Algebra I, Fall 2011 Assignment 4 Due: Monday, Sep 26

- (1) Let G be a group. Prove that the relation $a \sim b$ if $b = gag^{-1}$ for some $g \in G$ is an equivalence relation on G.
- (2) Does every group of order 35 contain an element of order 5? of order 7?
- (3) Does every group whose order is a power of a prime p contain an element of order p?
- (4) A finite group G contains an element x of order 10 and also an element y of order 6. What can be said about the order of G?
- (5) A group G of order 22 contains elements x and y where $x \neq 1$ and y is not a power of x. Prove that the subgroup generated by these elements is the whole group G.
- (6) Prove that every subgroup of index 2 is a normal subgroup. Show by example that a subgroup of index 3 need not be normal.
- (7) For which integers n does 2 have a multiplicative inverse in $\mathbb{Z}/\mathbb{Z}n$?
- (8) Solve the congruence $2x \equiv 5$ modulo 9 and modulo 6.
- (9) Chinese Reminder Theorem: Let a, b, u, v be integers and assume that the greatest common divisor of a and b is 1. Then show that there exists an integer x such that $x \equiv u \mod a$ and $x \equiv v \mod b$. Do the case u = 0 and v = 1 first.
- (10) Prove that the 2-cycle $\sigma = (12)$ and the *n*-cycle $\tau = (12...n)$ generate the symmetric group S_n .

Hint:Use conjugation of σ by τ . Also use the result from the last assignment that all 2-cycles generate S_n .

- (11) Consider the group P_n of $n \times n$ permutation matrices. That is, P_n consists of all matrices obtained by permuting the rows of identity matrix I_n . We know that P_n is isomorphic to the symmetric group S_n .
 - (a) Let $A \in P_n$. Show that the determinant of A is 1 or -1.
 - (b) Let $\sigma \in S_n$. Define the sign of σ as the determinant of the corresponding permutation matrix. Show that sign of any 2-cycle is -1 and sign of any 3 cycle is 1.
 - (c) Consider the map $\phi: S_n \to \{1, -1\}$ given by $\phi(\sigma) = \operatorname{sign}(\sigma)$. Show that ϕ is a group homomorphism. The kernel of ϕ is called the *alternating group* A_n .
 - (d) What is the cardinality of A_n ?