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Abstract. Let X be flat scheme over Z such that its base change, Xp, to Fp is Frobenius
split for all primes p. Let G be a reductive group scheme over Z acting on X. In this paper,
we prove a result on the Np property for line bundles on GIT quotients of XC for the action
of GC. We apply our result to the special cases of (1) an action of a finite group on the
projective space and (2) the action of a maximal torus on the flag variety of type An.
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1. Introduction

Syzygies of algebraic varieties have been studied classically since the time of Italian ge-
ometers. For instance, the question of projective normality and normal presentation of em-
beddings of projective varieties in a projective space was studied in depth. The subject has
been revived and there is much renewed interest since Green [7, 8] developed a homological
framework which encompasses the classical questions. It was noted that projective normality
and normal presentation were really properties of a graded free resolution and Np property
was defined as a generalisation of this property.

We briefly review the notion of Np property.

Let k be an algebraically closed field of characteristic 0. All our varieties are projective,
smooth and defined over k.

Let L be a very ample line bundle on a projective variety X. Then L determines an
embedding of X into the projective space P

(
H0(X,L)

)
. We denote by S the homogeneous

coordinate ring of this projective space. Then the section ring R(L) of L is defined as⊕∞
n=0H

0(X,L⊗n) and it is a finitely generated graded S-module. One looks at the minimal
graded free resolution of R(L) over S:

...→ Ei → ...→ E2 → E1 → E0 → R(L)→ 0

where Ei =
⊕

S(−ai,j) for all i ≥ 0 and ai,j are some nonnegative integers.

We say that L has N0 property if E0 = S. This simply means that the embedding
determined by L is projectively normal (or L is normally generated).
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L is said to have N1 property if E0 = S and a1,j = 2 for all j. In this case, we also say
that L is normally presented. Geometrically, this means that the embedding is cut out by
quadrics.

For p ≥ 2, we say that L has Np property if E0 = S and ai,j = i+ 1 for all i = 1, . . . , p.

Given a very ample line bundle L, it is an interesting question to ask whether it has Np

property for a given p.

There is extensive literature on this question. The following is a sample of results. For line
bundles on curves see [9], on surfaces see [4, 5]. For abelian varieties, see [27]. In [2], a general
result is proved for very ample line bundles on projective varieties. [6] studies Np property
for rational surfaces and Fano varieties (which are varieties with an effective anticanonical
line bundle).

In this paper, we are interested in the Np property for line bundles on GIT quotients.
More specifically, we consider varieties defined over Z and consider the descent of an ample
line bundle to a GIT quotient. We obtain a general result on Np property of this descent
(Corollary 4.3) by using a cohomological criterion for Np property. We prove the required
vanishing results using Frobenius splitting methods (Theorem 3.2).

In [18], the authors consider the quotients of a projective space X for the linear action
of finite solvable groups and for finite groups acting by pseudo reflections. They prove that
the descent of OX(1)⊗|G| is projectively normal. In [13], these results were obtained for every
finite group but with a larger power of the descent of OX(1)⊗|G|. In this paper, we consider
any finite group acting linearly on X and prove a general result on Np property for the
descent of OX(1)⊗|G|.

A question of Fulton concerns the Np property of line bundles on flag varieties (cf. [2,
Problem 4.5]). The special case of flag varieties of type An is considered in [21] and a general
result is obtained. In line with this, we consider the GIT quotient of a flag variety of type An
for the action of a maximal torus and we obtain a result on Np property as an application of
our main result.

The organisation of the paper is as follows:

Section 2 consists of preliminaries. Cohomology of line bundles on the quotient variety is
studied in Section 3. In section 4, we prove Np property for GIT quotients of varieties which
are defined over Z. We apply these results to the special case of finite group quotients in
Section 5 and to the special case of GIT quotient of a flag variety of type An for the action
of a maximal torus in section 6.

2. Preliminaries

Given a vector bundle F on a projective variety X that is generated by its global sections,
we have the canonical surjective map:

H0(F )⊗OX → F.(2.1)
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Let MF be the kernel of this map. We have then the natural exact sequence:

0→MF → H0(F )⊗OX → F → 0.(2.2)

Our goal in this paper is to studyNp property of line bundles on GIT quotients of projective
varieties with some special property.

Theorem 2.1. [2, Lemma 1.6] Let L be a very ample line bundle on a projective variety
X. Assume that H1(L⊗k) = 0 for all k ≥ 1. Then L satisfies Np property if and only if
H1(∧mML ⊗ L⊗n) = 0 for all 1 ≤ m ≤ p+ 1 and n ≥ 1.

Remark 2.2. In characteristic zero, it suffices to prove H1(M⊗m
L ⊗ L⊗n) = 0 to obtain Np

property as the wedge product ∧mML is a direct summand of the tensor product M⊗m
L .

