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Abstract. We prove new results on projective normality, normal presentation and higher syzygies
for a surface of general type X embedded by adjoint line bundles Lr = K + rB, where B is a base
point free, ample line bundle. Our main results determine the r for which Lr has Np property. In
corollaries, we will relate the bounds on r to the regularity of B. Examples in the last section show
that several results are optimal.

Introduction

The topic of syzygies of algebraic varieties has evoked considerable interest due to, among other
things, the potential interactions it provides between commutative algebra and algebraic geometry.
Projective normality and normal presentation of varieties have been studied since the time of Italian
geometers. Mark Green brought a new perspective by viewing the classical results on projective
normality and normal presentation for curves as particular cases of a more general phenomenon:
the linearity of syzygies associated to the minimal free resolution of the homogeneous coordinate
ring of the variety embedded in a projective space. It is hard in general to write down the full
minimal free resolution, but the linearity of the syzygies has attracted attention. This leads to the
notion of Np property.

We give a quick introduction to Np property.

Let k be an algebraically closed field of characteristic 0. All our varieties are projective, smooth
and defined over k.

Let L be a very ample line bundle on a projective variety X. Then L determines an embedding of
X into the projective space P

(
H0(X, L)

)
. We denote by S the homogeneous coordinate ring of this

projective space. Then the section ring R(L) of L is defined as
⊕∞

n=0 H0(X, L⊗n) and it is a finitely
generated graded S -module. One looks at the minimal graded free resolution of R(L) over S :

...→ Ei → ...→ E2 → E1 → E0 → R→ 0

where Ei =
⊕

S (−ai, j) for all i ≥ 0 and ai, j are some nonnegative integers.

We say that L has N0 property if E0 = S . This simply means that the embedding determined by
L is projectively normal. It is also common to say, in this case, that L is normally generated.

L is said to have N1 property if E0 = S and a1, j = 2 for all j. In this case, we also say that L is
normally presented. Geometrically, this means that the embedding is cut out by quadrics.
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For p ≥ 2, we say that L has Np property of E0 = S and ai, j = i + 1 for all i = 1, . . . , p.

Given a very ample line bundle L, it is natural to ask for which p ≥ 0, L has Np property. This
was studied in the case of curves by Green in [G]. His result shows that if the curve has genus g,
then L has Np property if deg(L) ≥ 2g + 1 + p (see also [GL]). This result suggests the possibility
of a numerical characterization of Np property.

The notion of degree of a line bundle provides a good measure for the positivity of a line bundle
on a curve. But, in general, there is no such simple and straight forward measure on surfaces and
higher dimensional varieties. A way out is to narrow down the linear systems to adjoint linear
systems, that is, linear systems of the form K ⊗ B⊗r, where K = KX is a canonical divisor of X and
B is an ample line bundle on X. Mukai’s conjecture deals with precisely such line bundles and asks
for the linearity of syzygies associated to the embeddings given by K ⊗ B⊗r.

On a surface, given an ample line bundle B, Reider [R] proved that L = KX ⊗ B⊗r is very ample
for r ≥ 4. Then it is natural to ask if it is projectively normal. More generally, Mukai conjectured
that on a surface, if B is an ample line bundle, then KX ⊗ B⊗r has Np property for r ≥ p + 4. If
B is very ample, the situation is tractable, and there is a nice general result of Ein and Lazarsfeld
[EL] for projective varieties of all dimensions. If we assume B to be only ample and base point
free, many difficulties that one sees in the ample case still persist and it is still a challenge to prove
results along the lines of Mukai’s conjecture.

To a large extent, the situation for surfaces of Kodaira dimension less than 2 is clarified. Projec-
tive normality for rational surfaces was studied in [H]. [GP5] looks at higher syzygies on rational
surfaces and a strong conjecture, which implies Mukai’s conjecture, is made and proved for ratio-
nal surfaces. Syzygies of ruled surfaces are investigated in [B, GP1, GP2, Pa1, Pa2]. Projective
normality on Enriques surfaces is studied in [GLM]. In [GP3], effective bounds toward Mukai’s
conjecture are obtained for surfaces of Kodaira dimension zero. See [GP3, GP4] for a summary
and other results.

Many technical difficulties, unseen for surfaces of smaller Kodaira dimension, arise for the case
of surfaces of general type because K becomes more positive. In [P], Mukai’s conjecture is proved
for large families of line bundles on surfaces of general type. More precisely, Np property was
studied for line bundles of the form K ⊗ B⊗r with B ample and base point free under the hypothesis
that B2 ≥ B · K (or B − K is nef, for p ≥ 2).

In this article, we deal with general results about higher syzygies for surfaces of general type
and ample and base point free line bundles B for which B2 < B · K.

We prove projective normality and normal presentation for K + rB under the hypothesis B2 ≥
a
b (B · K) for two integers a < b. This is a generalization of the assumption B2 ≥ B · K made in [P]
to establish N0 and N1 properties. Under the hypothesis that nB − K is nef for an integer n ≥ 2, we
prove Np property for K + rB where r is a linear function of slope 2 in n and p. Finer results are
obtained under the hypothesis that X is regular.

The line bundles B satisfying B − K nef form large families in the Pic, but this still leaves out
infinitely many families for which B − K is not nef. A natural question is to look at those families
of line bundles B for which (n + 1)B−K is nef but nB−K is not nef for some integer n ≥ 1. It must
be noted that there are large classes of examples of surfaces of general type with huge moduli on
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which there are infinitely many line bundles for which these technical conditions are satisfied. We
describe such examples in the last section of this paper. A Mukai type result for such line bundles
not only generalizes the earlier results but also yields an asymptotic version of Mukai’s conjecture
for all surfaces of general type. Our results also provide a context for earlier results and point
towards further progress for a complete solution to the conjecture of Mukai.

Castelnuovo-Mumford regularity is a notion that interests both algebraic geometers and commu-
tative algebraists. For a base point free ample line bundle B on a projective variety X, the integers
r such that B⊗r has Np property are determined in terms of the Castelnuovo-Mumford regularity
of B in [GP3, Theorem 1.3]. We prove analogous results for adjoint line bundles on surfaces of
general type X. The results do not follow from just general arguments using Castelnuovo-Mumford
regularity because of the positivity of K (especially for surfaces of general type that are regular)
and require different methods.

The methods that are developed to handle the problems of the kind mentioned above include
vector bundle techniques on curves and surfaces; semi-stability of vector bundles on curves and
surfaces, multiplication maps of global sections and proving some positivity statements for vector
bundles. Other techniques involve proving some inequalities for intersections numbers on surfaces,
homological algebra and use of the notion of Castelnuovo-Mumford regularity. The general results
that are true for all surfaces of general type use some subtle inductive statements in homological
algebra and the so-called Castelnuovo-Mumford lemma. But for regular surfaces of general type, a
delicate analysis of linear systems on surfaces gives finer results. Here one can reduce the problem
of multiplication maps on surfaces to multiplication maps of certain special curves on the surface,
the choice of which is not always canonical. Then vector bundle techniques involving stability
arguments, and the general methods mentioned above give finer results.

The structure of the paper is as follows.

In Section 1, we list some results that are needed later on. Many of the results are classical and
stated without proof.

In Section 2, we establish projective normality and normal presentation under the hypothesis
that B2 ≥ a

b (B · K) for a < b. In subsection 2.1, we obtain better results on regular surfaces by
restricting to curves.

In Section 3, we study Np property for p ≥ 2 under the hypothesis that nB−K is nef or nB− 2K
is nef for some n ≥ 2. In 3.1, we prove stronger results for regular surfaces.

Finally in Section 4, we give examples of infinitely many families of surfaces of general type
when our hypotheses are satisfied. Some of these examples show that our arguments are optimal.
Given n ≥ 2, we construct examples of infinite families of surfaces and line bundles B on them
such that (n + 1)B − K is nef and nB − K is not nef, thereby proving that our results do not follow
from [P].

Notation: Unless otherwise stated, X represents a smooth minimal surface of general type over an
algebraically closed field k of characteristic 0. K or KX denotes its canonical divisor. We will use
the multiplicative notation of line bundles and additive notation of divisors interchangeably. Thus
when L is a line bundle, L⊗r and rL are the same.
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We write Hi(L) for the cohomology group Hi(X, L). The dimension of Hi(L) as a vector space
over k is denoted by hi(L). A · B refers to the intersection number of two divisors A and B. A line
bundle L is called nef if L · C ≥ 0 for every irreducible curve C ⊂ X. L is called big if for some
m > 0, the mapping defined by L⊗m is birational onto its image in the projective space.

Acknowledgment. We thank the referee for a careful reading and several comments that improved
the exposition.

1. Preliminaries

In this section, we state several results that will be used repeatedly in the sequel. We only prove
Lemmas 1.4 and 1.7. The others are from various sources, but we state them here for completeness.

Given a vector bundle F on a projective variety X that is generated by its global sections, we
have the canonical surjective map:

H0(F) ⊗ OX → F.(1.1)

Let MF be the kernel of this map. We have then the natural exact sequence:

0→ MF → H0(F) ⊗ OX → F → 0.(1.2)

We are going to study Np property for adjoint line bundles on a surface of general type. The
following characterization of Np property will be used.

Theorem 1.1. [EL, Lemma 1.6] Let L be a very ample line bundle on a projective variety X.
Assume that H1(L⊗k) = 0 for all k ≥ 1. Then L satisfies Np property if and only if H1(M⊗a

L ⊗L⊗b) = 0
for all 1 ≤ a ≤ p + 1 and b ≥ 1.

The proof of Lemma 1.6, [EL] in fact shows that this result holds for ample and base point free
line bundles L. We will use this version in this paper.

The following useful remarks will be used repeatedly. Let F be a globally generated vector
bundle and let A be any line bundle on a projective variety X.

Remark 1.2. H1(MF ⊗ A) = 0 if the following two conditions hold.

• The multiplication map H0(F) ⊗ H0(A)→ H0(F ⊗ A) is surjective.
• H1(A) = 0.

This is easy to see: tensor the sequence (1.2) by A and take global sections:

..→ H0(F) ⊗ H0(A)→ H0(F ⊗ A)→ H1(MF ⊗ A)→ H0(F) ⊗ H1(A)→ ...

Remark 1.3. H2(MF ⊗ A) = 0 if the following two conditions hold.

