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Abstract. We study Seshadri constants of certain ample vector bundles on projective varieties.
Our main motivation is the following question: Under what conditions are the Seshadri constants
of ample vector bundles at least 1 at all points of the variety. We exhibit some conditions under
which this question has an affirmative answer. We primarily consider ample bundles on projective
spaces and Hirzebruch surfaces. We also show that Seshadri constants of ample vector bundles can
be arbitrarily small.

1. Introduction

Seshadri constants of line bundles on projective varieties were defined by Demailly [Dem] in 1990

and since then they have been an active area of research around positivity in algebraic geometry.

This notion has been generalized to vector bundles by Hacon [Hac2] and recently Seshadri con-

stants for vector bundles have been studied in depth by Fulger and Murayama [FM]. While a lot

is known for Seshadri constants of line bundles, especially on surfaces, not much is known about

Seshadri constants of vector bundles on varieties of dimension at least two. For instance we do

not know how to compute Seshadri constants for arbitrary vector bundles on the projective plane

P2. For vector bundles on curves, the picture is much clearer.

The usual notions of positivity of line bundles have been generalized to vector bundles, usually by

considering the tautological line bundle on the associate projective bundle. For instance a vector

bundle E on a variety X is called ample if the tautological line bundle OP(E)(1) on P(E) is ample.

It is natural to define and study Seshadri constants of vector bundles following this approach.

Let X be a projective variety and E a nef vector bundle on X. The Seshadri constant ε(X, E, x)

of E at a closed point x ∈ X is defined by Hacon [Hac2].

If L is an ample and globally generated line bundle on a projective variety X, then it is easy

to show that ε(X, L, x) ≥ 1 for all x ∈ X. On the other hand, Miranda has shown that the

Seshadri constants can be arbitrary small for ample line bundles (which are, necessarily, not

globally generated). However in a fundamental paper, Ein and Lazarsfeld, [EL], showed that

ε(X, L, x) ≥ 1

for very general points x in a smooth projective irreducible surface X when L is ample.

The above behaviour does not carry over to the case of vector bundles of higher rank. For vector

bundles over curves, one still has some good bounds. For an ample vector bundle E on a smooth
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curve X, Hacon [Hac2, Theorem 3.1] proved that

ε(X, E, x) = µmin(E) (1)

for all x ∈ X. This implies that

ε(X,E, x) ≥ 1

rank(E)

for all x ∈ X. Moreover, for every possible rank there are examples where this inequality is

actually an equality. On the other hand, ε(X, E, x) ≥ 1 for any ample and globally generated

vector bundle E on a smooth projective curve X and all points x ∈ X [Hac2, Proposition 3.2].

Much less is known when the dimension of the base is at least two. Hacon [Hac1] gave examples

of ample and globally generated vector bundles E on K3 surfaces for which ε(X,E, x) < 1 for

all points x. Hence the Ein–Lazarsfeld inequality

ε(X, E, x) ≥ 1 (2)

does not hold, in general, for ample and globally generated vector bundles of rank at least two. It

however holds for very ample vector bundles; see [BSS].

So it is reasonable to ask when the Ein–Lazarsfeld inequality (2) holds for ample vector bundles

of arbitrary rank on arbitrary projective varieties.

Most of the results in this paper are motivated by the above question. There does not seem to

be a general method to approach this question, so we focus on specific cases and consider vector

bundles satisfying specific conditions.

In Section 2, we recall some preliminaries that are used in later sections. In Section 3, we prove

(2) for vector bundles satisfying a certain hypothesis and give several examples. In Section 4, we

first show that the Seshadri constants of ample vector bundles can be arbitrarily small. We also

give lower bounds for the Seshadri constants for vector bundles satisfying some conditions. In

Section 5, we consider some vector bundles on Hirzebruch surfaces.

2. Preliminaries

We work throughout over the field of complex numbers. All the varieties are assumed to be

irreducible and reduced.

2.1. Seshadri constants of vector bundles. Let X be an irreducible complex projective variety

and let E be a nef vector bundle on X. We fix a closed point x ∈ X.

Let us consider the following Cartesian diagram:

P(E)×X X̃x = P
(
ρ?x(E)

)
P(E)

X̃x X

ρ̃x

π̃ π

ρx

Here π : P(E) −→ X is the projective bundle over X associated to E and

ρx : X̃x = Blx(X) −→ X
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is the blow up of X at x. Let ξ̃x be the numerical equivalence class of the tautological bundle

OP(ρ?xE)(1), and Ẽx := ρ̃x
−1(Fx), where Fx is the class of the fiber of the map π over the point x.

Then the Seshadri constant of E at x ∈ X is defined as

ε(X, E, x) := sup
{
λ ∈ R>0 | ξ̃x − λẼx is nef

}
.

