Algebra I, Fall 2011 Assignment 1 Due: Wednesday, Aug 24

- (1) Find a formula for $\begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & 1 \end{bmatrix}^n$, and prove it by induction.
- (2) A square matrix A is called *nilpotent* if $A^k = 0$ for some k > 0. Prove that if A is nilpotent, then I + A is invertible.
- (3) (a) Find infinitely many matrices B such that $BA = I_2$ when

$$A = \left[\begin{array}{rrr} 2 & 3 \\ 1 & 2 \\ 2 & 5 \end{array} \right]$$

- (b) Prove that there is no matrix C such that $AC = I_3$.
- (4) The *trace* of a square matrix A is the sum of its diagonal entries and is denoted by $\operatorname{tr}(A)$. Show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Also, if B is invertible, show that $\operatorname{tr}(A) = \operatorname{tr}(BAB^{-1})$.
- (5) Show that the equation AB BA = I has no solutions in $n \times n$ matrices.
- (6) How much can a matrix be simplified if **both** row and column operations are allowed?
- (7) Prove that every invertible 2×2 matrix can be written as a product of at most four elementary matrices.
- (8) Prove that if a product AB of $n \times n$ matrices is invertible then so are the factors A, B.
- (9) Let A and B be symmetric $n \times n$ matrices. Prove that the product AB is symmetric if and only if AB = BA.
- (10) Consider an arbitrary system of linear equations AX = B where A and B have real entries.
 - (a) Prove that if AX = B has more than one solution then it has infinitely many.
 - (b) Prove that if there is a solution in the complex numbers then there is also a real solution.
- (11) Prove that the reduced row echelon form obtained by row reduction of a matrix A is uniquely determined by A.
- (12) (Vandermonde determinant)

(a) Prove that det
$$\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b)$$

- (b) Prove an analogous formula for $n \times n$ matrices by using row operations to clear out the first column cleverly.
- (13) Consider a system of n linear equations in n unknowns: AX = B, where A and B have *integer* entries. Prove or disprove the following:
 - (a) The system has a rational solution if det $A \neq 0$.
 - (b) If the system has a rational solution, then it also has an integer solution.

- (14) Let A, B be $m \times n$ and $n \times m$ matrices. Prove that $I_m AB$ is invertible if and only if $I_n BA$ is invertible.
- (15) Suppose that $f: M_n \to \mathbb{R}$ is a function satisfying the following conditions. Here M_n refers to the set of all $n \times n$ matrices.
 - (i) f(I) = 1;
 - (ii) f is linear in the rows of a matrix;
 - (iii) If two adjacent rows of a matrix A are equal, then f(A) = 0.

Now show that $f(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = ad - bc.$

- (16) (a) Suppose that $L_1U_1 = L_2U_2$ where L_i are invertible lower triangular matrices and U_i are invertible upper triangular matrices and all diagonal entries of U_i are 1. Show that $L_1 = L_2$ and $U_1 = U_2$.
 - (b) Most invertible matrices can be written as a product A = LU where L and U are as above. Part (a) shows that such an expression is unique, if it exists. Explain how to compute L and U when the matrix A is given.
 - (c) Give an example of an invertible matrix A which does not have such an expression.