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ABSTRACT. Let X be a smooth complex projective curve and let E be a vector bundle on X
which is not semistable. We consider a flag bundle π : Fl(E)→ X parametrizing certain flags
of fibers of E. The dimensions of the successive quotients of the flags are determined by the
ranks of vector bundles appearing in the Harder-Narasimhan filtration of E. We compute
the Seshadri constants of nef line bundles on Fl(E).

1. INTRODUCTION

Seshadri constants were introduced by Demailly [8] in 1990 as a tool to study jet sep-
aration of line bundles on complex projective varieties. They have become an important
topic in the study of positivity in algebraic geometry.

We quickly recall their definition. Let L be a nef line bundle on a projective variety X.
For a point x ∈ X, The Seshadri constant of L at x is defined as

ε(X,L, x) := inf
x∈C

L · C
multxC

,

where the infimum is taken over all irreducible and reduced curvesC ⊂ X passing through
x. Here L · C denotes the intersection multiplicity, and multxC denotes the multiplicity of
the curve C at x. So ε(X,L, x) depends only the numerical equivalence class of L. If the
variety is clear from the context, we denote the Seshadri constant simply by ε(L, x).

By Seshadri’s criterion for ampleness, the line bundle L is ample if and only if ε(L, x) >
0 for all x ∈ X. So Seshadri constants of ample line bundles are positive real numbers.

In order to understand the behaviour of ε(L, x) as x varies, one defines the following
numbers:

ε(L, 1) := sup
x∈X

ε(L, x),

and
ε(L) := inf

x∈X
ε(L, x) .

It is known that the values of both ε(L, 1) and ε(L) are achieved at specific points. In
fact, ε(L, 1) = ε(L, x) for a very general point x ∈ X.
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It is easily seen that the following inequalities hold for any point x ∈ X. The dimension
of X is denoted by n.

0 < ε(L) 6 ε(L, x) 6 ε(L, 1) 6 n
√
Ln.

One is interested in computing the precise value of Seshadri constants, or at least in
giving some bounds. In general, the larger the Seshadri constant is, the more positive L
will be. For example, if L is very ample (in fact, if it is ample and base point free) then
ε(L, x) > 1 for all x ∈ X. On the other hand, it may happen that ε(L, x) < 1 for some x if
the ample line bundle L is not base point free.

Note that the above definition of Seshadri constants is meaningful only when the di-
mension of X is two or more. Seshadri constants have been extensively studied on sur-
faces and the general picture is understood well in this case; see [2, 9, 4] for a sample. In
dimension at least three, a lot is known in specific cases such as abelian varieties and Fano
varieties (see [1, 11] for example), but the general picture is not well-understood. For a
detailed survey, see [10, Chapter 5] and [3].

In this paper, we compute Seshadri constants of ample line bundles on some flag bun-
dles over complex projective curves. We now recall the construction of the flag bundles
that we will study in this paper.

Let E be a vector bundle on a connected smooth projective curve X defined over C. We
will assume that E is not semistable. Let

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ed−1 ⊂ Ed = E

be the Harder-Narasimhan filtration of E. For every 1 6 j 6 d − 1, let rj denote the rank
of E/Ej. Then we have r1 > r2 > · · · > rd−1. We consider the flag bundle

π : Flag(rk1 , rk2 , · · · , rkγ ,E)→ X,(1.1)

where 1 6 k1 < k2 < · · · < kγ 6 d − 1. A point in a fiber over a point x ∈ X represents
successive quotients of the vector space Ex of the following form

Ex →Wk1 →Wk2 → · · · →Wkγ ,

where dim(Wki) = rki for 1 6 i 6 γ. We will denote this flag bundle (1.1) simply by Fl(E),
since the positive integers rk1 , rk2 , · · · , rkγ are fixed throughout the article.

The nef cone of the variety Fl(E) was computed by Biswas and Parameswaran [7]. See
Section 2 for a brief description of their results. Using their results, one can explicitly
describe the ample line bundles on Fl(E). In order to compute the Seshadri constants, we
will first describe the cone of effective curves of Fl(E) in Proposition 3.2. This enables us
to compute the Seshadri constants.

In [5], the authors computed the Seshadri constants of ample line bundles on Grass-
mann bundles. Our approach to the flag bundle case is motivated by this paper.

In Theorem 4.2, we give lower and upper bounds for the Seshadri constants of a nef line
bundle L on Fl(E) in terms of the non-negative integers expressing L as a linear combina-
tion of the generators of the nef cone of Fl(E). We then show that the lower bound given in
Theorem 4.2 is always achieved at specific points in Fl(E). We also show that under some
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additional assumptions on the Harder-Narasimhan filtration of E, the upper bound given
in Theorem 4.2 is achieved at general points of Fl(E). We give some examples in Section
4.2.

