Algebra 4, Homework 1

- (1) Let K be a subfield of \mathbb{C} which is not contained in \mathbb{R} . Show that K is dense in \mathbb{C} (in the usual metric topology of \mathbb{C}).
- (2) Let $F \subset R$ where F is a field and R an integral domain. Suppose that R is finite dimensional when viewed as a vector space over F. Show that R is a field.
- (3) Find the following:
 - (a) $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3}) : \mathbb{Q}].$
 - (b) $[\mathbb{Q}(\zeta_n) : \mathbb{Q}]$, where ζ_n is the primitive *n*-th root of unity.
 - (c) $[\mathbb{R}:\mathbb{Q}(\pi)].$
 - (d) $[\mathbb{C}(x) : \mathbb{C}(u)]$, where x is a variable and $u = \frac{x^3}{x+1}$.
 - (e) $[\mathbb{Q}(\sqrt{3}, i, \zeta_3) : \mathbb{Q}].$
- (4) Find the irreducible polynomial of $\alpha = \sqrt{3} + \sqrt{5}$ over each of the following fields: (a) \mathbb{Q} (b) $\mathbb{Q}(\sqrt{5})$ (c) $\mathbb{Q}(\sqrt{10})$ (d) $\mathbb{Q}(\sqrt{15})$.
- (5) Let $\beta = \zeta \sqrt[3]{2}$, where ζ is a primitive third root of unity. Let $K = \mathbb{Q}(\beta)$. Prove that -1 can not be written as a sum of squares in K.
- (6) Let ζ_n be the primitive *n*-th root of unity.
 - (a) Find the irreducible polynomial of ζ_4 , ζ_6 , ζ_8 , ζ_9 , ζ_{10} , and ζ_{12} over \mathbb{Q} .
 - (b) Find the irreducible polynomial of ζ_6 , ζ_9 , and ζ_{12} over $\mathbb{Q}(\zeta_3)$.
- (7) Prove or disprove:
 - (a) Every algebraic extension is finite.
 - (b) If F is an infinite field, then the additive group (F, +) is not cyclic.
 - (c) If F is an infinite field, then the multiplicative group $(F \setminus \{0\}, \times)$ is not cyclic.
- (8) Let α , β be two complex numbers of degree 3 over \mathbb{Q} and let $K = \mathbb{Q}(\alpha, \beta)$. What are possible values of $[K : \mathbb{Q}]$?
- (9) Determine whether or not *i* is in the field $\mathbb{Q}(\alpha)$, where $\alpha^3 + \alpha + 1 = 0$.
- (10) Show that $\mathbb{Q}(\sqrt{2}+\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3}).$
- (11) Let $F \subset K$ and $\alpha \in K$ be algebraic over F. Suppose that $[F(\alpha) : F]$ is odd. Then show that $F(\alpha) = F(\alpha^2)$.
- (12) Let $F \subset R \subset K$ with fields F, K and a ring R. If K is algebraic over F, show that R is a field.
- (13) Show that the following polynomials are irreducible over \mathbb{Q} :
 - (a) $x^5 + 4x^4 12x^2 + 2x 14$,
 - (b) $x^3 3x^2 + 6x + 45$,

 - (c) $x^4 x + 1$, (d) $x^4 + x^3 + x^2 + x + 1$.
- (14) Let $\alpha = \sqrt[4]{2}$ be the real positive fourth root of 2. Find all fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$.