• H1(F ⊗ A) = 0.
• H2(A) = 0.
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This is easy to see: tensor the sequence (1.2) by A and take global sections:

..→ H1(F ⊗ A)→ H2(MF ⊗ A)→ H0(F) ⊗ H2(A)→ ...

Lemma 1.4. Let X be a surface of general type. Let B be an ample base point free divisor on X
with B2 ≥ a

b (B · K) for positive integers a < b. Suppose that H1(mB) = 0 for some m > b
a . Then

H1(lB) = 0 for all l ≥ m.

Proof. Let C ∈ |B| be a smooth irreducible curve. Let D = lB|C for some l ≥ m + 1. Then we have
deg(D) = lB2 = (l − 1)B2 + B2 ≥ ma

b B · K + B2 > B · K + B2 = 2g(C) − 2. So deg(KC − D) < 0 and
H1(D) = H0(KC − D) = 0. Now consider the short exact sequence: 0→ O(−B)→ O → OC → 0.

Tensoring with (m + 1)B and taking global sections, we obtain:

..→ H1(mB)→ H1((m + 1)B)→ H1((m + 1)B|C)→ ..

H1(mB) = 0, by assumption and we have shown above that H1((m + 1)B|C) = 0. So H1((m +

1)B) = 0. Now it follows easily, by induction, that H1(lB) = 0 for all l ≥ m + 1. �

Corollary 1.5. Let X be a surface of general type. Let B be an ample base point free divisor on X
with B2 ≥ 1

n (B ·K) for a positive integer n ≥ 2. Suppose that H1(mB) = 0 for some m ≥ n + 1. Then
H1(lB) = 0 for all l ≥ m.

Proof. Follows immediately from the lemma by setting a = 1, b = n. �

Lemma 1.6. Let X be a surface with nonnegative Kodaira dimension and let B be an ample line
bundle. If B2 ≥ a

b (B · K) for positive integers a < b, then B · K ≥ a
b (K2).

Proof. This follows easily from [P, Lemma 2.2]. Indeed, let B′ = bB and m = a. Then apply [P,
Lemma 2.2] to B′,m to obtain the lemma. �

Lemma 1.7. Let E and L1, L2, ..., Lr be coherent sheaves on a variety X. Consider the multiplica-
tion maps

ψ : H0(E) ⊗ H0(L1 ⊗ ... ⊗ Lr)→ H0(E ⊗ L1 ⊗ ... ⊗ Lr),

α1 : H0(E) ⊗ H0(L1)→ H0(E ⊗ L1),

α2 : H0(E ⊗ L1) ⊗ H0(L2)→ H0(E ⊗ L1 ⊗ L2),

...,

αr : H0(E ⊗ L1 ⊗ ... ⊗ Lr−1) ⊗ H0(Lr)→ H0(E ⊗ L1 ⊗ ... ⊗ Lr).

If α1,...,αr are surjective, then so is ψ.
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Proof. We have the following commutative diagram where id denotes the identity morphism:

H0(E) ⊗ H0(L1) ⊗ ... ⊗ H0(Lr)
α1⊗id //

φ
��

H0(E ⊗ L1) ⊗ H0(L2) ⊗ ... ⊗ H0(Lr)

α2⊗id
��

H0(E) ⊗ H0(L1 ⊗ ... ⊗ Lr)

ψ

��

H0(E ⊗ L1 ⊗ L2) ⊗ H0(L3) ⊗ ... ⊗ H0(Lr)
α3⊗id

��...

αr−1⊗id
��

H0(E ⊗ L1 ⊗ ... ⊗ Lr) H0(E ⊗ L1 ⊗ ... ⊗ Lr−1) ⊗ H0(Lr)
αroo

Since α1, α2, ..., αr are surjective and this diagram is commutative, a simple diagram chase shows
that ψ is surjective. �

We will now state some results without proof which will be used often in this paper. The first
one is the Castelnuovo - Mumford lemma. We remark that though Mumford stated this fact under
the hypothesis that E is ample and base point free, the proof works with only the base point free
assumption.

Lemma 1.8. [M, Theorem 2] Let E be a base-point free line bundle on a projective variety X and
let F be a coherent sheaf on X. If Hi(F ⊗ E−i) = 0 for i ≥ 1, then the multiplication map

H0(F ⊗ E⊗i) ⊗ H0(E)→ H0(F ⊗ E⊗i+1)

is surjective for all i ≥ 0.

We refer to this result as CM lemma in this paper.

Lemma 1.9. (Kawamata - Viehweg vanishing) Let X be a nonsingular projective variety over the
complex number field C. Let D be a nef and big divisor on X. Then

Hi(KX ⊗ D) = 0, for i > 0.

For a proof, see [K] or [V]. We will refer to this result simply as K-V vanishing.

The next three results will be used to prove the surjectivity of multiplication maps on regular
surfaces.

Lemma 1.10. Let X be a regular surface. Let E be a vector bundle and let C be a divisor such
that L = OX(C) is a base point free divisor and H1(E ⊗ L−1) = 0. If the multiplication map
H0(E⊗OC)⊗H0(L⊗OC)→ H0(E⊗L⊗OC) is surjective, then the map H0(E)⊗H0(L)→ H0(E⊗L)
is also surjective.

Proof. This is not difficult: e.g., see [GP3, Observation 2.3]. �

Let E be a vector bundle on a curve. Then µ(E) denotes the slope of E: µ(E) =
degree(E)
rank(E) .



SYZYGIES OF SURFACES OF GENERAL TYPE 7

Proposition 1.11. [B, Proposition 2.2] Let E and F be semistable vector bundles on a curve C
of genus g such that E is generated by its global sections. Then the multiplication map H0(F) ⊗
H0(E)→ H0(F ⊗ E) is surjective if the following two conditions hold:

(1) µ(F) > 2g, and
(2) µ(F) > 2g + rank(E)[2g − µ(E)] − 2h1(E).

Lemma 1.12. Let X be a projective variety. Let L be a base point free line bundle and let Q be an
effective divisor. Let q be a reduced and irreducible member of |Q|. Let R be a line bundle and G a
sheaf on X. Assume that the following two conditions hold:

(1) H1(L ⊗ Q−1) = 0,
(2) H0(M⊗n

L⊗Oq
⊗ R ⊗ Oq) ⊗ H0(G) → H0(M⊗n

L⊗Oq
⊗ R ⊗ Oq ⊗ G) is surjective for some integer

n ≥ 1.

Then the following map is surjective: H0(M⊗n
L ⊗ R ⊗ Oq) ⊗ H0(G)→ H0(M⊗n

L ⊗ R ⊗ Oq ⊗G).

Proof. This follows easily from [GP3, Lemma 2.9]. �

2. Normal Generation and Normal Presentation

In this section, unless otherwise stated, X is a minimal nonsingular surface of general type with
a canonical divisor K = KX and B will be a base point free, ample line bundle on X such that K + B
is base point free.

Remark 2.1. If B2 ≥ 5, then it follows from [R] that KX + B is ample and base point free (see e.g.
[P, Lemma 3.6]).

Moreover, in general, we have that B2 ≥ 2. Indeed, let C ∈ |B| be a smooth curve. If B2 = 1,
then L = B|C is base point free divisor on the curve C and degree of L is 1. This forces C to be
rational. But B2 + KX · B = 2g(C)− 2 = −2. This is absurd, because B is base point free, ample and
KX is nef.

Thus our hypothesis that KX +B is base point free is an additional condition only when B2 = 2, 3,
or 4.

Our goal is to study the line bundle K + rB for r ≥ 3 and determine the values of r, for which it
has N0 and N1 properties. As noted earlier, this typically involves checking the surjectivity of some
multiplication maps of global sections of divisors. The general procedure we follow uses Lemma
1.7 and CM lemma. In the case when X is regular, however, there are more tools available for
proving surjectivity. In section 2.1, we treat this case and obtain better bounds on r.

Remark 2.2. Let L = K + rB with r ≥ 3. Then H1(L) = 0, by K-V vanishing. By Theorem 1.1, L
has Np property if and only if H1(M⊗a

L ⊗ L⊗b) = 0 for all 1 ≤ a ≤ p + 1 and b ≥ 1.

Consider the sequence 1.2 with F = L. Tensoring with M⊗(a−1)
L ⊗ L⊗b and taking the long

exact sequence of cohomology, we see that the above cohomology vanishing is equivalent to the
surjectivity of the following map for 1 ≤ a ≤ p + 1 and b ≥ 1:

H0(M⊗(a−1)
L ⊗ L⊗b) ⊗ H0(L)→ H0(M⊗(a−1)

L ⊗ L⊗b+1).
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Throughout this article, we prove these maps are surjective when b = 1 and exactly same methods
give us the result for b > 1. We will illustrate this with the case a = 1. In this case, we have to
show the following map is surjective.

H0(L⊗b) ⊗ H0(L)→ H0(L⊗b+1).

For this, our strategy will be as follows. Using Lemma 1.7, we split L = K + rB into (r − 1)
copies of B and a copy of K +B. So the above map is surjective if the following maps are surjective:

H0(L⊗b) ⊗ H0(B)→ H0(L⊗b ⊗ B); H0(L⊗b ⊗ B) ⊗ H0(B)→ H0(L⊗b ⊗ B⊗2), . . . , and

H0(L⊗b ⊗ B⊗r−1) ⊗ H0(K + B)→ H0(L⊗b+1).
Then we use either CM Lemma 1.8 or reduction to curves (Lemma 1.10) in order to prove these
maps are surjective. In every case we consider, it turns out that it is sufficient to deal with the case
b = 1. If the hypothesis required for either Lemma 1.8 or Lemma 1.10 are satisfied when b = 1,
they are also satisfied when b > 1.

We first prove a general result on surjectivity of multiplication maps:

Theorem 2.3. Let X be a minimal smooth surface of general type and let B be an ample base point
free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Let m, n be positive
integers such that n ≥ 3. The multiplication map

H0(K + nB) ⊗ H0(K + mB)→ H0(2K + (n + m)B)

is surjective if the following conditions hold:

H1((n + m − 2)B
)

= 0,(2.1)
(n + m − 3)a

b
> 2 or {

(n + m − 3)a
b

= 2 and 2K , (n + m − 3)B}(2.2)

Proof. We use Lemma 1.7 and the first step is to prove the surjectivity of

H0(K + nB) ⊗ H0(B)→ H0(K + (n + 1)B).