In [Hac2] it is shown that if E is an ample vector bundle on a smooth irreducible projective curve

C, then ε(C, E, x) = µmin(E) for all x ∈ C, where µmin(E) denotes the minimal slope among all

quotient bundles of E. There is an equivalent definition of Seshadri constants for vector bundles

due to Fulger and Murayama in [FM]. Let Cπ,x denote the set of all irreducible curves C ⊂ P(E)

that intersect π−1(x), but not contained in π−1(x). Note that the curves in Cπ,x are precisely the

irreducible curves C in P(E) such that multx π∗C > 0. Then the Seshadri constants of E at x has

the following expression:

ε(X, E, x) = inf
C∈Cπ,x

{
ξ · C

multx π∗C

}
,

where the infimum is taken over the set Cπ,x.
Seshadri constants can also be computed by restriction to curves [FM, Corollary 3.21]. This

description, which will be used here, is recalled below.

Let C ⊂ X be an irreducible curve in X, possibly singular. Take its normalization α : C ′ −→ C.

Let ν : C ′ −→ X denote the composition of α with the inclusion map C ↪→ X. Then

ε(X, E, x) = inf
x∈C⊂X

{
µmin(ν?E)

multxC

}
, (3)

where the infimum is taken over all irreducible curves C ⊂ X passing through x ∈ X (see [FM,

Corollary 3.21]).

2.2. Semistability and Harder-Narasimhan filtration. Let X be a smooth complex projec-

tive variety of dimension n with a fixed ample line bundle H on it. For a non-zero torsion-free

coherent sheaf G of rank r on X, its degree with respect to H, denoted by degH(G), is defined as

follows:

degH(G) = c1(G) ·Hn−1,

and the H-slope of G is defined as

µH(G) :=
c1(G) ·Hn−1

r
∈ Q.

A vector bundle E on X is said to be H-semistable (respectively, H-stable) if µH(G) ≤ µH(E)

(respectively, µH(G) < µH(E)) for all subsheaves G ( E such that E/G is torsion free. A vector

bundle E on X is called H-unstable if it is not H-semistable. For every vector bundle E on X,

there is a unique positive integer l and a unique filtration

0 = El ( El−1 ( El−2 ( · · · ( E1 ( E0 = E
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of subsheaves of E, called the Harder-Narasimhan filtration of E, such that Ei/Ei+1 is an H-

semistable torsion-free sheaf for each i ∈ {0, 1, 2, · · · , l − 1} and

µH
(
El−1/El

)
> µH

(
El−2/El−1

)
> · · · > µH

(
E0/E1

)
.

We define Q1 := E0/E1 and µmin(E) := µH(Q1) = µH
(
E0/E1

)
; also define µmax(E) :=

µH(El−1).

For a vector bundle E of rank r over X, the element c2
(
End(E)

)
∈ H4(X,Q) is called the dis-

criminant of E. We recall the following result about semistable bundle with vanishing discriminant

which we will use in Section 4:

Theorem 2.1 ([BB, Theorem 1.2]). Let E be a vector bundle of rank r on a smooth complex

projective variety X, and let π : P(E) −→ X be the projection. Then the following two are

equivalent:

(1) E is semistable and c2
(
End(E)

)
= 0.

(2) For every pair of the form (φ,C), where C is a smooth projective curve and φ : C −→ X

is a non-constant morphism, φ∗(E) is semistable.

Since the semistability of a vector bundle on a smooth curve does not depend on the fixed ample

line bundle on C, the condition (2) in the above Theorem 2.1 implies that the semistability of a

vector bundle E with c2
(
End(E)

)
= 0 is independent of the fixed ample bundle H. We have the

following lemma which is an easy applications of Theorem 2.1.

Lemma 2.2. Let ψ : X −→ Y be a morphism between two smooth complex projective varieties

and let E be a semistable bundle on Y with c2
(
End(E)

)
= 0. Then the twisted pullback bundle

ψ∗(E)⊗ L is also semistable with c2
(
End(ψ∗(E)⊗ L)

)
= 0 for any line bundle L on X.

The following lemma will be used in Section 5.

Lemma 2.3 ([FM, Lemma 3.31]). Let

0 −→ E ′−→E −→ E ′′ −→ 0

be a short exact sequence of vector bundles on a smooth irreducible projective curve C. Then

µmin(E) ≥ min
{
µmin(E ′), µmin(E ′′)

}
.

3. Ein-Lazarsfeld inequality for vector bundles

In this section, we give one instance of vector bundles for which the Ein–Lazarsfeld inequality

(2) holds for arbitrary points. We give several examples to illustrate this result.

Proposition 3.1. Let X be a smooth complex irreducible projective variety and L an ample and

globally generated line bundle on X. Let E be an ample vector bundle on X such that E ⊗ L−1 is

nef. Then

ε(X,E, x) ≥ 1

for all x ∈ X.
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Proof. Using [FM, Lemma 3.28], we have for every point x ∈ X,

ε(X,E, x) = ε
(
X, (E ⊗ L−1)⊗ L, x

)
≥ ε(X,E ⊗ L−1, x) + ε(X,L, x) ≥ 1.

