Algebra 4, Homework 2 Due: August 28, 2013

- (1) Constructing a square whose area is the same as the area of a circle of unit radius is called *squaring a circle*. Using the fact that π is transcendental, prove that squaring a circle is impossible using a ruler and compass.
- (2) Let \mathcal{C} denote the field of constructible real numbers.
 - (a) Is \mathcal{C} a finite extension of \mathbb{Q} ?
 - (b) Prove that \mathcal{C} is the smallest subfield of \mathbb{R} with the property that if $a \in \mathcal{C}$ and a > 0, then $\sqrt{a} \in \mathcal{C}$.
- (3) Let F be a field of characteristic 0. Let $f \in F[x]$ and let f' be its derivative. Let $g \in F[x]$ be an irreducible polynomial which is a common divisor of f and f'. Prove that g^2 divides f.
- (4) Is there a field F and a prime p for which $x^p x$ has a multiple root in F?
- (5) Let $f \in F[x]$ be an irreducible polynomial of degree $n \ge 1$. Let $\alpha_1, \ldots, \alpha_n$ be roots of f in an extension K of F. Show that $n \le [F(\alpha_1, \ldots, \alpha_n) : F] \le n!$. Give examples where both inequalities are realized, for some $n \ge 3$.

(6) Determine

(i) the number of field homomorphisms $F \to \mathbb{C}$ and

- (ii) the number of field homomorphisms $F \to F$, where
- (a) $F = \mathbb{Q}(\sqrt[3]{2}),$
- (b) $F = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where ω is a primitive third root of unity,
- (c) $F = \mathbb{Q}(i)$