By CM lemma, this follows if H1(K + (n− 1)B) = 0 and H2(K + (n− 2)B) = 0. Both these hold by
K-V vanishing because n ≥ 3.

We can similarly gather m−1 copies of B and only need to prove the surjectivity of the following
map:

H0(K + (n + m − 1)B) ⊗ H0(K + B)→ H0(2K + (n + m)B).
Again we use CM lemma. First we show H1((n + m − 2)B

)
= 0. This is the condition (2.1). Next,

we prove H2((n + m − 3)B − K
)

= 0.

By Serre duality, H2((n + m − 3)B − K
)

= H0(2K − (n + m − 3)B
)
. If this last group is nonzero,

then there exists an effective divisor D which is linearly equivalent to 2K − (n + m − 3)B. Since B
is ample, we have B · D = B · (2K − (n + m − 3)B) ≥ 0.

So 2B · K ≥ (n + m − 3)B2. By hypothesis, B2 ≥ a
b (B · K). So we get

2B · K ≥ (n + m − 3)B2 ≥
(n + m − 3)a

b
(B · K).
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This leads to a contradiction if (n+m−3)a
b > 2. Assume now that (n+m−3)a

b = 2 and 2K , (n+m−3)B.

Then all the terms in the above inequalities are equal and we have 2B ·K = (n + m−3)B2, which
in turn implies that

B ·
(
2K − (n + m − 3)B

)
= 0.

Since B is ample and 2K − (n + m − 3)B is effective, we obtain that 2K = (n + m − 3)B. This is a
contradiction. �

Theorem 2.3 allows us to determine when the line bundle K + rB has N0 property.

Corollary 2.4. Let X be a minimal smooth surface of general type and let B be an ample base point
free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Let L = K + rB with
r ≥ 3. Then L satisfies the N0 property if

H1((2r − 2)B
)

= 0,(2.3)

r >
b
a

+
3
2

or {r =
b
a

+
3
2

and 2K , (2r − 3)B}(2.4)

Proof. This follows easily from the theorem. By Remark 2.2, L satisfies the N0 property if the
following map is surjective:

H0((K + rB)) ⊗ H0(K + rB)→ H0(2K + 2rB).

Applying the theorem with n = m = r we obtain the result. �

We will state another corollary in the special case that B2 ≥ 1
n (B · K) for some n ≥ 2.

Corollary 2.5. Let X be a minimal smooth surface of general type and and let B be an ample base
point free line bundle on X such that B2 ≥ 1

n (B · K) for some n ≥ 2. Let L = K + rB. Suppose that
H1((2r − 2)B

)
= 0. Then L satisfies the N0 property for r ≥ n + 2.

Proof. Applying Corollary 2.4 with a = 1, b = n, we have that L satisfies N0 property if the
condition (2.4) holds.

r ≥ n + 2⇒ 2r − 3 ≥ 2n + 1⇒ 2r−3
n ≥ 2 + 1

n > 2. Hence the corollary follows. �

Remark 2.6. As remarked in the introduction, our results relate the bounds on r so that Lr = K +rB
has Np property to the Castelnuovo-Mumford regularity of B.

Let m ≥ 0. We say that B is m-regular (with respect to B) if Hi(B⊗m+1−i) = 0, for i > 0. If B is
m-regular, then it is (m + 1)-regular [L, Theorem 1.8.5.(iii)]. We define the regularity of B to be m
if B is m-regular, but not (m − 1)-regular. See [L, Section 1.8] for more details on this concept.

In this case, by Corollary 2.4, it follows that if reg(B) ≥ 2r − 2 and r > b
a + 3

2 , then L is normally
generated.

Next, we will address the question of normal presentation for K + rB. The following theorem
gives the conditions required for this.
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Theorem 2.7. Let X be a minimal smooth surface of general type. Let B be an ample base point
free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Let L = K + rB for
some r ≥ 3. Then L satisfies the N1 property if the following conditions hold:

H1((2r − 3)B) = 0,(2.5)

r >
b
a

+ 2 or {r =
b
a

+ 2 and 2K , (2r − 4)B}(2.6)

Proof. Note that (2.6) implies the condition (2.4). Also, since 2r − 3 > b
a , Lemma 1.4 and (2.5)

imply condition (2.3). Hence by Corollary 2.4, L satisfies the N0 property.

Next we establish N1 property by proving that the following map is surjective (see Remark 2.2):

H0(ML ⊗ K ⊗ B⊗r) ⊗ H0(K ⊗ B⊗r)→ H0(ML ⊗ K⊗2 ⊗ B⊗2r).(2.7)

As before we use Lemma 1.7 and CM lemma. First, we prove the surjectivity of:

H0(ML ⊗ K ⊗ B⊗r) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗r+1).

By CM lemma, this is true if the following two vanishings hold:

H1(ML ⊗ K ⊗ B⊗r−1) = 0,(2.8)
H2(ML ⊗ K ⊗ B⊗r−2) = 0.(2.9)

Using Remark 1.2, (2.8) holds if the following map is surjective (since H1(K ⊗ B⊗r−1) = 0):

H0(K ⊗ B⊗r) ⊗ H0(K ⊗ B⊗r−1)→ H0(K⊗2 ⊗ B⊗2r−1).

We use Theorem 2.3 (setting n = r,m = r−1). We verify that (2.1) and (2.2) hold. Using Lemma
1.4, (2.1) follows easily from (2.5). Also, (2.6) gives (2r−4)a

b > 2 or (2r−4)a
b = 2 and 2K , (2r − 4)B.

This gives (2.2).

Using Remark 1.3, (2.9) follows because H1(L⊗K ⊗B⊗r−2) = 0 and H2(K ⊗B⊗r−2) = 0 (by K-V
vanishing).

Next, we prove the surjectivity of:

H0(ML ⊗ K ⊗ B⊗r+1) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗r+2).

By CM lemma, this is true if the following two vanishings hold:

H1(ML ⊗ K ⊗ B⊗r) = 0,
H2(ML ⊗ K ⊗ B⊗r−1) = 0.

These two follow in exactly the same way as (2.8) and (2.9) using the hypotheses (2.5) and (2.6).

Repeating this process, we can prove the surjectivity of the following map:

H0(ML ⊗ K ⊗ B⊗2r−2) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗2r−1).
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To show that (2.7) surjects, it remains only to show that the following map surjects:

H0(ML ⊗ K ⊗ B⊗2r−1) ⊗ H0(K ⊗ B)→ H0(ML ⊗ K⊗2 ⊗ B⊗2r).

We use CM lemma:

H1(ML ⊗ B⊗2r−2) = 0,(2.10)
H2(ML ⊗ B⊗2r−3 ⊗ K−1) = 0.(2.11)

(2.10) follows easily by CM lemma. Because H1(B⊗3r−3) = 0, (2.11) holds if H2(B⊗2r−3⊗K−1) =

0.

By Serre duality, H2(B⊗2r−3 ⊗ K−1) = H0(K⊗2 ⊗ B⊗3−2r).

If this group is nonzero, then 2K − (2r − 3)B is linearly equivalent to an effective divisor. Since
B is ample, B · (2K − (2r − 3)B) ≥ 0. This implies that 2B · K ≥ (2r − 3)B2. But this contradicts the
hypothesis (2.6), because (2r−3)a

b > (2r−4)a
b > 2.

Hence the map (2.7) is surjective and the theorem is proved. �

Remark 2.8. If reg(B) ≥ 2r − 3 and r > b
a + 2, then Lr is normally generated.

Corollary 2.9. Let X be a minimal smooth surface of general type and let B be an ample base
point free line bundle on X such that B2 ≥ 1

n (B · K) for some n ≥ 2. Let L = K + rB. Suppose that
H1((2r − 3)B) = 0. Then L satisfies N1 property if any one of the following conditions holds:

r ≥ n + 3,(2.12)
r = n + 2 and 2K , (2r − 4)B(2.13)

Proof. We apply Theorem 2.7 with a = 1, b = n. (2.5) holds by hypothesis.

r ≥ n + 3⇒ 2r − 4 ≥ 2n + 2⇒ 2r−4
n ≥ 2 + 1

n > 2.

If r = n + 2, then 2r−4
n = 2, but 2K , (2r − 4)B. So the conditions (2.5) and (2.6) hold and L

satisfies the N1 property. �

2.1. Regular Surfaces. In this section, we assume that the surface X is regular. That is: H1(OX) =

0. As before B is a base point free ample line bundle such that B2 ≥ a
b (B · K) for some positive

integers a < b.

We have more tools available to prove surjectivity of multiplication maps on regular surfaces.
Using these we obtain the following general result:

Theorem 2.10. Let X be a minimal smooth regular surface of general type and let B be an ample
base point free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Suppose
that pg = h0(K) ≥ 3 and K2 ≥ 2. Let m, n be positive integers such that n ≥ 3. The multiplication
map

H0(K + nB) ⊗ H0(K + mB)→ H0(2K + (n + m)B)
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is surjective if the following conditions hold:

(n + m − 2)a2

b2 +
(n + m − 4)a

b
≥ 2,(2.14)

H1((n + m − 2)B
)

= 0(2.15)

Proof. Initially, we will use Lemma 1.7, CM lemma and K-V vanishing as in the proof of Theorem
2.3.

First step is to prove the surjectivity of

H0(K + nB) ⊗ H0(B)→ H0(K + (n + 1)B).

This follows because H1(K + (n−1)B = 0 and H1(K + (n−2)B = 0 by K-V vanishing (since n ≥ 3).

After repeating this m − 1 times, we are left with the following map:

H0(K + (n + m − 1)B) ⊗ H0(K + B)→ H0(2K + (n + m)B).(2.16)

To prove this map surjects we restrict to a smooth curve C ∈ |K + B| and use the fact that X is
regular. More precisely, we will use Lemma 1.10 and Proposition 1.11.

Note that H1((n + m − 2)B) = 0 and K + B is base point free. So by Lemma 1.10, we only need
to prove that the following map is surjective:

H0(K + (n + m − 1)B|C) ⊗ H0(K + B|C)→ H0(2K + (n + m)B|C).

Let F = K + (n + m − 1)B|C and E = K + B|C. We will now use Proposition 1.11.

