Algebra 4, Homework 3 Due: Sep 11, 2013

- (1) Determine the number of generators of the multiplicative group K^{\times} of a field K of order $q = p^r$.
- (2) Prove that every element of \mathbb{F}_p has exactly one *p*-th root.
- (3) Prove that the sum and product of nonzero elements in a finite field K are 0 and -1 respectively, when K has more than 2 elements.
- (4) Factor the polynomial $x^{16} x$ over the fields $\mathbb{F}_2, \mathbb{F}_4$ and \mathbb{F}_8 .
- (5) Given a prime p, describe the integers n such that there exists a field K of order n and an element $\alpha \in K^{\times}$ whose order is p.
- (6) Let $f = x^3 + x + 1$ and $g = x^3 + x^2 + 1$. Show that f and g are irreducible over \mathbb{F}_2 . Consider the fields K and L obtained by adjoining to \mathbb{F}_2 a root of f and g respectively. Are K and L isomorphic? If so, exhibit an explicit isomorphism.
- (7) Show that every irreducible polynomial in $\mathbb{F}_p[x]$ divides $x^{p^n} x$ for some $n \ge 1$.
- (8) Let K be a field of order $q = p^r$. If k divides r, show that K contains exactly one field of order p^k .
- (9) Show that the subfields of \mathbb{F}_q are totally ordered by inclusion.
- (10) Let $\sigma : \mathbb{F}_q \to \mathbb{F}_q$ be the map: $\sigma(x) = x^p$ for $x \in \mathbb{F}_q$. Show that σ is a field automorphism. What is its order in the group of all field automorphisms of \mathbb{F}_q ?