Algebra 4, Homework 4

Due: Sep 18, 2013
(1) Let $F \subset K \subset L$ be fields. Prove that $\operatorname{tr} . \operatorname{deg}_{F} L=\operatorname{tr} \cdot \operatorname{deg}_{K} L+\operatorname{tr} \cdot \operatorname{deg}_{F} K$.
(2) Let $K=F(\alpha)$ be a field extension generated by a transcendental element α. Let $\beta \in K \backslash F$. Prove that α is algebraic over $F(\beta)$.
(3) Give an example to show that a^{b} is not necessarily transcendental for two transcendental complex numbers $a, b \in \mathbb{C}$ (transcendental over \mathbb{Q}).
(4) Let $\overline{\mathbb{Q}}$ denote an algebraic closure of \mathbb{Q} in \mathbb{C}. Suppose that $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C} \backslash \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}. Is it true that they are algebraically independent?
(5) Let $f \in F[x]$ be an irreducible polynomial of degree over a field F and let K be a quadratic field extension of F. Prove or disprove: either f is irreducible over K, or else f is a product of two irreducible polynomials over K.
(6) (a) Let $p>2$ be a prime. Prove that exactly half the elements of \mathbb{F}_{p}^{\times}are squares.
(b) Prove the above for any finite field of odd order.
(c) Prove that in a finite field of even order, every element is a square.
(7) Find the irreducible polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Show that this polynomial is reducible modulo p for every prime p.
(8) Given a finite collection F_{1}, \ldots, F_{n} of finite fields of the same characteristic, show that there exists a field K which contains subfields isomorphic to each F_{i}.
(9) Let F, K be fields. Show that K is an algebraic closure of F if and only if K is algebraic over F and for every algebraic extension $F \subset L, K$ contains a subfield isomorphic to L.
(10) Let F and L be two fields of the same characteristic which have finite transcendence degrees over the prime field. Show that there exists a field K which contains subfields isomorphic to F and L.