We verify the following conditions:

deg(F) > 2g(C);(2.17)
deg(F) + deg(E) > 4g(C) − 2h1(E)(2.18)

Note that E is base point free and both E and F are semistable because they are line bundles.
Further, µ(E) = deg(E).

deg(F) = (K + (n + m − 1)B) · (K + B) and 2g = (2K + B) · (K + B) + 2. Hence deg(F) − 2g =

(K + (n + m − 1)B − 2K − B) · (K + B) − 2.

Thus (2.17) is equivalent to ((n + m − 2)B − K) · (K + B) > 2. Or equivalently,

(n + m − 2)B2 − K2 + (n + m − 3)B · K > 2.

Since B2 ≥ a
b B · K, we have (by Lemma 1.6) that, B · K ≥ a

b K2 and B2 ≥ a2

b2 K2.

So (n + m− 2)B2 −K2 + (n + m− 3)B ·K ≥ ( (n+m−2)a2

b2 +
(n+m−3)a

b − 1)K2. Since K2 ≥ 2, we require
(n+m−2)a2

b2 +
(n+m−3)a

b > 2. This follows from hypothesis (2.14).

Now we check (2.18).

Claim: h1(E) = pg.

Consider the exact sequence

0→ O(−C)→ O → O|C → 0.
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Tensoring this with K + B we obtain

0→ O → K + B→ E → 0.

This induces the long exact sequence

..→ H1(K + B)→ H1(E)→ H2(O)→ H2(K + B)→ ..

H1(K + B) = H2(K + B) = 0 by K-V vanishing and hence h2(O) = pg. So the claim follows.

By the hypothesis on pg, we conclude that h1(E) ≥ 3.

deg(F) + deg(E) = (K + (n + m − 1)B + K + B) · (K + B) = (2K + (n + m)B) · (K + B).

4g(C) = 2(2g(C) − 2) + 4 = 2(2K + B) · (K + B) + 4 =
[
(4K + 2B) · (K + B)

]
+ 4.

Thus (2.18) is equivalent to

(2K + (n + m)B) · (K + B) > (4K + 2B) · (K + B) + 4 − 2h1(E)

⇔ (2K + (n + m)B − 4K − 2B) · (K + B) > 4 − 2pg

⇔ ((n + m − 2)B − 2K) · (K + B) > −2, since pg ≥ 3

⇔ (n + m − 2)B2 + (n + m − 4)B · K − 2K2 > −2

⇐ (
(n + m − 2)a2

b2 +
(n + m − 4)a

b
− 2)K2 > −2.

The last inequality follows from the hypothesis (2.14).

Thus the map (2.16) is surjective and the theorem is proved. �

Now we prove two statements about the N0 property of K + rB.

Corollary 2.11. Let X be a minimal smooth regular surface of general type and let B be an ample
base point free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Let
L = K + rB with r ≥ 3. Then L satisfies N0 property if

(2r − 2)a2

b2 +
(2r − 4)a

b
≥ 2,(2.19)

H1((2r − 2)B
)

= 0.(2.20)

Proof. This is immediate from Theorem 2.10, by setting n = m = r. �

Now we state the result in the case B2 ≥ 1
n (B · K) for some n ≥ 2.

Corollary 2.12. Let X be a minimal smooth regular surface of general type and let B be an ample
base point free line bundle on X such that B2 ≥ 1

n (B · K) for some n ≥ 2. Let L = K + rB. Suppose
that H1((2r − 2)B

)
= 0. Then L satisfies the N0 property for r ≥ n + 1.

Proof. This follows easily from Corollary 2.11 by setting a = 1, b = n.

r ≥ n + 1⇒ 2r − 2 ≥ 2n and 2r − 4 ≥ 2n − 2⇒ 2r−2
n2 + 2r−4

n ≥
2n
n2 + 2n−2

n ≥ 2. �

The above result improves Corollary 2.5.
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Remark 2.13. In the proof of Theorem 2.10, we used reduction to curves to prove the surjectivity
of (2.16). As shown later in Example 4.6, reduction to curves is necessary to prove surjectivity
as the CM lemma does not apply. For instance, let n = m = 3 and a = 1, b = 2. Then (2.14)
holds. We construct a surface X of general type and a base point free and ample line bundle B
on X such that B2 ≥ 1

2 (B · KX) and H1(4B) = 0. So all the hypotheses of Theorem 2.10 hold.
However, H2(3B−KX) = H0(2KX − 3B) , 0. Hence the surjectivity of (2.16) does not follow from
CM lemma. Indeed, we show that there are infinitely many examples of regular surfaces and line
bundles on them, for which reduction to curves as in the proof of Theorem 2.10 is necessary and
gives better results.

Next, we determine when the line bundle K + rB has N1 property.

Theorem 2.14. Let X be a minimal smooth regular surface of general type and let B be an ample
base point free line bundle on X such that B2 ≥ a

b (B · K) for some positive integers a < b. Let
L = K + rB for some r ≥ 3. Suppose that H1((2r − 3)B) = 0. Then L satisfies N1 property if
r > b

a + 3
2 .

Proof. It is easy to see that the conditions (2.19) and (2.20) hold. So L satisfies the N0 property by
Corollary 2.11.

To prove that L satisfies the N1 property, we prove that the following map is surjective:

H0(ML ⊗ K ⊗ B⊗r) ⊗ H0(K ⊗ B⊗r)→ H0(ML ⊗ K⊗2 ⊗ B⊗2r).(2.21)

First, we prove the surjectivity of:

H0(ML ⊗ K ⊗ B⊗r) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗r+1).

By CM lemma, this is true if the following two vanishings hold:

H1(ML ⊗ K ⊗ B⊗r−1) = 0,(2.22)
H2(ML ⊗ K ⊗ B⊗r−2) = 0.(2.23)

(2.22) holds if the following map is surjective (since H1(K ⊗ B⊗r−1) = 0):

H0(K ⊗ B⊗r) ⊗ H0(K ⊗ B⊗r−1)→ H0(K⊗2 ⊗ B⊗2r−1).

By Theorem 2.10 (setting n = r,m = r − 1), we need (2.14) and (2.15) to hold. It is easy to see
that they follow from hypotheses.

(2.23) follows because H1(L ⊗ K ⊗ B⊗r−2) = 0 and H2(K ⊗ B⊗r−2) = 0 (by K-V vanishing, since
r ≥ 3).

Repeating this process, we can absorb (r−1) copies of B to prove the surjectivity of the following
map:

H0(ML ⊗ K ⊗ B⊗2r−2) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗2r−1).

To show that (2.21) surjects, it remains only to show that the following map surjects:

H0(ML ⊗ K ⊗ B⊗2r−1) ⊗ H0(K ⊗ B)→ H0(ML ⊗ K⊗2 ⊗ B⊗2r).(2.24)
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We prove

H1(ML ⊗ B⊗2r−2) = 0,(2.25)
H2(ML ⊗ K−1 ⊗ B⊗2r−3) = 0.(2.26)

(2.25) follows easily by Lemma 1.7 and CM lemma (using Remark 1.2).

As H1(L ⊗ K−1 ⊗ B⊗2r−3) = 0, (2.26) holds (by Remark 1.3) if H2(K−1 ⊗ B⊗2r−3) = 0.

By Serre duality, H2((2r − 3)B − K) = H0(2K − (2r − 3)B). If this group is nonzero, then
2K−(2r−3)B is linearly equivalent to an effective divisor and since B is ample, B·(2K−(2r−3)B) ≥
0. This implies that 2B · K ≥ (2r − 3)B2.

B2 ≥ a
b B · K ⇒ (2r − 3)B2 ≥

(2r−3)a
b B · K ⇒ 2B · K ≥ (2r−3)a

b B · K.

Since (2r−3)a
b > 2, by hypothesis, we have a contradiction. So the map (2.24), and hence (2.21),

is surjective and the theorem is proved. �

Corollary 2.15. Let X be a minimal smooth regular surface of general type and let B be an ample
base point free line bundle on X such that B2 ≥ 1

n (B · K) for some n ≥ 2. Let L = K + rB. Suppose
that H1((2r − 3)B) = 0 .Then L satisfies N1 property for r ≥ n + 2.

Proof. This follows easily from Theorem 2.14 by setting a = 1, b = n. �

The above result improves the bound obtained in Corollary 2.9.

It is interesting to determine, given a specific r, under which conditions does K + rB have N1

property. We do this in the following:

Corollary 2.16. Let B be an ample base point free line bundle on X. Let r ≥ 3. Then K + rB
satisfies N1 property if H1((r − 1)B) = 0 and B2 ≥ 2

2r−3 (B · K).

Proof. This follows easily from Theorem 2.14:

Setting a = 2, b = 2r − 3, note that r − 1 = b
a + 1

2 >
b
a . Hence the condition H1((r − 1)B) = 0

implies, by Lemma 1.4, H1(lB) = 0 for all l ≥ r − 1.

Further, the hypotheses required in Theorem 2.14 clearly follow in this case (a = 2, b = 2r −
3). �

By this corollary, we see that:

K + 3B has N1 property if H1(2B) = 0 and B2 ≥ 2
3 B · K; K + 4B has N1 property if H1(3B) = 0

and B2 ≥ 2
5 B · K; K + 5B has N1 property if H1(4B) = 0 and B2 ≥ 2

7 B · K; and so on.

3. Higher Syzygies

In this section X represents a nonsingular minimal surface of general type and B is a base point
free ample divisor such that K + B is base point free.
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Our goal is to specify r for which L = K + rB satisfies the Np property for p ≥ 2. Let n ≥ 2 be
a positive integer. In this section we will assume either that nB − K is nef or (n + 1)B − 2K is nef.
We get different bounds on r under these two different hypotheses.

By Theorem 1.1, to prove Np property for L, we have to prove that H1(M⊗a
L ⊗ L⊗b) = 0 for all

1 ≤ a ≤ p + 1 and b ≥ 1. To do so, we will use Lemmas 1.7 and 1.8 repeatedly. In the process, we
will need vanishings of the following form:

H1(M⊗a
L ⊗ B⊗m ⊗ K⊗l) = 0 and H2(M⊗a

L ⊗ B⊗m ⊗ K⊗l) = 0,(3.1)

for various values of a,m and l. Here 1 ≤ a ≤ p + 1 and m ≥ 1, but l is any integer, possibly
negative.