We work throughout over the field C of complex numbers. The field of real numbers is
denoted by R.

2. NEF CONE OF FL(E)

In this section we recall the description of the nef cone of Fl(E) given in [7].

Let X be a nonsingular projective variety. The Néron-Severi group of X is defined to be
the quotient group

NS(X) = Div(X)/Num(X),

where Div(X) is the group of divisors on X and Num(X) is the subgroup of numerically
trivial divisors. Then NS(X) is a finitely generated abelian group.

The Néron-Severi space of X is defined to be

NS(X)R := NS(X)⊗Z R.

The cone in NS(X)R generated by all the real nef divisors is called the nef cone of X. The
cone generated by all the ample divisors is called the ample cone of X. The pseudo-effective
cone of X is the closed cone in NS(X)R generated by all the effective classes in NS(X)R. An
element of the pseudo-effective cone is called a pseudo-effective divisor.

A nef divisor is a limit of ample divisors and a pseudo-effective divisor is a limit of
effective classes. In particular, a nef divisor is pseudo-effective.

We will also be interested in the cone of curves in X. LetN1(X)R denote the vector space
of real one-cycles on Xmodulo numerical equivalence. There is a perfect pairing between
NS(X)R and N1(X)R given by the intersection pairing on X.

The closed cone of curves on X, denoted NE(X), is the closure of the cone spanned by
all effective one-cycles on X. The nef cone and NE(X) are dual to each other under the
intersection pairing.

For more details, see [10, Section 1.4.C].

We are interested in these cones for the flag bundle Fl(E). Its nef cone was described by
[7].

For every 1 6 i 6 γ, let
fi : Grrki (E)→ X

be the Grassmannian bundle of rank rki quotients of the vector bundle E. Let Li be the
pullback f∗i (L

′), where L ′ is a line bundle on X of degree 1.

Consider the following sequence of maps.
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(2.1) Fl(E)
Φ
↪−→

γ∏
i=1

Grrki (E) ↪→
γ∏
i=1

P(∧rkiE)

The first embeddingΦ is defined by sending a point

Q = (Ex →Wk1 →Wk2 → · · · →Wkγ) ∈ Fl(E)

to the tuple

(Ex →Wk1 ,Ex →Wk2 , · · · ,Ex →Wkγ) ∈
γ∏
i=1

Grrki (E).

The second embedding is a product of the Plücker embeddings.

For every 1 6 i 6 γ, define the map

Φi := Pri ◦Φ : Fl(E)→ Grrki (E),(2.2)

where

Pri :
γ∏
i=1

Grrki (E)→ Grrki (E)

is the i-th projection. Let θi be the degree of the quotient E/Eki . Define

ωi := OGrrki
(E)(1) − θiLi.

Then we have the following results.

Theorem 2.1. [7, Proposition 4.1] Let 1 6 i 6 γ. The divisor ωi is nef. Further ωi and Li
generate the nef cone of Grrki (E).

Let ω̃i be the pullback Φ∗i (ωi) and let L = π∗(L ′), where L ′ is a degree 1 line bundle
on X.

Theorem 2.2. [7, Theorem 5.1] The divisors ω̃1, . . . , ω̃γ,L generate the nef cone of Fl(E).

Remark 2.3. The description of the nef cone of Fl(E) given in [7] is valid in general for
any flag bundle over X. We consider only flags with dimensions of successive quotients
determined by the Harder-Narasimhan filtration of E since this is needed for later com-
putations.

3. EFFECTIVE CONE OF CURVES ON FL(E)

In this section, we describe some curves in Fl(E) which are dual to the generators of the
nef cone given in Theorem 2.2.

Let x ∈ X be an arbitrary point. We claim that there exist smooth rational curves
C1, . . . ,Cγ in Fl(E) satisfying the following properties:

(1) Each Ci is contained in the fiber π−1(x) = Fl(Ex).
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(2) Ci are lines in the following sense: for every 1 6 i 6 γ, the image Φi(Ci) inside the
fiber Grrki (Ex) is a line with respect to the Plücker embedding.

(3)Φj(Ci) is a point for every j 6= i.

The construction is as follows. Let n denote the rank of E. Fix a C–basis {e1, e2, · · · , en}
of the fiber Ex. For every 1 6 j 6 γ, set skj := n− rkγ−j+1 .

