate S_{n}.
(11) Consider the group P_{n} of $n \times n$ permutation matrices. That is, P_{n} consists of all matrices obtained by permuting the rows of identity matrix I_{n}. We know that P_{n} is isomorphic to the symmetric group S_{n}.
(a) Let $A \in P_{n}$. Show that the determinant of A is 1 or -1 .
(b) Let $\sigma \in S_{n}$. Define the sign of σ as the determinant of the corresponding permutation matrix. Show that sign of any 2 -cycle is -1 and sign of any 3 cycle is 1 .
(c) Consider the map $\phi: S_{n} \rightarrow\{1,-1\}$ given by $\phi(\sigma)=\operatorname{sign}(\sigma)$. Show that ϕ is a group homomorphism. The kernel of ϕ is called the alternating group A_{n}.
(d) What is the cardinality of A_{n} ?

