Algebra 4, Homework 6

- (1) Show that the correspondence between subgroups and intermediate fields in the main theorem of Galois theory is inclusion reversing.
- (2) Let $F \subset L \subset K$ be a tower of fields. Prove or disprove:
 - (a) If K/F is Galois, then K/L is Galois.
 - (b) If K/F is Galois, then L/F is Galois.
 - (c) If K/L and L/F are Galois, then K/F is Galois.
 - (d) If [L:F] = 2, then L/K is Galois.
- (3) Let K be a Galois extension of \mathbb{Q} with Galois group S_3 . Is it true that K is the splitting field of an irreducible cubic polynomial over \mathbb{Q} ?
- (4) Let f be a **reducible** quartic polynomial over \mathbb{Q} with **distinct** roots. What are the possible Galois groups of f?
- (5) Let K be the splitting field of $x^6 25$ over \mathbb{Q} . Find the Galois group of K over \mathbb{Q} and determine all the intermediate fields and specify which of them are Galois over \mathbb{Q} .
- (6) Find the Galois groups of the following polynomials over the indicated fields:
 - (a) $(x^2 2)(x^2 3)(x^2 5)$ over \mathbb{Q} , \mathbb{F}_3 and \mathbb{F}_5 .
 - (b) $x^4 2$ over \mathbb{Q} and \mathbb{F}_3 .
 - (c) $x^4 + 2$ over \mathbb{Q} and \mathbb{F}_3 .
 - (d) $x^4 10x^2 + 5$ over \mathbb{Q} .
 - (e) $x^8 2$ over \mathbb{Q} .
 - (f) $x^3 3x 1$ over \mathbb{Q} .
 - (g) $x^3 10$ over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{-3})$.
 - (h) $x^4 a$ over \mathbb{Q} , where a is any integer $\neq 0, \neq \pm 1$ and is squarefree.
- (7) Let K be a degree 4 extension of \mathbb{Q} such that it has no intermediate fields. Can K be Galois over \mathbb{Q} ? Give an example of such a field K.
- (8) Given an integer $n \ge 1$, find an example of a Galois extension $F \subset K$ whose Galois group is S_n , the symmetric group on n letters. (consider the field $L(x_1, \ldots, x_n)$ of rational functions over any field L).

Use this to show that given any finite group G, there is a Galois extension whose Galois group is G.

- (9) Given $n \ge 1$, show that there is a field extension $F \subset K$ of degree n with no intermediate fields (use the previous problem).
- (10) Find quartic polynomials over \mathbb{Q} whose Galois groups are (a) S_4 , (b) D_4 , and (c) C_4 .
- (11) Let $n \ge 1$ be an integer and t an indeterminate. Show that $\mathbb{C}(t)$ is a Galois extension of $\mathbb{C}(t^n + t^{-n})$ and find its Galois group (recall the case n = 4 discussed in class).
- (12) Let $F = \mathbb{Q}(\sqrt{a})$, where a is a negative integer. Show that F cannot be embedded in a cyclic extension whose degree over \mathbb{Q} is divisible by 4.
- (13) Let K/F be a Galois extension with Galois group G and let L be an intermediate field. Let H be the subgroup of G mapping L to itself. Show that H is the normalizer of Gal(K/L) in G.