�

We ask the following question — which is a variation of our motivating question — in the

particularly simple case of X = Pn.

Question 3.2. Is it true that for an ample vector bundle E on Pn,

ε(Pn, E, x) ≥ 1

for all x ∈ Pn?

Question 3.2 has a positive answer if E is a direct sum of line bundles. Note that Hartshorne’s

conjecture on vector bundles says that any rank two vector bundle over a projective space Pn

with n ≥ 7 splits into the direct sum of two line bundles; see [Har1, Conjecture 6.3]. In general,

Question 3.2 is difficult to answer for non-split vector bundles even for rank two.

Definition 3.3. A vector bundle E on a smooth projective variety X is called Fano if P(E) is a

Fano variety, meaning the anti-canonical line bundle −KP(E) is ample.

There are classifications of Fano bundles of rank two on smooth surfaces and on 3-folds in [SW2]

and [SW1] respectively. We will now consider some examples of non-split Fano bundles of rank

two on projective varieties.

Example 3.4. Let E be the rank two vector bundle on P2 which fits in the exact sequence

0 −→ OP2 −→ E −→ It −→ 0,

where It denotes the ideal sheaf of a point t ∈ P2. Note that E is a semistable bundle but it is

not stable. We will show that E(1) is nef, but E(1) is not ample.

Note that It(1) is globally generated and hence nef. Thus being the extension of two nef sheaves,

E(1) is also nef. Also It(1) restricts trivially to any line in P2 through t. Therefore E(1) is not

ample. Consequently, Proposition 3.1 says that

ε
(
P2, E(k), x

)
≥ 1

for all x ∈ P2 and for all k ≥ 2.

In Example 3.11, we generalize Example 3.4 to the ideal sheaf of five points in general position

in P2.

Example 3.5. Consider the rank two vector bundle E on P2 fitting in the exact sequence

0 −→ OP2(−1)2 −→ O⊕4P2 −→ E(1) −→ 0.

We note that E is stable. The vector bundle E(1) is globally generated and hence nef. But E(1)

is not ample as there are lines L in P2 such that E(1)
∣∣
L

= OL ⊕OL(2); see [SW2, Page 298].
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Thus E(k) is ample if and only if k ≥ 2 and

ε
(
P2, E(k), x

)
≥ 1

for all x ∈ P2 and all k ≥ 2.

Example 3.6. Consider the rank two vector bundle E on P2 defined by the exact sequence

0 −→ OP2(−2) −→ O⊕3P2 −→ E(1) −→ 0.

In this case E is stable. The vector bundle E(1) is globally generated, see [SW2, Proposition 2.1,

Proposition 2.6]. However E(1) is not ample: One can show that E(1) sits in an exact sequence

of the form

0→ OP2 → E(1)→ I(2)→ 0,

where I is the ideal sheaf of four points in general position in P2. If L is a line through two of

these four points, then one can then check that E(1)
∣∣
L

= OL⊕OL(2); see also [Ba2, 5.2]. So E(1)

is not ample.

Thus E(k) is ample if and only if k ≥ 2 and

ε
(
P2, E(k), x

)
≥ 1

for all x ∈ P2 and all k ≥ 2.

Example 3.7. Consider the null correlation bundle N on P3. We have the exact sequence

0 −→ N −→ TP3(−1) −→ OP3(1) −→ 0.

ThenN is stable. The vector bundleN (1) is globally generated (see [SW1, Theorem 2.1]). Further,

it can be shown that N (1) is not ample; see [Ba1, 7.3].

Hence N (k) is ample if and only if k ≥ 2 and

ε(P3,N (k), x) ≥ 1

for all x ∈ P3 and for all k ≥ 2.

Example 3.8. Next consider the rank two stable vector bundle E on P1 × P1 which fits in the

exact sequence

0 −→ OP1×P1(−1,−1) −→ O⊕3P1×P1 −→ E(1, 1) −→ 0.

The vector bundle E(1, 1) is globally generated, and hence nef (see [SW2, Proposition 3.11]).

Hence

ε
(
P1 × P1, E(2, 2), x

)
≥ 1

for all x ∈ P1 × P1.

Based on the observations about Fano bundles in this section, the following question may be

more tractable.
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Question 3.9. Is it true that for an ample Fano vector bundle E on Pn,

ε(Pn, E, x) ≥ 1

for all x ∈ Pn?

We now show that the observations in this section settle the above question when the rank of E

is two.

Proposition 3.10. If E is an ample Fano vector bundle of rank two on Pn, then ε(Pn, E, x) ≥ 1

for all x ∈ Pn.

