Algebra I, Fall 2011

Assignment 1

Due: Wednesday, Aug 24

(1) Find a formula for $\left[\begin{array}{lll}1 & 1 & 1 \\ & 1 & 1 \\ & & 1\end{array}\right]^{n}$, and prove it by induction.
(2) A square matrix A is called nilpotent if $A^{k}=0$ for some $k>0$. Prove that if A is nilpotent, then $I+A$ is invertible.
(3) (a) Find infinitely many matrices B such that $B A=I_{2}$ when

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 2 \\
2 & 5
\end{array}\right]
$$

(b) Prove that there is no matrix C such that $A C=I_{3}$.
(4) The trace of a square matrix A is the sum of its diagonal entries and is denoted by $\operatorname{tr}(A)$. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Also, if B is invertible, show that $\operatorname{tr}(A)=$ $\operatorname{tr}\left(B A B^{-1}\right)$.
(5) Show that the equation $A B-B A=I$ has no solutions in $n \times n$ matrices.
(6) How much can a matrix be simplified if both row and column operations are allowed?
(7) Prove that every invertible 2×2 matrix can be written as a product of at most four elementary matrices.
(8) Prove that if a product $A B$ of $n \times n$ matrices is invertible then so are the factors A, B.
(9) Let A and B be symmetric $n \times n$ matrices. Prove that the product $A B$ is symmetric if and only if $A B=B A$.
(10) Consider an arbitrary system of linear equations $A X=B$ where A and B have real entries.
(a) Prove that if $A X=B$ has more than one solution then it has infinitely many.
(b) Prove that if there is a solution in the complex numbers then there is also a real solution.
(11) Prove that the reduced row echelon form obtained by row reduction of a matrix A is uniquely determined by A.
(12) (Vandermonde determinant)
(a) Prove that det $\left[\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right]=(b-a)(c-a)(c-b)$
(b) Prove an analogous formula for $n \times n$ matrices by using row operations to clear out the first column cleverly.
(13) Consider a system of n linear equations in n unknowns: $A X=B$, where A and B have integer entries. Prove or disprove the following:
(a) The system has a rational solution if $\operatorname{det} A \neq 0$.
(b) If the system has a rational solution, then it also has an integer solution.
(14) Let A, B be $m \times n$ and $n \times m$ matrices. Prove that $I_{m}-A B$ is invertible if and only if $I_{n}-B A$ is invertible.
(15) Suppose that $f: M_{n} \rightarrow \mathbb{R}$ is a function satisfying the following conditions. Here M_{n} refers to the set of all $n \times n$ matrices.
(i) $f(I)=1$;
(ii) f is linear in the rows of a matrix;
(iii) If two adjacent rows of a matrix A are equal, then $f(A)=0$.

Now show that $f\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a d-b c$.
(16) (a) Suppose that $L_{1} U_{1}=L_{2} U_{2}$ where L_{i} are invertible lower triangular matrices and U_{i} are invertible upper triangular matrices and all diagonal entries of U_{i} are 1 . Show that $L_{1}=L_{2}$ and $U_{1}=U_{2}$.
(b) Most invertible matrices can be written as a product $A=L U$ where L and U are as above. Part (a) shows that such an expression is unique, if it exists. Explain how to compute L and U when the matrix A is given.
(c) Give an example of an invertible matrix A which does not have such an expression.

