Algebra 4, Homework 2

Due: August 28, 2013
(1) Constructing a square whose area is the same as the area of a circle of unit radius is called squaring a circle. Using the fact that π is transcendental, prove that squaring a circle is impossible using a ruler and compass.
(2) Let \mathcal{C} denote the field of constructible real numbers.
(a) Is \mathcal{C} a finite extension of \mathbb{Q} ?
(b) Prove that \mathcal{C} is the smallest subfield of \mathbb{R} with the property that if $a \in \mathcal{C}$ and $a>0$, then $\sqrt{a} \in \mathcal{C}$.
(3) Let F be a field of characteristic 0 . Let $f \in F[x]$ and let f^{\prime} be its derivative. Let $g \in F[x]$ be an irreducible polynomial which is a common divisor of f and f^{\prime}. Prove that g^{2} divides f.
(4) Is there a field F and a prime p for which $x^{p}-x$ has a multiple root in F ?
(5) Let $f \in F[x]$ be an irreducible polynomial of degree $n \geq 1$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be roots of f in an extension K of F. Show that $n \leq\left[F\left(\alpha_{1}, \ldots, \alpha_{n}\right): F\right] \leq n$!. Give examples where both inequalities are realized, for some $n \geq 3$.
(6) Determine
(i) the number of field homomorphisms $F \rightarrow \mathbb{C}$ and
(ii) the number of field homomorphisms $F \rightarrow F$, where
(a) $F=\mathbb{Q}(\sqrt[3]{2})$,
(b) $F=\mathbb{Q}(\sqrt[3]{2}, \omega)$, where ω is a primitive third root of unity,
(c) $F=\mathbb{Q}(i)$