Now let 1 6 i 6 γ. For every [t1 : t2] ∈ P1, define a flag of subspaces of Ex

(3.1) Ex ⊃ Vk1 ⊃ Vk2 ⊃ · · · ⊃ Vkγ−i+1 [t1, t2] ⊃ · · · ⊃ Vkγ ,

as follows:

Vkj := C〈e1, e2, · · · , eskj 〉, for j < γ− i+ 1,

Vkγ−i+1 [t1, t2] := C〈e1 + e2, e2 + e3, · · · , eskγ−i+1−1 + eskγ−i+1
, t1eskγ−i+1

+ t2eskγ−i+1+1〉,
Vkj := C〈e1 + e2, e2 + e3, · · · , eskj + eskj+1〉, for j > γ− i+ 1.

Note that dim(Vkj) = skj = n− rkγ−j+1 for all 1 6 j 6 γ.

The set of all flags of subspaces of Ex as in (3.1) will be denoted by Ci and it is a subset
of Fl(Ex), and hence of Fl(E). Equivalently using the quotient notation Ci is the following
set of flags of quotient spaces of Ex:

Ex →Wk1 →Wk2 → · · · →Wki [t1, t2]→ · · · →Wkγ ,

where Wkj = (Ex/Vkγ−j+1) for j 6= i, and Wki [t1, t2] = (Ex/Vkγ−i+1 [t1, t2]). Note that
dim(Wkj) = rkj for every 1 6 j 6 γ.

From the construction it follows that Φj(Ci) is the constant point Ex → Wkj for j 6= i.
Let Φi(Ci) be the image in Grrki (Ex). It follows from the construction that the image of
Φi(Ci) under the Plücker embedding inside P(∧rkiEx) has dimension one and it is defined
by linear homogeneous polynomials. Hence the image is a line which gives a variety
structure on Ci as a subvariety of Fl(E).

Remark 3.1. The lines Ci in the above construction can be defined functorially. The part
of the subspace Vkγ−i+1 [t1, t2] that depends on [t1 : t2] is the line

{t1eskγ−i+1
+ t2eskγ−i+1+1} ⊆ C〈eskγ−i+1

, eskγ−i+1+1〉.

We have an isomorphism C〈eskγ−i+1
, eskγ−i+1+1〉 ∼= C2 by sending

eskγ−i+1
7→ (1, 0), eskγ−i+1+1 7→ (0, 1).

We have the family of lines passing through the origin parameterized by P1

{t1 · (1, 0) + t2 · (0, 1)} ⊆ C2.

More explicitly, the family is the following

{((x,y), (t1, t2)) : t1 · y = t2 · x} ⊆ C2 × P1.



6 KRISHNA HANUMANTHU AND JAGADISH PINE

This is precisely the tautological line bundle OP1(−1) ⊆ O⊕2
P1 . Thus the subspaces

Vkγ−i+1 [t1, t2] will define the vector bundle OP1 ⊕ OP1 ⊕ · · · ⊕ OP1 ⊕ OP1(−1) of rank skγ−i+1

over P1. We have the following filtration of vector bundles over P1:

O⊕nP1 ⊃ O
⊕sk1
P1 ⊃ · · · ⊃ O

⊕skγ−i+1−1

P1 ⊕ OP1(−1) ⊃ O
⊕skγ−i+2

P1 ⊃ · · · ⊃ O
⊕skγ
P1 ,

where the embedding O
⊕skγ−i+2

P1 ⊂ O
⊕skγ−i+1−1

P1 ⊕OP1(−1) is given by (id, 0). Since skγ−i+2 <
skγ−i+1 , by id we mean the inclusion of skγ−i+2 copies of OP1 inside (skγ−i+1 − 1) copies of
OP1 .

The embedding O
⊕skγ−i+1−1

P1 ⊕ OP1(−1) ⊂ O
⊕skγ−i
P1 is the following natural embedding

P1×
(
C〈e1+e2, e2+e3, · · · , eskγ−i+1−1+eskγ−i+1

〉
)
⊕C〈t1eskγ−i+1

+t2eskγ−i+1+1〉 ⊆ P1×
(
C〈e1, e2, · · · , eskγ−i 〉

)
,

where skγ−i > skγ−i+1 . The above filtration will define a unique map

P1 → Fl(Ex)

and the image of this map is exactly Ci which was defined above.

We recall that the Harder-Narasimhan filtration of E is given by

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ed−1 ⊂ Ed = E.