Most of this section is devoted to establishing (3.1). We will prove a series of propositions to this
end. Then using these results, we prove our main theorems. All our results will have two versions
corresponding to the two hypotheses (n ≥ 2 is a positive integer) :

(n + 1)B − 2K is nef or nB − K is nef.

We will start with a couple of easy lemmas.

Lemma 3.1. Let X be a smooth minimal surface of general type and let B be a base point free
ample divisor. Let n ≥ 2. Suppose that (n + 1)B−2K is nef. Then H1(mB− lK) = H2(mB− lK) = 0,
if m > (n+1)(l+2)

2 .

Proof. We write mB − lK as K plus a nef and big divisor and then use K-V vanishing.

Suppose that l is even: say, l = 2l′ − 2. By the hypothesis, m > (n + 1)l′. Write

mB − lK = 2K + l′((n + 1)B − 2K) + (m − (n + 1)l′)B.

If l is odd, we write l = 2l′ − 1 and mB − lK = K + l′((n + 1)B − 2K) + (m − (n + 1)l′)B. �

Lemma 3.2. Let X be a smooth minimal surface of general type and let B be a base point free
ample divisor. Let n ≥ 2. Suppose that nB − K is nef. Then H1(mB − lK) = H2(mB − lK) = 0, if
m > n(l + 1).

Proof. Note that mB− lK = K +(l+1)(nB−K)+(m−n(l+1))B. We are done by K-V vanishing. �

Now we will prove (3.1) for negative l.

Proposition 3.3. Let X be a minimal smooth surface of general type and let B be a base point free
ample divisor such that K + B is base point free. Let n ≥ 2 be a positive integer. Assume that
(n + 1)B− 2K is nef. Let p ≥ 1, r ≥ n + p + 1 and L = K + rB. Then the following statements hold:

(1) H1(M⊗p
L ⊗ B⊗m ⊗ K−l) = 0 for p ≥ 1, l ≥ 1 and m > (n+1)(l+2)

2 + p + 1.

(2) H2(M⊗p
L ⊗ B⊗m ⊗ K−l) = 0 for p ≥ 1, l ≥ 1 and m > (n+1)(l+2)

2 + p − 1.

Proof. We first prove both statements of the theorem for p = 1.
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To prove H1(ML ⊗ B⊗m ⊗ K−l) = 0, it suffices to show that H1(B⊗m ⊗ K−l) = 0 and that the
following map is surjective:

H0(B⊗m ⊗ K−l) ⊗ H0(L)→ H0(L ⊗ B⊗m ⊗ K−l).

H1(B⊗m ⊗ K−l) = 0 by Lemma 3.1. The surjectivity of the above map can be proved by Lemma
1.7. First (r−1) copies of B are captured and the surjectivity of these maps follows easily from CM
lemma and Lemma 3.1. Note that we have m > (n+1)(l+2)

2 + 2. Finally, we have the map

H0(B⊗m+r−1 ⊗ K−l) ⊗ H0(K ⊗ B)→ H0(L ⊗ B⊗m ⊗ K−l).

We show that H1(B⊗m+r−2 ⊗K−l−1) = H2(B⊗m+r−3 ⊗K−l−2) = 0: we only prove the later here and the
former follows similarly.

By hypothesis, r ≥ n + 2 and m > (n+1)(l+2)
2 + 2. So

m + r − 3 >
(n + 1)(l + 2)

2
+ n + 1 =

(n + 1)(l + 4)
2

.

So H2(B⊗m+r−3 ⊗ K−l−2) = 0 by Lemma 3.1. Hence (1) follows.

To prove (2) for p = 1, we show that H1(L ⊗ B⊗m ⊗ K−l) = 0 and H2(B⊗m ⊗ K−l) = 0. The first
vanishing follows easily as above, and the second vanishing follows from Lemma 3.1. Note that
m > (n+1)(l+2)

2 .

Now let p > 1 and assume that the theorem is proved for p − 1.

We first prove (1) for p. Since H1(M⊗p−1
L ⊗ B⊗m ⊗ K−l) = 0 by induction hypothesis, we only

need to show that the following map is surjective:

H0(M⊗p−1
L ⊗ B⊗m ⊗ K−l) ⊗ H0(L)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K−l ⊗ L).

As usual we use Lemma 1.7. First we will capture one copy of B.

H0(M⊗p−1
L ⊗ B⊗m ⊗ K−l) ⊗ H0(B)→ H0(M⊗p−1

L ⊗ B⊗m+1 ⊗ K−l).

To prove this surjects we use the CM lemma: H1(M⊗p−1
L ⊗B⊗m−1⊗K−l) = H2(M⊗p−1

L ⊗B⊗m−2⊗K−l) =

0. These follow from induction hypothesis. Similarly, we capture (r − 1) copies of B.

Then we have the following map:

H0(M⊗p−1
L ⊗ B⊗m+r−1 ⊗ K−l) ⊗ H0(K ⊗ B)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K−l ⊗ L).

Using CM lemma, this map is surjective if

H1(M⊗p−1
L ⊗ B⊗m+r−2 ⊗ K−l−1) = 0, and(3.2)

H2(M⊗p−1
L ⊗ B⊗m+r−3 ⊗ K−l−2) = 0.(3.3)

Since r ≥ n + p + 1 and m > (n+1)(l+2)
2 + p + 1,

m + r − 2 >
(n + 1)(l + 2)

2
+ 2p + n ≥

(n + 1)(l + 2)
2

+ n + 2 + p =
(n + 1)(l + 4)

2
+ p + 1.

So (3.2) holds by induction hypothesis.
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Next we have

m + r − 3 >
(n + 2)(l + 2)

2
+ 2p + n − 1 ≥

(n + 1)(l + 2)
2

+ n + 1 + p =
(n + 1)(l + 4)

2
+ p.

Hence (3.3) holds by induction hypothesis. This completes the proof of (1) for p.

Finally, we prove (2) for p. We show that H1(M⊗p−1
L ⊗L⊗B⊗m⊗K−l) = 0 and H2(M⊗p−1

L ⊗B⊗m⊗

K−l) = 0. But both these vanishings follow easily from induction hypothesis. �

Next we prove (3.1) for negative l with the hypothesis nB − K nef:

Proposition 3.4. Let X be a minimal smooth surface of general type and let B be a base point
free ample divisor such that K + B is base point free. Let n ≥ 2. Assume that nB − K is nef. Let
p ≥ 1, r ≥ 2n + p + 1 and L = K + rB. Then the following statements hold:

(1) H1(M⊗p
L ⊗ B⊗m ⊗ K−l) = 0 for p ≥ 1, l ≥ 1 and m > n(l + 1) + p + 1.

(2) H2(M⊗p
L ⊗ B⊗m ⊗ K−l) = 0 for p ≥ 1, l ≥ 1 and m > n(l + 1) + p − 1.

Proof. The proof is similar to the proof of Proposition 3.3. We proceed by induction on p, with
Lemma 3.2 playing the role of Lemma 3.1.

To prove (1) for p, we proceed as in the proof of Proposition 3.3. They key step is to show that
the following map is surjective:

H0(M⊗p−1
L ⊗ B⊗m+r−1 ⊗ K−l) ⊗ H0(K ⊗ B)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K−l ⊗ L).

Using CM lemma, this map is surjective if

H1(M⊗p−1
L ⊗ B⊗m+r−2 ⊗ K−l−1) = 0, and(3.4)

H2(M⊗p−1
L ⊗ B⊗m+r−3 ⊗ K−l−2) = 0.(3.5)

Since r ≥ 2n + p + 1 and m > n(l + 1) + p + 1,

m + r − 2 > n(l + 3) + 2p ≥ n(l + 2) + p.

So (3.4) holds by induction hypothesis.

Similarly
m + r − 3 > n(l + 3) + 2p − 1 ≥ n(l + 3) + p − 2.

So (3.5) holds by induction hypothesis.

The proof of (2) is the same as in the proof of Proposition 3.3(2). �

Remark 3.5. Let n ≥ 1. Assume that (n + 1)B−2K is nef or nB−K nef. Since B is base point free,

((n + 1)B − 2K) · B ≥ 0 or (nB − K) · B ≥ 0.

Hence, in either case, we get that B2 ≥ 1
n (B · K).

Suppose further that H1((n + 1)B) = 0. Since n + 1 > n, it follows, by Lemma 1.4, that
H1(mB) = 0 for all m ≥ n + 1.
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Next we establish (3.1) for positive l with the additional hypothesis H1((n + 1)B) = 0.

First we will assume that (n + 1)B − 2K is nef:

Proposition 3.6. Let X be a minimal smooth surface of general type and let B be a base point free
ample divisor such that K + B is base point free. Let n ≥ 2. Assume that (n + 1)B − 2K is nef and
H1((n + 1)B) = 0. Let p ≥ 1, r ≥ n + p + 1 and L = K + rB. Then the following statements hold:

(1) H1(M⊗p
L ⊗ B⊗m ⊗ K⊗l) = 0 for p ≥ 1, l ≥ 0 and m ≥ n + p + 1.

(2) H2(M⊗p
L ⊗ B⊗m ⊗ K⊗l) = 0 for p ≥ 1, l ≥ 0 and m ≥ n + p.

Proof. We have H1(mB) = 0 for all m ≥ n + 1, by Lemma 1.4.

We first prove both statements of the theorem for p = 1.

To prove (1), note that H1(B⊗m ⊗ K⊗l) = 0. Indeed, if l > 0 this follows from K - V vanishing. If
l = 0, use Lemma 1.4. Thus to prove (1) it suffices to prove that the following map is surjective:

H0(B⊗m ⊗ K⊗l) ⊗ H0(L)→ H0(B⊗m ⊗ K⊗l ⊗ L).

If l = 0 or l ≥ 3, this follows easily by CM lemma and K-V vanishing. If l = 1, it follows from
Theorem 2.3. If l = 2, then we use CM lemma and most of the proof follows immediately from
K-V vanishing. At the end we require the surjectivity of the following multiplication map:

H0(B⊗m+r−1 ⊗ K⊗2) ⊗ H0(K ⊗ B)→ H0(B⊗m ⊗ K⊗2 ⊗ L).

We show that H1(K ⊗ B⊗m+r−2) = H2(B⊗m+r−3) = 0.