Proof. The case n = 1 is easy: every ample vector bundle is a direct sum of ample line bundles

and the required inequality clearly holds. More generally, the conclusion holds when E is a direct

sum of ample line bundles on Pn.

For n = 2, 3, [SW1, SW2] give a complete classification of normalized Fano rank two bundles.

A vector bundle E is said to be normalized if c1(E) is either 0 or −1. By twisting any rank 2

vector bundle with a suitable line bundle one may assume that it is normalized.

For n = 2, [SW2, Theorem] shows that the only normalized, non-split Fano bundles of rank 2 are

the ones studied in Examples 3.4, 3.5, 3.6 and TP2(−2), where TP2 is the tangent bundle P2. For a

discussion on the Seshadri constants of the tangent bundle, Example 3.12. In these examples, we

showed that the Seshadri constants of every ample vector bundle are at least 1.

For n = 3, [SW1, Theorem 2.1] shows that the only normalized, non-split Fano bundle of rank

2 is the null correlation bundle N studied in Example 3.7, where we showed that the Seshadri

constants are at least 1 whenever N (k) is ample.

For n ≥ 4, [APW, Main Theorem 2.4(1)] shows that any Fano vector bundle of rank 2 on Pn is

split. �

We now give an example of a vector bundle for which the hypothesis of Proposition 3.1 does not

hold, and yet (2) holds.

Example 3.11. Let Z = {p1, · · · , p5} be five distinct points in P2 such that no three of them

are collinear. Denote the ideal sheaf of Z by IZ . Then there exists a vector bundle E of rank 2 on

P2 which fits in the following short exact sequence:

0 −→ OP2
·s−→ E −→ IZ −→ 0.

In other words, there is a section s ∈ H0(P2, E) whose zero locus is precisely Z. Such vector

bundles exist for any finite set of points in P2; see [OSS, Section 5.2, Example 1, Page 103].

We will show that E(2) is not nef while E(3) is ample.

Let C be the unique conic passing through all the points in Z. Restricting the section s ∈
H0(P2, E) to C, we obtain a short exact sequence:

0 −→ OC(D) −→ E
∣∣
C
−→ OC(D′) −→ 0,
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where deg(D) = 5, deg(D′) = −5. Tensoring this sequence with OP2(2)
∣∣
C

, we obtain the exact

sequence

0 −→ OC(F ) −→ E(2)
∣∣
C
−→ OC(F ′) −→ 0,

where deg(F ) = 9, deg(F ′) = −1. Since E(2)
∣∣
C

has a quotient bundle of negative degree, it is not

nef. Consequently, E(2) is not a nef line bundle on P2.

The vector bundle E(3) will be shown to be ample using the Seshadri criterion for ampleness

of vector bundles. We will in fact show that ε(P2, E(3), x) ≥ 1 for all x ∈ P2. This would show

that E(3) is ample, by [FM, Theorem 3.11].

The description of Seshadri constant of E at x recalled in (3) says

ε(P2, E(3), x) = inf
x∈B⊂X

µmin

(
ν?(E(3))

)
multxB

,

where B ⊂ P2 is any irreducible curve, possibly singular, with its normalization α : B′ −→ B,

and ν : B′ −→ P2 is the composition of α with the inclusion map B ↪→ P2 (µmin was defined in

Section 2).

Writing E(3) = E(2)⊗OP2(1), we have the following equality:

ε(P2, E(3), x) = inf
x∈B⊂X

{µmin

(
ν?(E(2)⊗O(1))

)
multxB

}
.

By [FM, Lemma 3.28],

µmin

(
ν?(E(2)⊗O(1))

)
= µmin(ν?(E(2))) + µmin(ν?(O(1))) = µmin(ν?(E(2))) + deg(B).

So

ε(P2, E(3), x) = inf
x∈B⊂X

{µmin(ν?(E(2)))

multxB
+

deg(B)

multxB

}
.

We claim that for every curve B ⊂ P2 containing x which is not equal to the conic C, one has

the inequality

µmin(ν?(E(2))) ≥ 0.

Since deg(B) ≥ multxB for all curves B passing through x, this shows that the contribution of

any curve B 6= C to ε(P2, E(3), x) is at least 1. We will also show that the contribution of C to

ε(P2, E(3), x) is at least 1.

Denote mi = multpi(B) for 1 ≤ i ≤ 5, and also denote d = deg(B). Then restricting the

section s of E to B we obtain the short exact sequence

0 −→ OB(R) −→ E(2)
∣∣
B
−→ OB(R′) −→ 0,

where deg(R) = 2d+
5∑
i=1

mi and deg(R′) = 2d−
5∑
i=1

mi.

Pulling this sequence back to the normalization B′ we obtain

0 −→ OB′(P ) −→ ν?(E(2)) −→ OB′(P ′) −→ 0,

where deg(P ) = 2d+
5∑
i=1

mi and deg(P ′) = 2d−
5∑
i=1

mi.
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It is easy to see that

µmin(ν?(E(2)) = 2d−
∑

mi.