The rank of E/Eki is rki . So E/Eki+1 = (E/Eki)/(Eki+1/Eki). This gives the following se-
quence of quotients over X:

(3.2) E→ E/Ek1 → E/Ek2 → · · · → E/Ekγ .

This defines a section s : X→ Fl(E).

Proposition 3.2. The curves C1, . . . ,Cγ, s(X) generate the closed cone of curves NE(Fl(E)) of
Fl(E).

Proof. To prove the claim, we will show that the curves C1, . . . ,Cγ, s(X) are dual to the
generators ω̃1, . . . , ω̃γ,L of the nef cone of Fl(E).

We have the following commutative diagram

Ci Fl(E)

Φi(Ci) Grrki (E)

h

(Φi)res Φi

h ′

Note that (Φi)res is an isomorphism. Indeed, the following morphism is the inverse of
(Φi)res when restricted toΦi(Ci)

Grrki (Ex)→
γ∏
i=1

Grrki (Ex)
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z 7→
{
[Ex �Wk1 ], · · · , [Ex �Wki−1 ], z, [Ex �Wki+1 ], · · · , [Ex �Wkγ ]

}
Hence we have:

Ci · ω̃i = Ci ·Φ∗i (ωi)
= deg ((Φi ◦ h)∗(ωi))
= deg ((h ′ ◦ (Φi)res)∗(ωi))
= deg ((h ′)∗(ωi))

= Φi(Ci) ·ωi
= 1.

Similarly, using the following commutative diagram

Ci Fl(E)

{pt} Grrki (E)

h

(Φi ′)res Φi ′

h ′

we can see that Ci · ω̃i ′ = 0 for i 6= i ′.

Since the curve Ci is contained in a fiber π−1(x) for some x ∈ X, the composition map
Ci ↪→ Fl(E)→ X is a constant map. Thus Ci · L = 0 for all i.

The sequence of quotients (3.2) defines the section s(X) and the quotient E → E/Eki
defines a section s ′(X) of fi : Grrki (E)→ X. Thus the image Φi(s(X)) is precisely s ′(X). So
we have the following commutative diagram:

s(X) Fl(E)

s ′(X) Grrki (E)

s

(Φi)res Φi

s ′

Then
s(X) · ω̃i = deg (s∗(Φ∗i (ωi))) = (s ′ ◦ (Φi)res)∗(ωi) = s ′(X) ·ωi,

since (Φi)res : s(X)→ s ′(X) is an isomorphism.

So
s ′(X) ·ωi = (OGrrki

(E)(1) − θiLi) · s ′(X) = θi − θi = 0.

The equality OGrrki
(E)(1) · s ′(X) = θi can be seen as follows.
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Let p : Grrki (E) ↪→ P(∧rkiE) be the Plücker embedding. Let s ′′ : X → P(∧rkiE) be the
section defined by the rank 1 quotient E → ∧rki (E/Eki). Then, by the projection formula,
we obtain

OGrrki
(E)(1) · s ′(X) = p∗OP(∧rkiE)(1) · s

′(X) = OP(∧rkiE)(1) · p∗s
′(X)

= OP(∧rkiE)(1) · s”(X) = (s”)∗(OP(∧rkiE)(1)) = deg(∧rki (E/Eki) = θi.

Let πres : s(X) ↪→ Fl(E)→ X be the composition map. Then πres is an isomorphism with
inverse given by the section map s : X→ Fl(E). We then see

s(X) · L = deg(π∗res(L
′)) = deg(L ′) = 1.

�

4. SESHADRI CONSTANTS OF LINE BUNDLES ON FL(E)

In this section, we prove our main results on Seshadri constants of nef line bundles on
Fl(E).

By Theorem 2.2, a nef line bundle L on Fl(E) is of the form

a1ω̃1 + a2ω̃2 + · · ·+ aγω̃γ + bL,

for some non-negative integers a1, . . . ,aγ,b. We denote the line bundle L simply by the
tuple (a1,a2, · · · ,aγ,b).

By Proposition 3.2, an effective curve C in NE(Fl(E)) is of the form

p1C1 + p2C2 + · · ·+ pγCγ + rs(X),
for some non-negative integers p1, . . . ,pγ, r. We denote the curve C simply by the tuple
(p1,p2, · · · ,pγ, r).

Lemma 4.1. For each point y in Fl(E) and for every 1 6 i 6 γ, there exist smooth curves
C ′i ⊂ Fl(E) passing through y which are numerically equivalent to the curve Ci.

Proof. Let π(y) = x in X. The lines Ci constructed at the beginning of Section 3 are in the
fiber Fl(Ex) over x.

