## Problem Set 2

1. Let $T$ be a linear operator on a Hermitian space $V$ and let $M$ be the matrix of $T$ with respect to an orthonormal basis of $V$. Show that:
(a) $M$ is Hermitian if and only if $\langle v, T w\rangle=<T v, w\rangle$ for $v, w \in W$.
(b) $M$ is unitary if and only if $\langle v, w\rangle=<T v, T w\rangle$ for $v, w \in W$.
2. Let $A, B$ be positive definite Hermitian matrices. Determine which of the following matrices are positive definite Hermitian: $A^{2}, A^{-1}, A B, A+B$.
3. Show that the absolute value of the determinant of a unitary matrix is 1 .
4. Consider the following functions $\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{C}$ :
(a) $\langle A, B\rangle=\operatorname{trace}\left(A^{\star} B\right)$
(b) $\langle A, B\rangle=\operatorname{trace}(\bar{A} B)$

Determine whether these functions are Hermitian forms and if so determinie their signature.
5. Prove that a real symmetric matrix $A$ is poitive definite if and only if its eigenvalues are positive.
6. Show that the only matrix which is both positive definite, Hermitian and unitary is the identity matrix.
7. Let $A$ be a complex square matrix. Show that $\operatorname{ker} A=\left(\operatorname{im} A^{\star}\right)^{\perp}$. Here perpendicular is with respect to the standard Hermitian product on $\mathbb{C}^{n}$.
8. Show that for every complex matrix $A$ there is a unitary matrix $P$ such that $P A P^{\star}$ is upper triangular.
9. Let $A$ be a Hermitian matrix. Prove that there is a unitary matrix $P$ with determinant 1 such that $P A P^{\star}$ is diagonal.
10. Determine the type of the quadric $5 x^{2}+3 x y+5 y^{2}-3 x+2 y-5=0$.
11. Let $A$ be a real matrix which is normal and has real eigenvalues. Prove that $A$ is symmetric.
12. Show that a real skew-symmetric matrix is normal.
13. Let $A$ be a normal matrix. Show that
(a) $A$ is Hermitian if and only if all its eigenvalues are real.
(b) $A$ is unitary if and only if all its eigenvalues have absolute value 1.
14. Given a complex Hermitian, positive definite matrix $A$, there exists a Hermitian, positive-definite matrix $B$ such that $B^{2}=A$.

