Symmetric bilinear forms - Exercises

1. Find an orthonormal basis for \mathbb{R}^{2} with respect to the form $X^{t} A Y$.
(a) $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$,
(b) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$.
2. Consider the form given by $A=\left(\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right)$ on \mathbb{R}^{2}. Find the signature of this form. Is it positive definite? If not, find the vectors x such that $x^{t} A x<0$.
3. Prove directly that a form represented by the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ on \mathbb{R}^{2} is positive definite if and only if $a>0$ and $a d-b c>0$.
4. (a) Prove that every real square matrix can be written uniquely as a sum of symmetric and skew-symmetric matrices.
(b) Prove that every bilinear form on a real vector space can be written uniquely as a sum of symmetric and skew-symmetric forms.
5. Let $<,>$ be a symmetric bilinear form on a real vector space V. Define the function $q: V \rightarrow \mathbb{R}$ by $q(v)=<v, v>$ for $v \in V . q$ is called the quadratic form associated to $<,>$. Show that $<,>$ can be recovered from q by expanding $q(v+w)$.
6. Let A be the matrix of a bilinear form with respect to some basis. Prove or disprove:
(a) the eigenvalues of A are independent of the basis,
(b) the rank of A is independent of the basis.
7. Let A be a real square matrix which is orthogonal, symmetric and positive definite. Show that A is the identity matrix.
8. Let V be the real vector space of all real polynomials of degree $\leq n$. Define a form on V by

$$
<f, g>=\int_{-1}^{1} f(x) g(x) d x
$$

Show that this is a bilinear form and find an orthonormal basis for V when $n=1,2$ or 3.
9. Let V be the vector space of all real $n \times n$ matrices. Define a form on V by

$$
<A, B>=\operatorname{trace}\left(A^{t} B\right)
$$

Show that this is a bilinear form and find an orthonormal basis.
10. Prove that every complex symmetric, nonsingular matrix A has the form $A=P^{t} P$.
11. Let V be the space of real 2×2 matrices. Consider the bilinear form $<A, B>=\operatorname{trace}(A B)$.
(a) Compute the matrix of the form with respect to the standard basis $\left\{e_{i j}\right\}$.
(b) Calculate the signature of this form. Is it a positive definite form?
(c) Find an orthogonal basis for V.
(d) Let W be the subspace of V of trace zero matrices. Determine the signature of the form restricted to W.
12. Let V be the space of real 2×2 matrices. Consider the function:
$<A, B>=\operatorname{det}(A+B)-\operatorname{det} A-\operatorname{det} B$. Show that this function is a symmetric bilinear form.

Repeat (a)-(d) of previous problem for this form.
13. Let A be a real square matrix which is positive definite and symmetric. Show that the maximal entries of A are on its diagonal.
14. Consider $V=\mathbb{R}^{n}$ with dot product. Let T be a linear operator on V. Suppose that the matrix A of T (with respect to some, hence any, basis) is symmetric.
(a) Prove that V is the orthogonal sum $V=(\operatorname{ker} T) \oplus(i m T)$.
(b) Prove that T is an orthogonal projection into $i m T$ if and only if $A^{2}=A$.
15. Let $<,>$ be a nondegenerate symmetric bilinear form on a real vector space V. Let $W \subset V$ be a subspace, and W^{\perp} its orthogonal complement. Show that V need not decompose as a direct sum of W and W^{\perp}.
16. Let \mathbb{B} and \mathbb{B}^{\prime} be two orthonormal bases of a Euclidean space. Show that the change of basis matrix P is orthogonal.
17. Let $<,>$ be a bilinear form a real vector space V and let A represent the form with respect to some basis of V. Show that $<,>$ is degenerate if and only if rank of $A<n$ (where dimension of V is n).
18. If $\langle v, v\rangle=0 \Rightarrow v=0$, then show that the form is nondegenerate. Is the converse true?