If B = C is the unique conic passing through p1, p2, · · · , p5, then its contribution to the Seshadri

constant ε(P2, E(3), x) is given by −1
1

+ 2
1

= 1.

It can be shown that 2d ≥
∑
mi for every curve B 6= C passing through x. This actually

follows easily from Bézout’s theorem. Indeed, since B 6= C, we have 2d = B · C ≥
∑
mi.

This shows that ε(P2, E(3), x) ≥ 1 for all x ∈ P2, as required.

Further, note that ε(P2, E, x) = 1 for any point x belonging to C or to any of the ten lines

which pass through any two of the points p1, p2, · · · , p5.

Example 3.12. Let E be an equivariant ample vector bundle of rank r on Pn. Recall that there

are only finitely many torus equivariant curves in Pn, say l1, l2, · · · , lm, where m = n(n+1)
2

. Then

by [DKS, Remark 4.2], for any point x ∈ Pn,

ε(Pn, E, x) ≥ min
1≤i≤m

{
µmin(E|li)

}
.

As E is ample, the restriction E
∣∣
li

is also ample. Hence ε(E
∣∣
li
, y) = µmin(E

∣∣
li
) for every point

y ∈ li. As each li is isomorphic to P1, we conclude that µmin(E
∣∣
li
) ≥ 1 for every i. Thus

ε(Pn, E, x) ≥ min
1≤i≤m

{
µmin(E|li)

}
≥ 1,

for every x ∈ Pn.

For example, consider the tangent bundle TPn −→ Pn for n ≥ 2. Its restriction to any line

l ⊂ Pn is given by

TPn
∣∣
l

= OP1(2)⊕OP1(1)⊕ · · · ⊕ OP1(1),

so that

µmin(TPn
∣∣
l
) = min

1≤i≤m

{
µmin(TPn

∣∣
li
)
}

for every line l ⊂ Pn. Hence by [DKS, Theorem 4.1] we conclude that for any point x ∈ Pn

ε(Pn, TPn , x) = min
1≤i≤m

{
µmin(TPn

∣∣
li
)
}

= 1.

Note that TPn(k) is ample if and only if k ≥ 0.

Example 3.13. More generally, Ein-Lazarsfeld inequality (2) holds for torus-equivariant ample

vector bundles at torus fixed points, on: (a) toric varieties [HMP], (b) flag varieties [BHN] and (c)

wonderful compactifications as well as Bott-Samelson varieties [BHK]. In all these cases, Seshadri

constant at any torus fixed point can be computed by restricting to invariant curves which are

smooth rational. Hence the restricted bundle is a direct sum of ample line bundles, and its Seshadri

constant is the minimum degree of a line bundle appearing in the decomposition over all invariant

curves. Since the degree is a positive integer, it follows that the Seshadri constant is at least 1.
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4. Lower bounds for Seshadri constants of ample vector bundles

We begin this section by showing that Seshadri constants of ample vector bundles can be arbi-

trarily small. This is an analogue of a similar result of Miranda for line bundles; see [EL].

Theorem 4.1. Fix any positive real number δ > 0 and a positive integer n. Then there is a

smooth projective variety X of dimension n and an ample vector bundle E on X such that

ε(X,E, x) < δ

for all x ∈ X.

Proof. Let r be a positive integer such that 0 < 1
r
< δ. Fix a smooth projective curve C of

genus g ≥ 2 and a smooth irreducible projective variety Y of dimension n− 1 ≥ 0. Consider the

product X = C × Y together with the projections

p1 : X −→ C and p2 : X −→ Y.

Let x = (c, y) ∈ X be an arbitrary point of X. Further we choose a very ample line bundle L

on Y . Let Vr be a stable vector bundle of rank r on C such that det(Vr) ∼= OC(c). The vector Vr is

ample because it is stable of positive degree [Bi, p. 520, Corollary 3.10]. Define Er := p?1Vr⊗ p?2L.

Take the smooth curve B := C × {y} i
↪→ C × Y = X. Now by definition,

ε(X,Er, x) ≤ µmin(i?Er) = µ(Vr) =
1

rank(Vr)
=

1

r
< δ.

This completes the proof. �

We now prove that Seshadri constants of vector bundles are bounded below by the reciprocal of

the rank of the bundle, under suitable conditions. This is analogous to the case of vector bundles on

curves where this lower bound always holds, by [Hac2, Corollary 3.1]. We consider two situations

where this bound generalizes to the higher rank case and give some examples that satisfy the

required hypotheses.

