Algebra 4, Homework 6

(1) Show that the correspondence between subgroups and intermediate fields in the main theorem of Galois theory is inclusion reversing.
(2) Let $F \subset L \subset K$ be a tower of fields. Prove or disprove:
(a) If K / F is Galois, then K / L is Galois.
(b) If K / F is Galois, then L / F is Galois.
(c) If K / L and L / F are Galois, then K / F is Galois.
(d) If $[L: F]=2$, then L / K is Galois.
(3) Let K be a Galois extension of \mathbb{Q} with Galois group S_{3}. Is it true that K is the splitting field of an irreducible cubic polynomial over \mathbb{Q} ?
(4) Let f be a reducible quartic polynomial over \mathbb{Q} with distinct roots. What are the possible Galois groups of f ?
(5) Let K be the splitting field of $x^{6}-25$ over \mathbb{Q}. Find the Galois group of K over \mathbb{Q} and determine all the intermediate fields and specify which of them are Galois over \mathbb{Q}.
(6) Find the Galois groups of the following polynomials over the indicated fields:
(a) $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$ over $\mathbb{Q}, \mathbb{F}_{3}$ and \mathbb{F}_{5}.
(b) $x^{4}-2$ over \mathbb{Q} and \mathbb{F}_{3}.
(c) $x^{4}+2$ over \mathbb{Q} and \mathbb{F}_{3}.
(d) $x^{4}-10 x^{2}+5$ over \mathbb{Q}.
(e) $x^{8}-2$ over \mathbb{Q}.
(f) $x^{3}-3 x-1$ over \mathbb{Q}.
(g) $x^{3}-10$ over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{-3})$.
(h) $x^{4}-a$ over \mathbb{Q}, where a is any integer $\neq 0, \neq \pm 1$ and is squarefree.
(7) Let K be a degree 4 extension of \mathbb{Q} such that it has no intermediate fields. Can K be Galois over \mathbb{Q} ? Give an example of such a field K.
(8) Given an integer $n \geq 1$, find an example of a Galois extension $F \subset K$ whose Galois group is S_{n}, the symmetric group on n letters. (consider the field $L\left(x_{1}, \ldots, x_{n}\right)$ of rational functions over any field L).

Use this to show that given any finite group G, there is a Galois extension whose Galois group is G.
(9) Given $n \geq 1$, show that there is a field extension $F \subset K$ of degree n with no intermediate fields (use the previous problem).
(10) Find quartic polynomials over \mathbb{Q} whose Galois groups are (a) S_{4}, (b) D_{4}, and (c) C_{4}.
(11) Let $n \geq 1$ be an integer and t an indeterminate. Show that $\mathbb{C}(t)$ is a Galois extension of $\mathbb{C}\left(t^{n}+t^{-n}\right)$ and find its Galois group (recall the case $n=4$ discussed in class).
(12) Let $F=\mathbb{Q}(\sqrt{a})$, where a is a negative integer. Show that F cannot be embedded in a cyclic extension whose degree over \mathbb{Q} is divisible by 4 .
(13) Let K / F be a Galois extension with Galois group G and let L be an intermediate field. Let H be the subgroup of G mapping L to itself. Show that H is the normalizer of $\operatorname{Gal}(K / L)$ in G.

