Symmetric bilinear forms - Exercises

1. Find an orthonormal basis for \mathbb{R}^2 with respect to the form $X^t A Y$.

(a) $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, (b) $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$.

- 2. Consider the form given by $A = \begin{pmatrix} 4 & 8 \\ 8 & 4 \end{pmatrix}$ on \mathbb{R}^2 . Find the signature of this form. Is it positive definite? If not, find the vectors x such that $x^t A x < 0$.
- 3. Prove directly that a form represented by the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on \mathbb{R}^2 is positive definite if and only if a > 0 and ad bc > 0.
- 4. (a) Prove that every real square matrix can be written uniquely as a sum of symmetric and skew-symmetric matrices.
 - (b) Prove that every bilinear form on a real vector space can be written uniquely as a sum of symmetric and skew-symmetric forms.
- 5. Let \langle , \rangle be a symmetric bilinear form on a real vector space V. Define the function $q: V \to \mathbb{R}$ by $q(v) = \langle v, v \rangle$ for $v \in V$. q is called the *quadratic form* associated to \langle , \rangle . Show that \langle , \rangle can be recovered from q by expanding q(v+w).
- 6. Let A be the matrix of a bilinear form with respect to some basis. Prove or disprove:
 - (a) the eigenvalues of A are independent of the basis,
 - (b) the rank of A is independent of the basis.
- 7. Let A be a real square matrix which is orthogonal, symmetric and positive definite. Show that A is the identity matrix.
- 8. Let V be the real vector space of all real polynomials of degree $\leq n$. Define a form on V by

$$< f,g > = \int_{-1}^{1} f(x)g(x) \, dx.$$

Show that this is a bilinear form and find an orthonormal basis for V when n = 1, 2 or 3.

9. Let V be the vector space of all real $n \times n$ matrices. Define a form on V by

$$\langle A, B \rangle = \operatorname{trace}(A^t B).$$

Show that this is a bilinear form and find an orthonormal basis.

- 10. Prove that every **complex** symmetric, nonsingular matrix A has the form $A = P^t P$.
- 11. Let V be the space of real 2×2 matrices. Consider the bilinear form $\langle A, B \rangle = \text{trace}(AB).$
 - (a) Compute the matrix of the form with respect to the standard basis $\{e_{ij}\}$.

- (b) Calculate the signature of this form. Is it a positive definite form?
- (c) Find an orthogonal basis for V.
- (d) Let W be the subspace of V of trace zero matrices. Determine the signature of the form restricted to W.
- 12. Let V be the space of real 2×2 matrices. Consider the function:

 $\langle A, B \rangle = \det(A + B) - \det A - \det B$. Show that this function is a symmetric bilinear form.

Repeat (a)-(d) of previous problem for this form.

- 13. Let A be a real square matrix which is positive definite and symmetric. Show that the maximal entries of A are on its diagonal.
- 14. Consider $V = \mathbb{R}^n$ with dot product. Let T be a linear operator on V. Suppose that the matrix A of T (with respect to some, hence any, basis) is symmetric.
 - (a) Prove that V is the orthogonal sum $V = (ker T) \oplus (im T)$.
 - (b) Prove that T is an orthogonal projection into im T if and only if $A^2 = A$.
- 15. Let <,> be a nondegenerate symmetric bilinear form on a real vector space V. Let $W \subset V$ be a subspace, and W^{\perp} its orthogonal complement. Show that V need not decompose as a direct sum of W and W^{\perp} .
- 16. Let \mathbb{B} and \mathbb{B}' be two orthonormal bases of a Euclidean space. Show that the change of basis matrix P is orthogonal.
- 17. Let \langle , \rangle be a bilinear form a real vector space V and let A represent the form with respect to some basis of V. Show that \langle , \rangle is degenerate if and only if rank of A < n (where dimension of V is n).
- 18. If $\langle v, v \rangle = 0 \Rightarrow v = 0$, then show that the form is nondegenerate. Is the converse true?