The first follows by K-V vanishing. If the second does not hold, then by Serre duality we have
H0(K − (m + r − 3)B) , 0. Then, since B is ample, we have B · K ≥ (m + r − 3)B2. But by
hypothesis we have (m + r − 3)B2 ≥

(m+r−3)
n B · K, which implies that B · K ≥ (m+r−3)

n B · K. But this
is a contradiction because m + r − 3 > 2n + 1 > n.

To prove (2), we will show that H1(L ⊗ B⊗m ⊗ K⊗l) = H2(B⊗m ⊗ K⊗l) = 0. The first vanishing is
clear. The second is clear if l > 0. If l = 0, we argue as above using Serre duality and the fact that
m > n.

Assume now that the theorem holds for p − 1.

We first prove (1) for p. Since m ≥ n + p + 1, we have H1(M⊗p−1
L ⊗ B⊗m ⊗K⊗l) = 0, by induction

hypothesis. So it suffices to show that the following map is surjective:

H0(M⊗p−1
L ⊗ B⊗m ⊗ K⊗l) ⊗ H0(L)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K⊗l ⊗ L).

We use Lemma 1.7. We capture (r − 1) copies of B using CM lemma and induction hypothesis.
The necessary hypothesis on m for (1) and (2) hold. We are then left with the following map:

H0(M⊗p−1
L ⊗ B⊗m+r−1 ⊗ K⊗l) ⊗ H0(K ⊗ B)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K⊗l ⊗ L).

We use CM lemma:

H1(M⊗p−1
L ⊗ B⊗m+r−2 ⊗ K⊗l−1) = 0 and(3.6)

H2(M⊗p−1
L ⊗ B⊗m+r−3 ⊗ K⊗l−2) = 0.(3.7)
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If l ≥ 1, (3.6) follows from induction hypothesis. If l = 0, we use Proposition 3.3. We need to
show m+ r−2 > 3(n+1)

2 + p. By hypothesis, m, r ≥ n+ p+1 and the required inequality is equivalent
to n/2 + p > 3/2. This is clear.

(3.7) follows by induction if l ≥ 2. If l = 0, then it follows from Proposition 3.3 provided
m + r − 3 > 2(n + 1) + p − 2. This follows easily from the hypothesis on m, r. The case l = 1 is
similar.

Finally, to prove (2) for p, we simply note that H1(M⊗p−1
L ⊗ L⊗ B⊗m ⊗K⊗l) = H2(M⊗p−1

L ⊗ B⊗m ⊗

K⊗l) = 0, by induction hypothesis. �

We have a similar proposition with the hypothesis nB − K nef:

Proposition 3.7. Let X be a minimal smooth surface of general type and let B be a base point
free ample divisor such that K + B is base point free. Let n ≥ 2. Suppose that nB − K is nef and
H1((n + 1)B) = 0. Let p ≥ 1, r ≥ 2n + p + 1 and L = K + rB. Then the following statements hold:

(1) H1(M⊗p
L ⊗ B⊗m ⊗ K⊗l) = 0 for p ≥ 1, l ≥ 0 and m ≥ n + p + 1.

(2) H2(M⊗p
L ⊗ B⊗m ⊗ K⊗l) = 0 for p ≥ 1, l ≥ 0 and m ≥ n + p.

Proof. The proof is similar to the proof of Proposition 3.6. We proceed by induction on p.

To prove (1), the key step is to show that the following map is surjective:

H0(M⊗p−1
L ⊗ B⊗m+r−1 ⊗ K⊗l) ⊗ H0(K ⊗ B)→ H0(M⊗p−1

L ⊗ B⊗m ⊗ K⊗l ⊗ L).

As before, we use CM lemma.

H1(M⊗p−1
L ⊗ B⊗m+r−2 ⊗ K⊗l−1) = 0 and(3.8)

H2(M⊗p−1
L ⊗ B⊗m+r−3 ⊗ K⊗l−2) = 0.(3.9)

To see (3.8), note that it follows by induction if l ≥ 1. If l = 0, we use Proposition 3.4(1). The
required condition is m + r − 2 > 2n + p. This follows easily from the hypothesis on r and m:
r ≥ 2n + p + 1 and m ≥ n + p + 1.

(3.9) follows easily by induction hypothesis if l ≥ 2. For l = 0, we use Proposition 3.4(2). By
hypothesis on m and r, we get m + r − 3 ≥ 3n + 2p − 1 > 3n + 2p − 2. To use Proposition 3.4, we
need m + r − 3 > 3n + p − 2. The case l = 1 is similar.

The proof of (2) is easy and is similar to the proof of Proposition 3.6(2). �

Now we will state our main results. These results will use the propositions proved above.

Theorem 3.8. Let X be a minimal smooth surface of general type and let B be a base point free
ample divisor such that K + B is base point free. Let n ≥ 2. Suppose that H1((n + 1)B) = 0 and
(n + 1)B − 2K is nef. Then L = K + rB satisfies the Np property if r ≥ n + p + 2.

Proof. By Theorem 1.1, we know that L satisfies Np property if H1(M⊗a
L ⊗ L⊗b) = 0 for all 1 ≤ a ≤

p + 1 and b ≥ 1. Since r ≥ n + p + 2, we have the required vanishing by Proposition 3.6(1). �
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Next we have a theorem with the hypothesis nB − K nef:

Theorem 3.9. Let X be a minimal smooth surface of general type and let B be a base point free
ample divisor such that K + B is base point free. Let n ≥ 2. Suppose that nB − K is nef and
H1((n + 1)B) = 0. Then L = K + rB satisfies the Np property if r ≥ 2n + p + 1.

Proof. L satisfies Np property if H1(M⊗a
L ⊗ L⊗b) = 0 for all 1 ≤ a ≤ p + 1 and b ≥ 1. By Remark

2.2, we only need to verify this for b = 1.

Since r ≥ 2n + p + 1, Proposition 3.7(1) shows that H1(M⊗p
L ⊗ L) = 0. Thus H1(M⊗p+1

L ⊗ L) = 0
if the following map is surjective:

H0(M⊗p
L ⊗ L) ⊗ H0(L)→ H0(M⊗p

L ⊗ L ⊗ L).

We use Lemma 1.7 and CM lemma. First we have the map:

H0(M⊗p
L ⊗ L) ⊗ H0(B)→ H0(M⊗p

L ⊗ L ⊗ B).

r ≥ 2n + p + 1⇒ r− 1 ≥ 2n + p ≥ n + p + 1. So H1(M⊗p
L ⊗K ⊗ B⊗r−1) = 0 by Proposition 3.7(1).

Since r − 2 ≥ n + p − 1, H2(M⊗p−1
L ⊗ K ⊗ B⊗r−2) = 0 by Proposition 3.7(2). Since H1(M⊗p−1

L ⊗

L ⊗ K ⊗ B⊗r−2) = 0, it follows by Remark 1.3, that H2(M⊗p
L ⊗ K ⊗ B⊗r−2) = 0.

Hence the above map is surjective and we can similarly capture (r − 1) copies of B. Then we
have the map:

H0(M⊗p
L ⊗ K ⊗ B⊗2r−1) ⊗ H0(K ⊗ B)→ H0(M⊗p

L ⊗ L ⊗ L).

Again we use CM lemma. First, H1(M⊗p
L ⊗ B⊗2r−2) = 0, by Proposition 3.7(1). We require

2r − 2 ≥ n + p + 1 and this is clear. Next, H2(M⊗p
L ⊗ K−1 ⊗ B⊗2r−3) = 0, by Proposition 3.4(2). The

required inequality is 2r − 3 > 2n + p − 1, which is also clear. �

Remark 3.10. We can interpret these results in terms of regularity of the line bundle B: Let X be a
minimal smooth surface of general type and let B be a base point free ample divisor such that K + B
is base point free. Suppose that the regularity of B is n + 1 for some integer n ≥ 2. Let Lr = K + rB.

Then Lr satisfies the Np property for r ≥ n + p + 2 if (n + 1)B− 2K is nef and Lr satisfies the Np

property for r ≥ 2n + p + 1 if nB − K is nef.

Remark 3.11. In Proposition 3.6, for statement (1) to hold (i.e., H1(M⊗p
L ⊗ K ⊗ B⊗m) = 0) we

require that both r and m should be at least n + p + 1. But to establish Np property, we need
H1(M⊗p+1

L ⊗K⊗B⊗r) = 0. So in our main result Theorem 3.8, we needed to assume r ≥ n+p+1+1 =

n + p + 2.

On the other hand, in Proposition 3.7, statement (1) holds (i.e., H1(M⊗p
L ⊗ K ⊗ B⊗m) = 0) when

r ≥ 2n + p + 1 and m ≥ n + p + 1. In other words, m can be smaller than r. As a consequence of
this observation, in our main result Theorem 3.9, we only needed r ≥ 2n + p + 1.

We can improve Theorem 3.8 by only requiring r ≥ n + p + 1, if X is regular. This is done below
in Theorem 3.13.
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3.1. Regular Surfaces. In this subsection, we will assume that X is a regular surface. We will
improve Theorem 3.8, using the reduction to curves to prove surjectivity of multiplications maps.
This is analogous to the cases of N0 and N1 treated earlier in Section 2.1.

First we have the following result improving Proposition 3.6, by only requiring that m ≥ n + p
for H1 vanishing:

Proposition 3.12. Let X be a minimal smooth regular surface of general type with pg ≥ 3 and B
be a base point free, ample divisor such that B2 ≥ 5. Let n ≥ 2. Assume that (n + 1)B − 2K is nef
and H1((n + 1)B) = 0. Let L = K + rB. Then H1(M⊗p

L ⊗ K ⊗ B⊗m) = 0, for p ≥ 1, r ≥ n + p + 1 and
m ≥ n + p.

Proof. Since B2 ≥ 5, by Remark 2.1, K + B is base point free.

We proceed by induction on p. When p = 1, it suffices to prove that the following map is
surjective:

H0(K + rB) ⊗ H0(K + mB)→ H0(2K + (r + m)B).
We will use Theorem 2.10. The condition on H1 vanishing follows from Lemma 1.4. The desired
inequality is easy: Since r ≥ n+2 and m ≥ n+1, we have r+m−2

n2 + r+m−4
n ≥ 2n+1

n2 + 2n−1
n = 2n2+n+1

n2 ≥ 2.

When p = 2, we prove that the following map is surjective:

H0(ML ⊗ K ⊗ B⊗m) ⊗ H0(K ⊗ B⊗r)→ H0(ML ⊗ K⊗2 ⊗ B⊗m+r).