The group GL(Ex) acts transitively on Fl(Ex). Let Ci[0 : 1] be the point on the line Ci
corresponding to [0 : 1] ∈ P1. Let g be in GL(Ex) such that g · Ci[0 : 1] = y.

Let C ′i be the image g · Ci of Ci under the linear automorphism g of Fl(Ex). For any
divisor D in Fl(E), we will consider the divisor D ′ = D · Fl(Ex) in Fl(Ex). Since Ci and
C ′i are isomorphic as subschemes of Fl(Ex) by a linear automorphism of Fl(Ex), we have
Ci ·D ′ = C ′i ·D ′. �

Theorem 4.2. Let X be a smooth complex projective curve and let E be a vector bundle on X which
is not semistable. Let Fl(E) be the flag bundle as in (1.1).

Let L = (a1,a2, · · · ,aγ,b) be a nef line bundle on Fl(E) expressed in terms of the generators
of the nef cone given in Proposition 2.2. Then the Seshadri constants of L at any point y ∈ Fl(E)
satisfy the following inequalities:
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min(a1,a2, · · · ,aγ,b) 6 ε(L,y) 6 min(a1,a2, · · · ,aγ).

Proof. Let y ∈ Fl(E). By Lemma 4.1, for every i there exist smooth curves C ′i passing
through ywhich are numerically equivalent to the curves Ci. So for every 1 6 i 6 γ,

(4.1)
C ′i · L

multxC ′i
= ai.

This implies that ε(L,y) 6 min(a1,a2, · · · ,aγ), giving one of the required inequalities.

Let C ⊂ Fl(E) be an irreducible and reduced curve passing through y. For the proof of
the other inequality, we consider two cases.

Case 1: Suppose that C is not contained inside the fiber Fl(Ex) over the point x :=
π(y) ∈ X. Then by Bézout’s theorem,

C · Fl(Ex) > multyC ·multyFl(Ex).

Since Fl(Ex) is a smooth variety, multyFl(Ex) = 1. The associated line bundle to the divisor
Fl(Ex) ⊂ Fl(E) is L. So

C · L > multyC.(4.2)

By Proposition 3.2, C is numerically equivalent to p1C1 + p2C2 + · · ·+ pγCγ + rs(X) for
some non-negative integers p1, . . . ,pγ, r. Then, by (4.2),

r > multyC.

Then
C · L

multyC
=

(p1C1 + p2C2 + · · ·+ pγCγ + rs(X)) · (a1ω̃1 + a2ω̃2 + · · ·+ aγω̃γ + bL)
multyC

>
p1a1 + . . . + pγaγ + rb

r
> b.

Case 2: Suppose now that the curve C is contained inside the fiber Fl(Ex) over x. Then
C is numerically equivalent to p1C1 + p2C2 + · · · + pγCγ for some non-negative integers
p1, . . . ,pγ.

We have the following natural embedding of Fl(Ex). See (2.2).

Φ = (Φ1,Φ2, · · · ,Φγ) : Fl(Ex) ↪→
∏γ
i=1 Grrki (Ex)

For 1 6 i 6 γ, the imageΦi(C) of the curveC is contained in Grrki (Ex). It is numerically
equivalent to piΦi(Ci), whereΦi(Ci) is a line in Grrki (Ex).

Let OGrrki
(Ex)(1) be the tautological ample line bundle on the Grassmannian Grrki (Ex).

We will denote it by Oi(1), for simplicity. Then O1(1)�O2(1)� · · ·�Oγ(1) is a very ample
line bundle on

∏γ
i=1 Grrki (Ex).

Let OFl(Ex)(1) := Φ∗(O1(1) � O2(1) � · · · � Oγ(1)), which is a very ample line bundle
on Fl(Ex). Choose an effective Cartier divisor Y in the linear system |OFl(Ex)(1)| such that
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y ∈ Y ∩ C and C * Y. By Bézout’s theorem,

C · Y > (multyC)(multyY).

Thus

multyC 6 C · Y.(4.3)

For 1 6 i 6 γ, let Hi be a general hyperplane in Grrki (Ex). Then we may write

Y = Y1 + . . . + Yγ,

where
Y1 ∈ |H1 ×Grrk2

(Ex)× · · · ×Grrkγ (Ex)|, . . . ,

Yγ ∈ |Grrk1
(Ex)×Grrk2

(Ex)× · · · ×Grrkγ−1
(Ex)×Hγ|.

For j 6= i ∈ {1, . . . ,γ}, we have

Cj ·
(
Grrk1

(Ex)×Grrk2
(Ex)× · · · ×Hi × · · · ×Grrkγ (Ex)

)
= 0,

because the line Cj maps to a constant on Grrki (Ex). Thus a general hyperplane Hi will
not pass through this point.

