Algebra 4, Homework 5

(1) Let $f \in F[x]$ be a polynomial of degree n. Show that the degree of the splitting field of f over F divides n !.
(2) Describe the splitting fields of the following polynomials over \mathbb{Q} and find the degree of each.
(a) $x^{2}-2$
(b) $x^{3}-2$
(c) $x^{2}+x+1$
(d) $x^{5}-7$
(e) $\left(x^{3}-2\right)\left(x^{2}-2\right)$
(f) $x^{6}+x^{3}+1$
(3) Let α be a real number such that $\alpha^{4}=5$. Show that
(a) $\mathbb{Q}\left(i \alpha^{2}\right)$ is normal over \mathbb{Q}.
(b) $\mathbb{Q}(\alpha+i \alpha)$ is normal over $\mathbb{Q}\left(i \alpha^{2}\right)$.
(c) $\mathbb{Q}(\alpha+i \alpha)$ is not normal over \mathbb{Q}.
(4) If the roots of a monic polynomial $f \in F[x]$ in some splitting field are distinct and form a field, then show that char F is a prime p and that $f=x^{p^{n}}-x$ for some $n \geq 1$.
(5) Let char $f=p$. Let K be a finite extension of F with the degree $[K: F]$ coprime to p. Show that K is separable over F.
(6) Show that the following are equivalent.
(a) Every algebraic extension of F is separable.
(b) Either char $F=0$ or char $F=p$ and every element of F has a p-th root in F.
(7) Given a tower $F \subset L \subset K$ of fields, show that K is separable over F if and only if L is separable over F and K is separable over L.
(8) Let $F \subset K$ be a field extension with the property that every element of K belongs to an intermediate field which is normal over F. Show that K / F is normal.