Remark 2.3. In [2], this theorem was proved only assuming that L is ample and base point
free. We will apply this result with only these hypotheses (cf. [22, §1.3, Page 509]).

The following lemma is very useful in proving surjectivity of multiplication maps of sections
of line bundles. See [3, Proof of Lemma 1.4].

Lemma 2.4. Let E and L1, L2, ..., Lr be coherent sheaves on a variety X. Consider the
multiplication maps

ψ : H0(E)⊗H0(L1 ⊗ ...⊗ Lr)→ H0(E ⊗ L1 ⊗ ...⊗ Lr),

α1 : H0(E)⊗H0(L1)→ H0(E ⊗ L1),

α2 : H0(E ⊗ L1)⊗H0(L2)→ H0(E ⊗ L1 ⊗ L2),

...,

αr : H0(E ⊗ L1 ⊗ ...⊗ Lr−1)⊗H0(Lr)→ H0(E ⊗ L1 ⊗ ...⊗ Lr).

If α1,...,αr are surjective, then so is ψ.

Proof. We have the following commutative diagram where id denotes the identity morphism:

H0(E)⊗H0(L1)⊗ ...⊗H0(Lr)
α1⊗id //

φ
��

H0(E ⊗ L1)⊗H0(L2)⊗ ...⊗H0(Lr)

α2⊗id
��

H0(E)⊗H0(L1 ⊗ ...⊗ Lr)

ψ

��

H0(E ⊗ L1 ⊗ L2)⊗H0(L3)⊗ ...⊗H0(Lr)

α3⊗id

��...

αr−1⊗id
��

H0(E ⊗ L1 ⊗ ...⊗ Lr) H0(E ⊗ L1 ⊗ ...⊗ Lr−1)⊗H0(Lr)
αroo

Since α1, α2, ..., αr are surjective and this diagram is commutative, a simple diagram chase
shows that ψ is surjective. �

The following result, known as Castelnuovo - Mumford lemma, will be used often in this
paper.
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Lemma 2.5. [24, Theorem 2] Let E be an ample and base-point free line bundle on a pro-
jective variety X and let F be a coherent sheaf on X. If H i(F ⊗E−i) = 0 for i ≥ 1, then the
multiplication map

H0(F ⊗ E⊗i)⊗H0(E)→ H0(F ⊗ E⊗i+1)

is surjective for all i ≥ 0.

3. Cohomology of the quotient variety

Let X be a flat scheme over Z. Let p be a prime number and let Fp denote the algebraic

closure of the finite field Fp. Let Xp denote the Fp-valued points of X. Let XC denote the
C-valued points of X. We assume that XC is a projective variety over C and that Xp are

projective varieties over Fp for all primes.

We assume that there is a sheaf N on X such that the base change of N to XC, NC,
(respectively, Np on Xp, for all primes) is an ample line bundle.

Finally assume that Xp is Frobenius split for all primes.

Let G be a reductive (not necessarily connected) algebraic group scheme over Z acting
on X such that the action map GC × XC −→ XC is a morphism. Assume that every line
bundle on XC is GC-linearised and that (XC)ssGC

(NC) is nonempty. We assume that the above

hypotheses also hold for base change over Fp for all but finitely many primes.

Let YC denote the GIT quotient GC\\(XC)ssGC
(NC). Similarly let Yp denote the GIT quo-

tient of Xp with respect to the Gp-linearised line bundle Np. We further assume that NC
(respectively, Np) descends to YC (respectively, Yp for all primes). Let LC (respectively, Lp)
denote the descent of NC to YC (respectively, Np to Yp).

For the preliminaries and notion of Geometric Invariant Theory, we refer to [25] and [26].
For the notion of Frobenius splitting, see [23].

Lemma 3.1. LC and Lp are ample line bundles on YC and Yp respectively.

Proof. Let φ : (XC)ssGC
(NC) → YC be the natural categorical quotient map and let φ? :

Pic(YC)→ Pic((XC)ssGC
(NC)) be the pullback map.

Since NC is a GC-linearised line bundle on XC, by [25, Theorem 1.10, Page 38], there is
an ample line bundle M on YC such that the φ?(M) = N⊗nC for some n > 0.

Since φ?(LC) = NC, M⊗ L−nC is in the kernel of φ?. Since every line bundle on XC is
GC-linearised, Pic((XC)ssGC

(NC)) = PicGC((XC)ssGC
(NC)). By [19, Proposition 4.2, Page 83],

φ? is injective. Hence M = L⊗nC and LC is ample.

Proof is similar for Lp. �

Theorem 3.2. With the notation as above, the following statements hold.