On the other hand, for any i ∈ {1, . . . ,γ},

Ci ·
(
Grrk1

(Ex)×Grrk2
(Ex)× · · · ×Hi × · · · ×Grrkγ (Ex)

)
= 1.

Hence
C · Y = (p1C1 + p2C2 + · · ·+ pγCγ) · Y = p1 + p2 + · · ·+ pγ.

Using (4.3), we obtain

C · L
multyC

>
C · L
C · Y

=
a1p1 + a2p2 + · · ·+ aγpγ

p1 + p2 + · · ·+ pγ
> min(a1,a2, · · · ,aγ).

Combining the Cases 1 and 2, we conclude that every Seshadri ratio of L at y is at least
b (happens in Case 1) or at least min(a1,a2, · · · ,aγ) (happens in Case 2).

Thus ε(L, x) > min(a1,a2, · · · ,aγ,b). This completes the proof of the theorem. �

Theorem 4.2 immediately gives the following.

Corollary 4.3. Let the notation be as in Theorem 4.2. Let L = (a1,a2, · · · ,aγ,b) be a nef line
bundle on Fl(E) and suppose that b > min(a1,a2, · · · ,aγ). Then ε(L,y) = min(a1,a2, · · · ,aγ)
for all y ∈ Fl(E).

We now show that the lower bound in Theorem 4.2 is achieved for some points in Fl(E).
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Proposition 4.4. At a point y in the section s(X), ε(L,y) will achieve the minimum value i.e.,
ε(L,y) = min(a1,a2, · · · ,aγ,b).

Proof. Since we have ε(L,y) 6 min(a1,a2, · · · ,aγ), it is enough to show that ε(L,y) 6 b
for any y ∈ Fl(E).

We see easily that the Seshadri ratio corresponding to the curve s(X) is precisely b.
Indeed, note that s(X) is smooth since it is isomorphic to X. So

s(X) · L
multys(X)

=
s(X) · L

1
= s(X) · (a1ω̃1 + a2ω̃2 + · · ·+ aγω̃γ + bL) = b.

This show that ε(L,y) 6 b and proves the corollary. �

4.1. Seshadri constants at general points of Fl(E). In this section, we show that the up-
per bound in Theorem 4.2 is achieved for a general point of Fl(E) under an additional
assumption.

We quickly recall notation from Section 1. See (1.1).

Let
0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ed−1 ⊂ Ed = E

be the Harder-Narasimhan filtration of E. Fix 1 6 k1 < k2 < · · · < kγ 6 d− 1.

Then the flag bundle Fl(E) = Flag(rk1 , rk2 , · · · , rkγ ,E) parametrizes flags of fibers of the
form

Ex →Wk1 →Wk2 → · · · →Wkγ ,

where dim(Wki) = rki := rank E/Eki , for 1 6 i 6 γ.

We now make the following additional assumption.

Assumption 4.5.

(1) For each 1 6 i 6 γ, there exists ci ∈ {1, . . . ,d} such that rank(Eci) = rki .
(2) For 1 6 i 6 γ, let ζi := deg(Eci). Then ζi is an integer multiple of rki .

For the remainder of this section, we assume that Assumption 4.5 holds.

Next two results will be used for computing Seshadri constants at general points of
Fl(E).

Proposition 4.6. [6, Theorem 4.1] The pseudo-effective cone of Grrki (E) is generated by OGrrki
(E)(1)−

ζiLi and Li.

Proposition 4.7. [5, Proposition 2.3] The divisor OGrrki
(E)(1)−ζiLi is effective and there exists

a unique effective divisor in the linear system |OGrrki
(E)(1) − ζiLi|, i.e.,

dim H0(OGrrki
(E)(1) − ζiLi) = 1.
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The mapΦi in the following commutative diagram is surjective.

Fl(E)
∏γ
i=1 Grrki (E)

Grrki (E)

Φ

Φi
Pri

Let Di be the effective Cartier divisor on Grrki (E) corresponding to the line bundle
OGrrki

(E)(1)−ζiLi. Then the pullbackΦ−1
i Di is an effective Cartier divisor in |Φ∗i (Grrki (E)(1)−

ζiLi)|. By commutativity, we have Φ−1
i Di = Φ

−1(Pri
−1(Di)). The pullback of the divisor

under the projection Pri is the effective divisor

Grrk1
(E)×Grrk2

(E)× · · · ×Di × · · · ×Grrkγ (E).

