Algebra 4, Homework 4 Due: Sep 18, 2013

- (1) Let $F \subset K \subset L$ be fields. Prove that $\operatorname{tr.deg}_F L = \operatorname{tr.deg}_K L + \operatorname{tr.deg}_F K$.
- (2) Let $K = F(\alpha)$ be a field extension generated by a transcendental element α . Let $\beta \in K \setminus F$. Prove that α is algebraic over $F(\beta)$.
- (3) Give an example to show that a^b is not necessarily transcendental for two transcendental complex numbers $a, b \in \mathbb{C}$ (transcendental over \mathbb{Q}).
- (4) Let $\overline{\mathbb{Q}}$ denote an algebraic closure of \mathbb{Q} in \mathbb{C} . Suppose that $\alpha_1, \ldots, \alpha_n \in \mathbb{C} \setminus \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q} . Is it true that they are algebraically independent?
- (5) Let $f \in F[x]$ be an irreducible polynomial of degree over a field F and let K be a quadratic field extension of F. Prove or disprove: either f is irreducible over K, or else f is a product of two irreducible polynomials over K.
- (6) (a) Let p > 2 be a prime. Prove that exactly half the elements of 𝔽[×]_p are squares.
 (b) Prove the above for any finite field of odd order.
 - (c) Prove that in a finite field of even order, every element is a square.
- (7) Find the irreducible polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . Show that this polynomial is reducible modulo p for every prime p.
- (8) Given a finite collection F_1, \ldots, F_n of finite fields of the same characteristic, show that there exists a field K which contains subfields isomorphic to each F_i .
- (9) Let F, K be fields. Show that K is an algebraic closure of F if and only if K is algebraic over F and for every algebraic extension $F \subset L$, K contains a subfield isomorphic to L.
- (10) Let F and L be two fields of the same characteristic which have finite transcendence degrees over the prime field. Show that there exists a field K which contains subfields isomorphic to F and L.