Theorem 4.2. Let E be an ample vector bundle on a smooth projective variety X. Let

0 = El ( El−1 ( El−2 ( · · · ( E1 ( E0 = E (4)

be the Harder-Narasimhan filtration of E such that Q1 = E0/E1 is locally free and

µmin(ν?E) = µ(ν?Q1) =
det(Q1) · C
rank(Q1)

for every curve C ⊂ X, where ν : C̃ −→ X is the composition of the normalization C̃ −→ C

with the inclusion map C ↪→ X. Then for any x ∈ X

ε(X,E, x) =
ε(X, det(Q1), x)

rank(Q1)
.
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In particular, if X is a smooth surface, then

ε(X,E, x) ≥ 1

rank(E)

for very general points x ∈ X.

In addition, if E is also globally generated vector bundle on the smooth projective variety X, then

ε(X,E, x) ≥ 1

rank(E)

for all points x ∈ X.

Proof. By [FM, Corollary 3.1], we have

ε(X,E, x) = inf
x∈C⊂X

{µmin(ν?E)

multxC

}
,

where the infimum is taken over all irreducible curves C ⊂ X through x, and ν : C̃ −→ X is

composition of normalization map C̃ −→ C with the inclusion map C ↪→ X. By hypothesis, we

have

µmin(ν?E) = µ(ν?Q1) =
det(Q1) · C
rank(Q1)

.

This shows that

ε(E, x) =
1

rank(Q1)
inf

x∈C⊂X

{det(Q1) · C
multxC

}
=

1

rank(Q1)
ε(X, det(Q1), x).

Now the result follows from the Ein-Lazarsfeld inequality for Seshadri constants of ample line

bundles; see [EL]. �

Example 4.3. A vector bundle V on an abelian variety X is called weakly-translation invariant

(semi-homogeneous in the sense of Mukai) if for every closed point x ∈ X, there is a line bundle

Lx on X depending on x such that T ?x (V ) ' V ⊗ Lx for all x ∈ X, where Tx : X −→ X is the

translation morphism y 7−→ y + x.

Mukai proved that a semi-homogeneous vector bundle E is Gieseker semistable (see [HL, Chapter

1] for definition) with respect to some polarization and it has projective Chern classes zero, i.e., if

c(E) is the total Chern class of E, then c(E) =
{

1 + c1(E)/r
}r

(see [Mu, p. 260, Theorem 5.8],

[Mu, Proposition 6.13]; also see [MN, Page 2]). Gieseker semistability implies slope semistability

(see [HL]). So, in particular, E is slope semistable with

c2(End(E)) = 2rc2(E)− (r − 1)c21(E) = 0.

Thus by [BB, Theorem 1.2] ν∗E is also semistable for every curve C ⊂ X, where ν is as in Theorem

4.2. Hence for an ample semi-homogeneous vector bundle E of rank r on an abelian surface X,

we have

ε(X,E, x) =
ε(X, det(E), x)

rank(E)
≥ 1

rank(E)
,

for all but countable many points x ∈ X.



12 I. BISWAS, K. HANUMANTHU, AND S. MISRA

Example 4.4. Let ρ : X = PC(W ) −→ C be a ruled surface on a smooth projective curve C

with µmin(W ) = deg(W ). Take a vector bundle V on C, and let m ∈ N be such that µmin(V ) >

−m deg(W ). So E := ρ?(V ) ⊗ OP(W )(m) is an ample vector bundle on X (see [MR, Corollary

10]).

Let

0 = Vl ( Vl−1 ( Vl−2 ( · · · ( V1 ( V0 = V

be the Harder-Narasimhan filtration of V , and let Qi := Vi−1/Vi, 1 ≤ i ≤ l. Set Ei := (ρ?Vi)⊗
OP(E)(m). Then the uniqueness of the Harder-Narasimhan filtration imply that

0 = El ( El−1 ( El−2 ( · · · ( E1 ( E0 = E

is the Harder-Narasimhan filtration of E with respect to any polarization H.

We conclude using [MR, Corollary 10] that each Ri := Ei−1/Ei = ρ?(Qi) ⊗ OP(W )(m) is an

ample semistable bundle on X with c2(End(Ri)) = 0. Thus

ε(X,Ri, x) =
1

rank(Ri)
ε(X, det(Ri), x) ≥ 1

rank(Ri)

for all but countably many points x ∈ X. So inductively we have each Ei is ample, and by [FM,

Lemma 3.2] we have

ε(X,Ei, x) ≥ min
{
ε(X,Ei−1, x), ε(X,Ri, x)

}
≥ 1

rank(Ei)

for all but countably many points x ∈ X. In particular, using Theorem 4.2,

ε(X,E, x) =
ε(X, det(R1), x)

rank(R1)
≥ 1

rank(R1)
≥ 1

rank(E)

for all but countably many points x ∈ X.

Example 4.5. Let B and D be any two smooth projective curves. Consider the product X =

B ×D together with the projections p1 : X −→ C and p2 : X −→ D.