Thus the effective divisorΦ−1
i Di in Fl(E) is

Fl(E) ∩
(
Grrk1

(E)×Grrk2
(E)× · · · ×Di × · · · ×Grrkγ (E)

)
.

Remark 4.8. Note that dimH0(Pr∗i (Grrki (E)(1)−ζiLi)) = dim H0(Grrki (E)(1)−ζiLi) = 1.
We consider the restriction map of sections

H0(Pr∗i (Grrki (E)(1) − ζiLi))→ H0(Pr∗i (Grrki (E)(1) − ζiLi)|Fl(E))

This map is injective. If the only section s unique upto scaling maps to zero section, then
Fl(E) will be contained inside the divisor Grrk1

(E) × Grrk2
(E) × · · · ×Di × · · · × Grrkγ (E)

which is not possible. The restriction of the section s is same as pulling back the section
via the map Φi. So pullback of this section defines the above effective Cartier divisor in
Fl(E).

Define a closed subvariety S ⊂ Fl(E) as follows:

S = ∩γi=1

(
Fl(E) ∩

(
Grrk1

(E)×Grrk2
(E)× · · · ×Di × · · · ×Grrkγ (E)

))
= Fl(E) ∩

(
∩γi=1 Grrk1

(E)×Grrk2
(E)× · · · ×Di × · · · ×Grrkγ (E)

)
= Fl(E) ∩D1 ×D2 × · · · ×Dγ.

Note that 1 6 codim(S, Fl(E)) 6 γ in Fl(E).

Theorem 4.9. Let the notation be as in Theorem 4.2. Assume that Assumption 4.5 holds. Let L =
(a1,a2, · · · ,aγ,b) be a nef line bundle on Fl(E). If y /∈ S, then ε(L,y) = min(a1,a2, · · · ,aγ).

Proof. Since the point y does not belong to S, let us assume without loss of generality that

y /∈ D1 ×Grrk2
(E)×Grrk3

(E)× · · · ×Grrkγ (E).

Let C be a curve in Fl(E) passing through y. Suppose that C is numerically equivalent
to p1C1 + p2C2 + · · ·+ pγCγ + rs(X), for some non-negative integers p1, . . . ,pγ, r.



SESHADRI CONSTANTS ON SOME FLAG BUNDLES 13

If C is contained inside a fiber of π : Fl(E)→ X, then by Case 2 of Theorem 4.2,
C · L

multyC
> min(a1,a2, · · · ,aγ).

We assume now that C is not contained inside a fiber. By Bézout’s theorem we have
C · Fl(Ex) > multyC. Hence

C · Fl(Ex) = r > multyC.

Since C contains y, C is not contained in D1 ×Grrk2
(E)×Grrk3

(E)× · · · ×Grrkγ (E).

Let Φ1(C) ⊂ Grrk1
(E) be the projection of C under Φ1. Then Φ1(C) is numerically

equivalent to p1Φ1(C1)+rs(X), whereΦ1(C1) is a line in Grrk1
(E). The image of the section

s(X) under the map Φ1 is the section in Grr1γ
(E) defined by the quotient E → E/Ek1 and

this image is isomorphic to s(X) . Note that

θ1 := deg E/Ek1 = s(X) · OGrrk1
(E)(1).

Since Φ1(C) is not contained in the effective Cartier divisor D1, Φ1(C) ·D1 > 0. So

(p1Φ1(C1) + rs(X)) · (OGrrk1
(E)(1) − ζ1L1) = p1 + rθ1 − rζ1 = p1 + r(θ1 − ζ1) > 0.

Then
p1 + r(θ1 − ζ1) > 0⇒ p1 > r(ζ1 − θ1).

Sinceω1 = OGrrk1
(E)(1) − θ1L1 is nef,ω1 is pseudo-effective. By Proposition 4.6, we can

then write

OGrrk1
(E)(1) − θ1L1 = (OGrrk1

(E)(1) − ζ1L1) +mL1 , for an integerm > 0.

Hence m = ζ1 − θ1 > 0. If ζ1 − θ1 = 0, then the nef cone and the pseudo-effective cone of
Grrk1

(E) are the same which implies that the vector bundle E is semistable, by [6, Corollary
4.3]. This contradicts our assumption. Thus ζ1 − θ1 > 1. Thus p1 > r(ζ1 − θ1) > r. Then

C · L
multyC

=
a1p1 + · · ·+ aγpγ + br

multyC

>
a1p1 + · · ·+ aγpγ + br

r

>
a1r+ · · ·+ aγpγ + br

r
> a1

> min(a1,a2, · · · ,aγ).