We first consider the following map:

H0(ML ⊗ K ⊗ B⊗m) ⊗ H0(B)→ H0(ML ⊗ K ⊗ B⊗m+1).

To see this map surjects, we will apply CM lemma. H1 vanishes because we already proved the
proposition for p = 1. To prove H2(ML ⊗ K ⊗ B⊗m−2) = 0, notice that H1(L ⊗ K ⊗ B⊗m−2) = 0 and
H2(K ⊗ B⊗m−2) = 0.

After absorbing (r − 1) copies of B, we have

H0(ML ⊗ K ⊗ B⊗m+r−1) ⊗ H0(K ⊗ B)→ H0(ML ⊗ K⊗2 ⊗ B⊗m+r).

To prove this map surjects, we will again use CM lemma. H1 vanishing follows from Proposition
3.6. To prove H2(ML ⊗ K−1 ⊗ B⊗m+r−3) = 0, we use Proposition 3.3(2).

Now let p ≥ 3. Assume that the proposition is true for p − 1. Let r ≥ n + p + 1 and m ≥ n + p.
It is enough to prove that the following map is surjective:

H0(M⊗p−1
L ⊗ K ⊗ B⊗m) ⊗ H0(K ⊗ B⊗r)→ H0(M⊗p−1

L ⊗ K⊗2 ⊗ B⊗m+r).

First step is to prove that the following map is surjective:

H0(M⊗p−1
L ⊗ K ⊗ B⊗m) ⊗ H0(B)→ H0(M⊗p−1

L ⊗ K ⊗ B⊗m+1).

Let C ∈ |B| be a smooth curve. H1(M⊗p−1
L ⊗ K ⊗ B⊗m−1) = 0 by induction. By Proposition 1.10,

it is enough to show that the following map is surjective:

H0(M⊗p−1
L ⊗ K ⊗ B⊗m ⊗ OC) ⊗ H0(B ⊗ OC)→ H0(M⊗p−1

L ⊗ K ⊗ B⊗m+1 ⊗ OC).

This map is surjective if the following map is surjective, by Proposition 1.12:

H0(M⊗p−1
L⊗OC
⊗ K ⊗ B⊗m ⊗ OC) ⊗ H0(B ⊗ OC)→ H0(M⊗p−1

L⊗OC
⊗ K ⊗ B⊗m+1 ⊗ OC).
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Note that H1(L−B) = 0. Now we use Theorem 1.11. Let F = M⊗p−1
L⊗OC
⊗K⊗B⊗m⊗OC and E = B⊗OC.

E is base point free. Let g = genus(C). We have 2g − 2 = (K + B) · B. We show that

(1) F is semistable;
(2) µ(F) > 2g;
(3) µ(F) > 4g − deg(E) − 2h1(E).

By Theorem 1.2 [B], ML⊗OC is semistable if deg(L⊗OC) ≥ 2g. Since deg(L⊗OC) = (K + rB) ·B
and 2g = (K + B) · B + 2, the required condition is equivalent to (r− 1)B2 ≥ 2. This definitely holds
because r ≥ n + p + 1. It is known that tensor product of semistable vector bundles on a curve is
also semistable. So it follows that F is semistable.

Theorem 1.2 [B] also gives: µ(ML⊗OC ) ≥ −2. Hence µ(M⊗p−1
L⊗OC

) ≥ −2(p − 1) and

µ(F) ≥ −2(p − 1) + (K + mB) · B.

Thus (2) is equivalent to (m − 1)B2 > 2 + 2(p − 1) = 2p. This holds because B2 ≥ 5, n ≥ 2 and
m ≥ n + p.

Since deg(E) = B2, and 4g = [(2K + 2B) · B] + 4, (3) is equivalent to

(K + mB) · B − 2(p − 1) > (2K + 2B) · B + 4 − B2 − 2h1(E).

This in turn is equivalent to

(m − 1)B2 − B · K > 2p + 2 − 2h1(E).

Since nB2 ≥ B ·K, (m−1)B2−B ·K ≥ (m−1)B2−nB2 = (m−n−1)B2. As B2 ≥ 5, (m−n−1)B2 ≥

5(m−n−1). By hypothesis, m ≥ n+ p. So 5(m−n−1) ≥ 5(p−1) and the required inequality follows
if we show 5(p − 1) > 2p + 2 − 2h1(E). Since h1(E) ≥ 0, we have to prove 5(p − 1) > 2p + 2.This
is clear because p ≥ 3.

After gathering r − 1 copies of B, we have the following morphism:

H0(M⊗p−1
L ⊗ K ⊗ B⊗m+r−1) ⊗ H0(B ⊗ K)→ H0(M⊗p−1

L ⊗ K⊗2 ⊗ B⊗m+r).

We use CM lemma: H1(M⊗p−1
L ⊗ B⊗m+r−2) = 0, by Proposition 3.6. We require that m + r −

2 ≥ n + p, and this is clear because by hypothesis m ≥ n + p and r ≥ n + p + 1. Similarly
H2(M⊗p−1

L ⊗ K−1 ⊗ B⊗m+r−3) = 0, by Proposition 3.3. �

Now we prove our main theorem:

Theorem 3.13. Let X be a minimal smooth regular surface of general type with pg ≥ 3 and let B
be a base point free, ample divisor such that B2 ≥ 5. Let n ≥ 2. Suppose that (n + 1)B − 2K is nef
and H1((n + 1)B) = 0. Then K + rB has the Np property for r ≥ n + p + 1.

Proof. We proceed by induction on p. Corollaries 2.12 and 2.15 establish the theorem for p = 0
and 1 respectively. It is easy to see that the required hypotheses are true. Note that B2 ≥ 1

n (B · K)
by Remark 3.5.

Suppose that p > 1. Let r ≥ n + p + 1.
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L = K + rB has Np property if H1(M⊗a
L ⊗ L⊗b) = 0 for 1 ≤ a ≤ p + 1 and b ≥ 1.

Since r ≥ n + p + 1, L has Np−1 by induction. So we only need to show that H1(M⊗p+1
L ⊗L⊗b) = 0

for all b ≥ 1. We will show this only for b = 1 as the other cases follow from Remark 2.2.

Since H1(M⊗p
L ⊗ L) = 0, it is enough to show that the following map is surjective:

H0(M⊗p
L ⊗ L) ⊗ H0(L)→ H0(M⊗p

L ⊗ L ⊗ L).

The first step is to prove the following map is surjective.

H0(M⊗p
L ⊗ L) ⊗ H0(B)→ H0(M⊗p

L ⊗ L ⊗ B).

We use the CM lemma. H1(M⊗p
L ⊗ K ⊗ B⊗r−1) = 0 by Proposition 4.1. To prove that H2(M⊗p

L ⊗ K ⊗
B⊗r−2) = 0, note that H1(M⊗p−1

L ⊗ L ⊗ K ⊗ B⊗r−2) = 0 by Proposition 3.6(1) and H2(M⊗p−1
L ⊗ K ⊗

B⊗r−2) = 0 by Proposition 3.6(2). Note that r − 2 ≥ n + p − 1.

After similarly absorbing (r − 1) copies of B we are left with the following map:

H0(M⊗p
L ⊗ K ⊗ B⊗2r−1) ⊗ H0(K ⊗ B)→ H0(M⊗p

L ⊗ L ⊗ L).

We will prove this map is surjective using the CM lemma. H1(M⊗p
L ⊗ B⊗2r−2) = 0 by Proposition

3.6(1). We require 2r−2 ≥ n+ p+1. This is clear because r ≥ n+ p+1. H2(M⊗p
L ⊗K−1⊗B⊗2r−3) = 0,

by Proposition 3.3(2). We require 2r − 3 > 3(n+1)
2 + p − 1. This is also clear. �

4. Examples

Example 4.1. Let φ : S → P2 be a double cover branched along a smooth curve of degree 10 in
P2. Then S is a smooth minimal regular surface of general type.

We have KS = φ?(OP2(2)). Set B = φ?(OP2(1)). Then B is base point free, ample and H1(B) = 0.
B2 = 2 and B · K = 4.

It can be checked that KS + 2B does not satisfy N0 property, but KS + 3B does. This illustrates
Corollary 2.12.

Example 4.2. Let φ : S → P2 be a triple cover branched along a smooth curve of degree 9 in P2.
Again S is a smooth minimal regular surface of general type.

We have KS = φ?(OP2(3)). Set B = φ?(OP2(1)). Then B is base point free, ample and H1(lB) = 0
for all l ≥ 1. Also, B2 = 3 and B · K = 9.

Now KS + 2B does not satisfy N1 property. But according to Corollary 2.15, KS + 5B does.

The above two examples are studied in Section 5 of [P]. Refer to it for more details.

Example 4.3. This example shows that there are infinitely many instances when the hypotheses of
Theorem 3.13 are satisfied. Moreover, the hypothesis that (n + 1)B − 2K is nef will hold in a strict
sense in these examples: namely, (n + 1)B − 2K is nef but nB − 2K is not nef.

Let n ≥ 2. We construct a surface X such that the following conditions hold:

• X is a minimal smooth regular surface of general type with pg ≥ 3.
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• B is a base point free and ample line bundle on X such that B2 ≥ 5 and H1((n + 1)B) = 0.
• (n + 1)B − 2K is nef and nB − 2K is not nef.

Let S denote the Hirzebruch surface F1. Namely, π : S → P1 is the projective space bundle
associated to the locally free sheaf of rank two OP1 ⊕ OP1(−1). Let C0 denote a section of S that
represents the tautological line bundle OS (1) and let f denote a fiber. Then KS = −2C0 − 3 f .

We have π?(OS ) = OP1 , π?(OS ( f )) = OP1(1). Further, for a ≥ 1,

π?(OS (aC0)) = S yma(OP1 ⊕ OP1(−1)
)

= OP1 ⊕ OP1(−1) ⊕ OP1(−2) ⊕ . . . ⊕ OP1(−a).

Now, for some for m ≥ 1, let φ : X → S be a double cover branched along a smooth curve in the
very ample linear system |6C0 + 2(m + 3) f | on S .

Then φ?(OX) = OS ⊕ OS (−3C0 − (m + 3) f ). We have that K = KX = φ?(C0 + m f ). Let
B = φ?(C0 + b f ) for some b > 1.

Our goal is to choose m, b appropriately so that the above conditions hold.

