Algebra 4, Homework 1

(1) Let K be a subfield of \mathbb{C} which is not contained in \mathbb{R}. Show that K is dense in \mathbb{C} (in the usual metric topology of \mathbb{C}).
(2) Let $F \subset R$ where F is a field and R an integral domain. Suppose that R is finite dimensional when viewed as a vector space over F. Show that R is a field.
(3) Find the following:
(a) $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3}): \mathbb{Q}]$.
(b) $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]$, where ζ_{n} is the primitive n-th root of unity.
(c) $[\mathbb{R}: \mathbb{Q}(\pi)]$.
(d) $[\mathbb{C}(x): \mathbb{C}(u)]$, where x is a variable and $u=\frac{x^{3}}{x+1}$.
(e) $\left[\mathbb{Q}\left(\sqrt{3}, i, \zeta_{3}\right): \mathbb{Q}\right]$.
(4) Find the irreducible polynomial of $\alpha=\sqrt{3}+\sqrt{5}$ over each of the following fields: (a) $\mathbb{Q}(b) \mathbb{Q}(\sqrt{5})(c) \mathbb{Q}(\sqrt{10})(d) \mathbb{Q}(\sqrt{15})$.
(5) Let $\beta=\zeta \sqrt[3]{2}$, where ζ is a primitive third root of unity. Let $K=\mathbb{Q}(\beta)$. Prove that -1 can not be written as a sum of squares in K.
(6) Let ζ_{n} be the primitive n-th root of unity.
(a) Find the irreducible polynomial of $\zeta_{4}, \zeta_{6}, \zeta_{8}, \zeta_{9}, \zeta_{10}$, and ζ_{12} over \mathbb{Q}.
(b) Find the irreducible polynomial of ζ_{6}, ζ_{9}, and ζ_{12} over $\mathbb{Q}\left(\zeta_{3}\right)$.
(7) Prove or disprove:
(a) Every algebraic extension is finite.
(b) If F is an infinite field, then the additive group $(F,+)$ is not cyclic.
(c) If F is an infinite field, then the multiplicative group $(F \backslash\{0\}, \times)$ is not cyclic.
(8) Let α, β be two complex numbers of degree 3 over \mathbb{Q} and let $K=\mathbb{Q}(\alpha, \beta)$. What are possible values of $[K: \mathbb{Q}]$?
(9) Determine whether or not i is in the field $\mathbb{Q}(\alpha)$, where $\alpha^{3}+\alpha+1=0$.
(10) Show that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(11) Let $F \subset K$ and $\alpha \in K$ be algebraic over F. Suppose that $[F(\alpha): F]$ is odd. Then show that $F(\alpha)=F\left(\alpha^{2}\right)$.
(12) Let $F \subset R \subset K$ with fields F, K and a ring R. If K is algebraic over F, show that R is a field.
(13) Show that the following polynomials are irreducible over \mathbb{Q} :
(a) $x^{5}+4 x^{4}-12 x^{2}+2 x-14$,
(b) $x^{3}-3 x^{2}+6 x+45$,
(c) $x^{4}-x+1$,
(d) $x^{4}+x^{3}+x^{2}+x+1$.
(14) Let $\alpha=\sqrt[4]{2}$ be the real positive fourth root of 2 . Find all fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$.