Let V be an ample vector bundle onB and L a very ample line bundle onD. Then E := p?1V⊗p?2L
is an ample vector bundle on X. Let

0 = Vl ( Vl−1 ( Vl−2 ( · · · ( V1 ( V0 = V

be the Harder-Narasimhan filtration of V . Then

0 = El ( El−1 ( El−2 ( · · · ( E1 ( E0 = E

is the Harder-Narasimhan filtration of E, where Ei = p?1Vi ⊗ p?2L for each i. Note that each

Qi := Ei−1/Ei is semistable with c2(End(Qi)) = 0. In particular µmin(ν∗E) = µ(ν∗Q1) for every

curve C ⊂ X, where ν is as in Theorem 4.2.

Therefore

ε(X,E, x) =
ε(X, det(Q1), x)

rank(Q1)
≥ 1

rank(Q1)
≥ 1

rank(E)

for all but countably many points x ∈ X.
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Example 4.6. Let π : X := PC(F) −→ C be a projective bundle over an elliptic curve C,

where F is an indecomposable vector bundle of rank n and degree 1 on C. Let OPC(F)(1) be the

tautological line bundle, and set E := π?E ⊗ OPC(F)(1), where E is an indecomposable vector

bundle of rank n and degree 1. Then E is an ample and globally generated vector bundle (see [No,

Theorem 1.1, (4)]). Further E is an indecomposable bundle, and hence semistable. As a result, E

is a semistable bundle with c2(End(E)) = 0. Thus

ε(X,E, x) =
ε(X, det(E), x)

rank(E)
≥ 1

rank(E)

for all x ∈ X.

5. ample vector bundles on Hirzebruch Surfaces

In this section we consider rank 2 vector bundles on Hirzebruch surfaces. Such bundles with

small values of c2 have been classified in the literature, see [Is] for instance.

In the following proposition, we list the indecomposable rank 2 ample bundles on Hirzebruch

surfaces with small c2. For all these vector bundles it will be shown that the Seshadri constant is

at least 1 at all points.

Proposition 5.1 ([Is, Theorem 2.9]). Let π : Fe = P(OP1 ⊕ OP1(−e)) −→ P1 be a Hirzebruch

surface and E −→ Fe an indecomposable ample vector bundle of rank two. Denote the normalized

section of π by σ and a fiber of π by f . Then c2(E) ≥ e + 5. Moreover, if c2(E) ≤ e + 6, then

one of the following cases occur:

Case 1: E is an ample indecomposable rank 2 bundle on F1 with c2(E) = 6 which sits in the

following exact sequence:

0 −→ 2σ + 2f −→ E −→ σ + 3f −→ 0.

In this case the Nef cone of Fe is generated by {σ + f, f}.
Case 2: E is an ample indecomposable rank 2 bundle on F0 with c2(E) = 6 which sits in the

following exact sequence:

0 −→ 2σ −→ E −→ σ + 3f −→ 0.

In this case the Nef cone is generated by {σ, f}.
Case 3: E an ample indecomposable rank 2 bundle on F1 with c2(E) = 7 which sits in the

following exact sequence:

0 −→ 2σ + f −→ E −→ σ + 4f −→ 0.

In this case the Nef cone of Fe is generated by {σ + f, f}.
Case 4: E is an ample indecomposable rank 2 bundle on F2 with c2(E) = 8 which sits in the

following exact sequence:

0 −→ 2σ + 4f −→ E −→ σ + 4f −→ 0.

In this case the Nef cone of Fe is generated by {σ + 2f, f}.
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Theorem 5.2. Let π : Fe = P(OP1 ⊕ OP1(−e)) −→ P1 be a Hirzebruch surface, and let E be

one of the four indecomposable ample vector bundle of rank 2 on Fe listed in Proposition 5.1. Then

ε(Fe, E, x) ≥ 1

for all x ∈ Fe.

Proof. We will use [FM, Corollary 3.21] which allows us to compute the Seshadri constants

ε(Fe, E, x) by restricting E to curves on Fe; see (3). To prove the theorem it suffices to show

that

µmin(ν?E)

multxC
≥ 1 (5)

for every irreducible curve C ⊂ Fe containing x. Suppose that C is numerically equivalent to

aσ + bf for some integers a, b.

We will prove (5) separately for each of the four cases in Proposition 5.1. Take x ∈ Fe.
Case 1: Here e = 1. Let C ⊂ F1 be an irreducible curve containing x. Restricting the defining

short exact sequence to C, we obtain

0 −→ OC(D) −→ E
∣∣
C
−→ OC(D′) −→ 0, (6)

where deg(D) = 2b and deg(D′) = 2a+ b.

Pulling the above sequence back to the normalization α : C̃ −→ C, we obtain an exact sequence

0 −→ ν?(2σ + 2f) −→ ν?E −→ ν?(σ + 3f) −→ 0,

where ν is the composition of α with the inclusion map C ↪→ F1.