The proof is now complete by Theorem 4.2. �

Main results of this section are summarized in the following.
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Corollary 4.10. Let the notation be as in Theorem 4.2. Let L = (a1,a2, · · · ,aγ,b) be a nef line
bundle on Fl(E). Then the following statements hold.

(1) min(a1,a2, · · · ,aγ,b) 6 ε(L,y) 6 min(a1,a2, · · · ,aγ) for all y ∈ Fl(E).
(2) ε(L) = min(a1,a2, · · · ,aγ,b).
(3) Assume that Assumption 4.5 holds. Then ε(L, 1) = min(a1,a2, · · · ,aγ).

Question 4.11. Does Theorem 4.9 hold without Assumption 4.5?

4.2. Examples. In this concluding section, we give some examples where our results ap-
ply. In all the examples, X denotes a connected smooth complex projective curve.

Example 4.12. Let E = L1⊕L2⊕OX⊕3 be a vector bundle of rank 5 over X, where deg(L1) =
1, and deg(L2) = 2. Note that µ(E) = 3

5 and E is not semistable.

The Harder-Narasimhan filtration of E is the following

0 ⊆ L2 ⊆ L2 ⊕ L1 ⊆ E.

We consider the flag bundle Fl(4, 3,E). The Picard rank of Fl(4, 3,E) is 3. Theorem
4.2 gives bounds on Seshadri constants for any nef line bundle L on Fl(4, 3,E). Further,
Proposition 4.4 also gives the value of ε(L). However Assumption 4.5 does not hold in
this case.

Example 4.13. Let E = L1 ⊕ L2 ⊕OX
⊕3 be a rank 5 vector bundle on X, where deg(L1) = 1,

and deg(L2) = −1. Then µ(E) = 0 and E is not semistable.

Then the Harder-Narasimhan filtration of E is the following

0 ⊆ L1 ⊆ L1 ⊕ OX
⊕3 ⊆ E.

Consider the flag bundle Fl(4, 1,E). The Picard rank of Fl(4, 1,E) is 3.

As above both 4.2 and Proposition 4.4 apply, but not Theorem 4.9.

Example 4.14. Let E = L1⊕OX⊕3⊕L2 be a vector bundle of rank 5 over X, where deg(L1) =
4, and deg(L2) = −1. Here µ(E) = 3

5 and E is not semistable.

The Harder-Narasimhan filtration of E is the following

0 ⊆ L1 ⊆ L1 ⊕ OX
⊕3 ⊆ E.

We consider the flag bundle Fl(4, 1,E). The Picard rank of Fl(4, 1,E) is 3. In this examples,
all our results apply: 4.2, Proposition 4.4 and Theorem 4.9.

Example 4.15. Let E = L1⊕L2⊕L3⊕L4⊕OX
⊕3 be a vector bundle of rank 7 over X, where

deg(L1) = 3, deg(L2) = 1, deg(L3) = −1, and deg(L4) = −2. Here µ(E) = 1
7 and E is not

semistable.

The Harder-Narasimhan filtration of E is the following

0 ⊆ L1 ⊆ L1 ⊕ L2 ⊆ L1 ⊕ L2 ⊕ OX
⊕3 ⊆ L1 ⊕ L2 ⊕ L3 ⊕ OX

⊕3 ⊆ E.

In this case, we can consider several flag bundles which satisfy our set-up.
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• All our results apply for the flag bundle Fl(2, 1,E).
• Some other flag bundles we may consider are given below. Assumption 4.5 does

not apply to any of them.
Fl(5, 1,E), Fl(5, 2,E), Fl(6, 5,E), Fl(6, 2,E), Fl(6, 1,E), Fl(5, 2, 1,E), Fl(6, 2, 1,E), or

Fl(6, 5, 2, 1,E).

Example 4.16. Let E = L1⊕L2⊕L3⊕L4⊕OX
⊕3 be a vector bundle of rank 7 over X, where

deg(L1) = 8, deg(L2) = 2, deg(L3) = −4, and deg(L4) = −5. Here µ(E) = 1
7 and E is not

semistable.

The Harder-Narasimhan filtration of E is the following

0 ⊆ L1 ⊆ L1 ⊕ L2 ⊆ L1 ⊕ L2 ⊕ OX
⊕3 ⊆ L1 ⊕ L2 ⊕ L3 ⊕ OX

⊕3 ⊆ E.

Assumption 4.5 holds for the flag bundle Fl(6, 5, 2, 1,E). So all our results are applicable
in this example.
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