Algebra 4, Homework 5

- (1) Let $f \in F[x]$ be a polynomial of degree n. Show that the degree of the splitting field of f over F divides n!.
- (2) Describe the splitting fields of the following polynomials over \mathbb{Q} and find the degree of each.
 - (a) $x^2 2$ (b) $x^3 - 2$
 - (b) $x^{2} + x + 1$ (c) $x^{2} + x + 1$
 - (c) $x^{+} + x^{-}$ (d) $x^{5} - 7$

(a)
$$(x^3 - 2)(x^2 - 2)$$

- (f) $x^6 + x^3 + 1$
- (3) Let α be a real number such that $\alpha^4 = 5$. Show that
 - (a) $\mathbb{Q}(i\alpha^2)$ is normal over \mathbb{Q} .
 - (b) $\mathbb{Q}(\alpha + i\alpha)$ is normal over $\mathbb{Q}(i\alpha^2)$.
 - (c) $\mathbb{Q}(\alpha + i\alpha)$ is not normal over \mathbb{Q} .
- (4) If the roots of a monic polynomial $f \in F[x]$ in some splitting field are distinct and form a field, then show that char F is a prime p and that $f = x^{p^n} x$ for some $n \ge 1$.
- (5) Let char f = p. Let K be a finite extension of F with the degree [K : F] coprime to p. Show that K is separable over F.
- (6) Show that the following are equivalent.
 - (a) Every algebraic extension of F is separable.
 - (b) Either char F = 0 or char F = p and every element of F has a p-th root in F.
- (7) Given a tower $F \subset L \subset K$ of fields, show that K is separable over F if and only if L is separable over F and K is separable over L.
- (8) Let $F \subset K$ be a field extension with the property that every element of K belongs to an intermediate field which is normal over F. Show that K/F is normal.