Then

degree(ν?(2σ + 2f)) = degree(2σ + 2f
∣∣
C

) = 2b

and

degree(ν?(σ + 3f)) = degree(σ + 3f
∣∣
C

) = 2a+ b.

By [Har2, Corollary V.2.18(b)], the only possibilities are a = 1, b = 0, a = 0, b = 1 or b ≥ a > 0.

Further, intersecting C with the fiber through x, we obtain that

a = C · f ≥ multxC.

First, suppose that a > 0 and b > 0. Then using Lemma 2.3, we obtain the following:

µmin(ν?E) ≥ min{2b, 2a+ b} > b ≥ a ≥ multxC.

If a = 0 and b = 1, then we claim that C is smooth. Indeed, the linear system σ + 2f is very

ample (see [Har2, Corollary V.2.18]) and hence it contains a nonsingular curve B through x. Then

Bézout’s theorem gives that

C ·B = 1 ≥ multxC.

By the above calculation, µmin(ν?E) ≥ min{2, 1} = 1 = multxC.



SOME RESULTS ON SESHADRI CONSTANTS OF VECTOR BUNDLES 15

If a = 1 and b = 0, then C ∼= P1. In this case, E
∣∣
C

is an ample and globally generated vector

bundle of rank 2 on C. So

ε(C,E
∣∣
C
, x) = µmin(E

∣∣
C

) ≥ 1 = multxC.

We conclude that(5) holds in every case.

Case 2: Here e = 0. Let C ⊂ F0 be an irreducible curve containing x. Restricting the defining

short exact sequence to C, we obtain

0 −→ OC(F ) −→ E
∣∣
C
−→ OC(F ′) −→ 0, (7)

where deg(F ) = 2b and deg(F ′) = 3a+ b.

If C = σ, then C is smooth, and multxC = 1. Then (7) becomes

0 −→ OC −→ E
∣∣
C
−→ OC(3) −→ 0.

Since E is ample, we have E
∣∣
C

is ample and globally generated. The proof can be completed

exactly as done in the analogous situation in Case 1.

If C is numerically equal to f , the argument is identical to the one in Case 1.

Now assume that C is different from σ, f . Then a > 0, b > 0 by [Har2, Corollary V.2.18(b)].

Note that through every point x ∈ F0 there are curves numerically equivalent to σ and f .

Intersecting C with these curves and using Bézout, we conclude that a ≥ multxC and b ≥
multxC.

As above, using Lemma 2.3 for the exact sequence (6) we obtain

µmin(ν?E) ≥ min{2b, 3a+ b} ≥ multxC.

Hence (5) holds.

Case 3: Here e = 1. Let C ⊂ F1 be an irreducible curve containing x. Restricting the defining

short exact sequence to C we obtain

0 −→ OC(G) −→ E
∣∣
C
−→ OC(G′) −→ 0, (8)

where deg(G) = 2b− a and deg(G′) = 3a+ b.

If C = σ, then C is smooth, and multxC = 1. Then (8) becomes

0 −→ OC(−1) −→ E
∣∣
C
−→ OC(3) −→ 0.

Since E is ample, we have E
∣∣
C

is ample and globally generated. The proof can be completed

exactly as in the analogous situation in Case 1.

If C is numerically equal to f , the argument is identical to the one in Case 1.

Now suppose C is different from σ, f . Then, by [Har2, Corollary V.2.20(a)], a > 0 and b > a.

Intersecting C with a fiber through x, we obtain that a = C · f ≥ multxC.

We conclude exactly as done in Case 1.

Case 4: The argument is identical to the above cases. So we omit its proof. �
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Remark 5.3. Let E be an equivariant ample vector bundle of rank r on a Hirzebruch surface X.

There are certain special torus-invariant curves D1, D2, D
′
1 and D′2 in X; see [DKS, Subsection

2.3 and Section 5] for more details about D1, D2, D
′
1 and D′2.

Set

µ1 = µmin(E|D1), µ2 = µmin(E|D2), µ
′
1 = µmin(E|D′

1
) and µ′2 = µmin(E|D′

2
).

Further assume that E satisfies the following property as in [DKS, Theorem 5.1]:

µ1 = µmin(E|D1) = µmin(E|D′
1
) = µ′1

Then for any x ∈ X, by [DKS, Theorem 5.1] the Seshadri constants ε(X,E, x) satisfy the

following inequalities :

ε(X,E, x) ≥ min
{
µ1, µ2, µ

′
2

}
, if x ∈ Γ2

and

ε(X,E, x) ≥ min
{
µ1, µ2

}
, if x /∈ Γ2.

Here Γ2 is a certain curve on X; see [DKS, Proposition 2.4] for a description of Γ2.

Since the invariant curves are isomorphic to P1, in both of the above cases we have

ε(X,E, x) ≥ 1, for all x ∈ X.
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