Algebra 4, Homework 3
 Due: Sep 11, 2013

(1) Determine the number of generators of the multiplicative group K^{\times}of a field K of order $q=p^{r}$.
(2) Prove that every element of \mathbb{F}_{p} has exactly one p-th root.
(3) Prove that the sum and product of nonzero elements in a finite field K are 0 and -1 respectively, when K has more than 2 elements.
(4) Factor the polynomial $x^{16}-x$ over the fields $\mathbb{F}_{2}, \mathbb{F}_{4}$ and \mathbb{F}_{8}.
(5) Given a prime p, describe the integers n such that there exists a field K of order n and an element $\alpha \in K^{\times}$whose order is p.
(6) Let $f=x^{3}+x+1$ and $g=x^{3}+x^{2}+1$. Show that f and g are irreducible over \mathbb{F}_{2}. Consider the fields K and L obtained by adjoining to \mathbb{F}_{2} a root of f and g respectively. Are K and L isomorphic? If so, exhibit an explicit isomorphism.
(7) Show that every irreducible polynomial in $\mathbb{F}_{p}[x]$ divides $x^{p^{n}}-x$ for some $n \geq 1$.
(8) Let K be a field of order $q=p^{r}$. If k divides r, show that K contains exactly one field of order p^{k}.
(9) Show that the subfields of \mathbb{F}_{q} are totally ordered by inclusion.
(10) Let $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be the map: $\sigma(x)=x^{p}$ for $x \in \mathbb{F}_{q}$. Show that σ is a field automorphism. What is its order in the group of all field automorphisms of \mathbb{F}_{q} ?