Note that C2
0 = −1,C0 · f = 1 and f 2 = 0. So B2 = 2(−1 + 2b) and B · K = 2(−1 + b + m).

Then X is a minimal smooth surface of general type. We see easily that B is ample and base
point free, B2 ≥ 5 and K + B is base point free.

Claim: Let a ≥ 0. Then H1(OS (aC0 + b f )) = 0 if b > a − 2.

Proof: By the projection formula, H1(OS (aC0 +b f )) = H1(OP1(b)⊕OP1(b−1)⊕ . . .⊕OP1(b−a)
)
.

This is zero if b − a > −2. So the claim follows.

X is regular: H1(OX) = H1(OS ) ⊕ H1(OS (−3C0 − (m + 3) f )
)
. By Serre duality, H1(OS (−3C0 −

(m + 3) f )
)

= H1(OS (C0 + m f )
)
. This is zero by the claim. Hence H1(OX) = H1(OP1) = 0.

pg(X) ≥ 3: φ?(KX) = φ?φ
?(C0 + m f ) = OS (C0 + m f ) ⊕ OS (−2C0 − 3 f ) and π?(OS (C0 + m f )) =

OP1(m) ⊕ OP1(m − 1) . As m ≥ 1, h0(OP1(m)) ≥ 3. Since h0(X,KX) = h0(S , φ?φ?(C0 + m f )) ≥
h0(OP1(m)), we conclude that pg ≥ 3.

We now verify that H1(X, (n + 1)B) = 0.

H1(X, (n + 1)B) = H1(OS ((n + 1)C0 + ((n + 1)b) f )
)
⊕ H1(OS ((n − 2)C0 + ((n + 1)b − m − 3) f

)
.

By the lemma, H1(OS ((n + 1)C0 + ((n + 1)b) f )
)

= 0 if (n + 1)b > n + 1 − 2. This is obvious.

H1(OS ((n − 2)C0 + ((n + 1)b − m − 3) f
)

= 0 if (n + 1)b − m − 3 > n − 4.

Thus H1((n + 1)B) = 0 if m < (n + 1)b − n + 1.

Let D = sC0 + t f be a divisor on S , with s > 0. If D is nef, then D · C0 ≥ 0, which gives
t ≥ s. On the other hand, if t > s, then D is ample, hence nef. Further, D is nef if and only if
φ?(D) is nef. This follows from projection formula, and the observation that, for a curve C in S ,
D ·C = 2φ?(D) · φ?(C).

(n + 1)B − 2K = φ?
(
(n − 1)C0 + ((n + 1)b − 2m) f

)
.
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This is nef if (n + 1)b − 2m > n − 1. Similarly

nB − 2K = φ?
(
(n − 2)C0 + (nb − 2m) f

)
.

This is not nef if nb − 2m < n − 2.

Thus we have the following three inequalities:

(1) m < (n + 1)b − n + 1;
(2) (n + 1)b − 2m > n − 1⇔ m < ( n+1

2 )b + 1−n
2 ;

(3) nb − 2m < n − 2⇔ m > n
2b + 2−n

2 .

Thinking of b as the horizontal and m as vertical axis, these three inequalities represent the
appropriate half planes determined by three lines in the (b,m)-plane. Denoting these lines l1, l2 and
l3, respectively, we observe that their slopes are given by m1 = n + 1, m2 = n+1

2 and m3 = n
2 and we

have m3 ≤ m2 ≤ m1.

The solutions to the inequality (1) lie below l1, solutions to inequality (2) lie below line l2 and
solutions to the inequality (3) lie above l3. Thanks to the inequalities among the slopes, we have
infinitely many simultaneous solutions to the three inequalities.

Example 4.4. This example shows that there are infinitely many instances when the hypotheses of
Theorem 3.9 are satisfied. Moreover, the hypothesis that nB − K is nef will hold in a strict sense in
these examples: namely, nB − K is nef but (n − 1)B − K is not nef.

Let n ≥ 2. We construct a surface X such that the following conditions hold:

• X is a minimal smooth surface of general type.
• B is a base point free and ample line bundle on X such that K + B is base point free and

H1((n + 1)B) = 0.
• nB − K is nef and (n − 1)B − K is not nef.

Let S = F1 as in the above example. For some m ≥ 1, let φ : X → S be a double cover branched
along a smooth curve in the very ample linear system |6C0 + 2(m + 3) f | on S .

Then K = KX = φ?(C0 + m f ). Let B = φ?(C0 + b f ) for some b > 1. Our goal is to choose m, b
appropriately so that above conditions hold.

We see that X is a minimal smooth surface of general type, B is a base point, ample divisor, and
K + B is base point free.

As in Example 4.3, H1((n + 1)B) = 0 if m < (n + 1)b − n + 1.

nB − K = φ?((n − 1)C0 + (nb − m) f ) is nef if nb − m > n − 1 and

(n − 1)B − K = φ?((n − 2)C0 + ((n − 1)b − m) f ) is not nef if (n − 1)b − m < n − 2.

Thus the required inequalities are:

(1) m < (n + 1)b − n + 1;
(2) nb − m > n − 1⇔ m < nb − n + 1;
(3) (n − 1)b − m < n − 2⇔ m > (n − 1)b − n + 2.
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We may argue as in Example 5.3, noting that since n + 1 > n > n − 1, the slope of line
determining (2) is more than the slope of line determining (3). Alternatively, we observe that
(n − 1)b − n + 2 < nb − n + 1 < (n + 1)b − n + 1, if b > 1. So we can choose a suitable m for any
large value of b.

Example 4.5. We can construct infinitely many examples as above for arbitrary finite covers X →
S = F1 of any degree.

Example 4.6. We construct infinitely many examples such that the hypotheses of Theorem 2.10
hold and for which general arguments using CM lemma will not yield the results. This is because
the vanishing of H2 required in CM lemma does not hold. Further, for these examples, we have
B2 < B · K. This shows that our conclusions do not follow from results in [P].

Let n,m be positive integers such that n + m is even and n + m ≥ 6. Note that we are often only
interested in the case n = m ≥ 3. So the conditions on n,m are not serious. We will show that there
exist positive integers a, b and a surface X such that the following conditions are satisfied:

• X is a minimal smooth regular surface of general type with pg ≥ 3 and K2 ≥ 2.
• B is a base point free and ample line bundle on X such that B · K > B2 ≥ a

b (B · K) and

(n + m − 2)a2

b2 +
(n + m − 4)a

b
≥ 2.

• H1((n + m − 2)B
)

= 0.
• H2((n + m − 3)B − KS ) , 0.

Set a = 2 and b = n + m − 2. By the assumptions on n,m, we get that b ≥ 4.

Then
(n + m − 2)a2

b2 +
(n + m − 4)a

b
=

4b
b2 +

2(b − 2)
b

= 2.

So one of the above conditions holds for a and b. We will now construct a surface X for which
the other conditions are satisfied.

Let S denote the Hirzebruch surface F1.

Given positive integers 1 ≤ r < s, let φ : X → S be a double cover branched along a smooth
curve C in the very ample linear system |2(r + 2)C0 + 2(s + 3) f | on S .

Then KX = φ?(rC0 + s f ). Let B = φ?(C0 + 2 f ).

Clearly X is a minimal smooth surface of general type, B is a base point, ample divisor, K + B
is base point free. Further, K2 ≥ 2, B2 = 6 and B · K = 2(r + s).

For simplicity, set i = r + 2 and j = s + 3.

X is regular: H1(OX) = H1(OS ) ⊕ H1(OS (−iC0 − j f )
)
. By Serre duality, H1(OS (−iC0 − j f )

)
=

H1(OS ((i − 2)C0 + ( j − 3) f )
)
. By the claim in Example 4.3, H1(OS ((i − 2)C0 + ( j − 3) f )

)
= 0 if

j − 3 > i − 4. Equivalently, j − i > −1, which is clear. Hence H1(OX) = H1(OS ) = H1(OP1) = 0.
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pg ≥ 3: φ?(KX) = OS (rC0 + s f )⊕OS (−2C0 − 3 f ) and π?(OS (rC0 + s f )) = OP1(s)⊕OP1(s− 1)⊕
. . .⊕OP1(s− r) . As s ≥ 1, h0(OP1(s)) ≥ 3. Since h0(X,KX) ≥ h0(S ,OS (rC0 + s f )) ≥ h0(OP1(s)), we
conclude that pg ≥ 3.

Next we have the following:

B · K > B2 ≥
2
b

(B · K)⇔ r + s > 3 ≥
2
b

(r + s).(4.1)

On the other hand, 2K − (b − 1)B = φ?((2r − b + 1)C0 + (2s − 2b + 2) f ).

So H0(2K − (b − 1)B) , 0 if

2r − b + 1 > 0 and 2s − 2b + 2 > 2r − b + 1.(4.2)

Set s = b and r = b/2. Note that b is even. Then clearly (4.1) and (4.2) hold.

Next, we check that H1(bB) = 0.

We have: H1(X, bB) = H1(S , bC0 +2b f )⊕H1(S , (b− i)C0 + (2b− j) f )). By the claim in Example
4.3, these groups are zero if 2b > b − 2 and 2b − j > b − i − 2. The first inequality is obvious. For
the second inequality, recall that i = r + 2 and j = s + 3. So the required inequality is b > s− r − 1.
This is clear because s = b and r = b/2.

Thus we have shown that given any n,m such that n + m is even and at least 6, there exists a
surface X of general type and an ample, base point free divisor B on X and positive integers a < b
such that the hypotheses of Theorem 2.10 are satisfied and H2((n + m − 3)B − KX) , 0.

Remark 4.7. For any surface X and any ample divisor B on X, it is well known that given any p,
KX + rB has Np property for sufficiently large r. For instance, this follows from the main results of
[EL] (for any surface) and [P] (for surfaces of general type). Our Theorem 3.9 gives another proof
of this fact for surfaces of general type.

Indeed, if B is ample, some multiple of B is very ample, and in particular, base point free. Further
K + mB is base point free for large m. So replacing B by a large enough power, we can suppose
that B and K + B are base point free. Moreover, again since B is ample, we have H1(mB) = 0 and
−K + mB is ample (hence nef) for large m. So the hypothesis of Theorem 3.9 are satisfied for a
suitable multiple of B. Then we conclude that K + rB has Np property for sufficiently large r.
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