(1) H i(YC,LeC) = 0 for every e > 0 and i ≥ 1,
(2) Assume that Gp is linearly reductive for all but finitely many primes. Then

H i(YC,LeC) = 0 for every e < 0 and i < d, where d denotes the dimension of Y .
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Proof. Since Np is ample, by Serre’s vanishing theorem, there is a positive integer r such that
H i(Xp,N⊗p

r

p ) = 0 for i ≥ 1.

Now we will use the Frobenius splitting property of Xp to prove (1) (cf. [23]). Let F
denote the Frobenius morphism corresponding to prime p.

Tensoring the map OXp −→ F∗OXp by Np and noting that Np ⊗ F∗OXp
∼= F∗F

∗Np =
F∗N⊗pp (projection formula) we see that the following map is injective:

H i(Xp,Np) −→ H i(Xp, F∗N⊗pp ) = H i(Xp,N⊗pp ).

Iterating this process, we conclude that the map H i(Xp,Np) −→ H i(Xp,N⊗p
r

p ) is injective.

Thus H i(Xp,Np) = 0 for i ≥ 1.

Since X is flat over Z, using semicontinuity theorem [10, Theorem III.12.8], we conclude
that H i(XC,NC) = 0 for i ≥ 1 (cf. [1, Proposition 1.6.2]).

Proof of H i(XC,N⊗eC ) = 0 for e ≥ 2 and for every i ≥ 1 is similar.

Since (XC)ssGC
(NC) is nonempty, we have H i(YC,L⊗eC ) = H i(XC,N⊗eC )GC for every i > 0

and e ≥ 0, by [29, Theorem 3.2.a].

Hence, by the above arguments, H i(YC,LeC) = 0 for every i > 0 and e ≥ 0. This proves
(1).

Since Xp is Frobenius split and G is linearly reductive over Fp, using Reynolds operator,
we see that Yp is also Frobenius split. For a proof, see [17, Theorem 3.7].

It is well known that there is a positive integer r such that H i(Yp,L−p
r

p ) = 0 for i 6= d.

Now the proof of (2) is similar to the proof of (1) using the Frobenius splitting property
of Yp.

This completes the proof of theorem. �

4. Np property

Let X be a flat scheme over Z. We assume that the hypotheses stated at the begininning
of Section 3 hold. For simplicity of notation in this section we use letters X, Y and L to
denote XC, YC and LC respectively.

In this section we prove a result on Np property for L using Theorem 2.1. By Remark 2.3,
we need the assumption that L is ample and base point free. By Lemma 3.1, L is ample.

We assume further that L is base point free. Let d = dim(Y ).

In [4, Theorem 1.3], the authors prove a strong general result on Np property for an
ample and base point free line bundle L on a projective variety X The bounds obtained are
expressed in terms of the dimension of X and regularity of L. Regularity of L is a measure
of vanishing of higher cohomology of powers of L. This result is generalized to multigraded
regularity in [11, Theorem 1.1].
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Our next theorem follows from the above mentioned results. However we provide a proof
here for the sake a self-contained exposition.

Theorem 4.1. Let m, a ≥ 1 be a positive integers. Then we have H i(Y,M⊗m
L⊗a ⊗ Lb−i) = 0

for i ≥ 1 and b > m+ d.

Proof. We proceed by induction on m.

Let m = 1. Let a ≥ 1 and b > d+ 1. We first show that H1(Y,ML⊗a ⊗ Lb−1) = 0.

Consider the sequence 2.2 with F = L⊗a:
0→ML⊗a → H0(L⊗a)⊗OY → L⊗a → 0.(4.1)

Tensoring with L⊗b−1 and taking cohomologies, we get

H0(L⊗b−1)⊗H0(L⊗a) α−→ H0(L⊗b+a−1)→ H1(ML⊗a ⊗ L⊗b−1)→ H0(L⊗a)⊗H1(L⊗b−1).

Since H1(L⊗b−1) = 0 by Theorem 3.2(1), if the map α is surjective then it follows that
H1(ML⊗a ⊗ L⊗b−1) = 0.

To prove surjectivity of α, we will use Lemma 2.4 and first prove that the following map
is surjective:

α1 : H0(L⊗b−1)⊗H0(L)→ H0(L⊗b).
For this we use Lemma 2.5. The needed vanishings are H i(Lb−1−i) = 0, for i = 1, . . . , d.
These follow from Theorem 3.2(1) because b > d+ 1.

Similarly, we obtain the surjectivity of the maps:

α2 : H0(L⊗b)⊗H0(L)→ H0(L⊗b+1),

α3 : H0(L⊗b+1)⊗H0(L)→ H0(L⊗b+2),

and so on. By Lemma 2.4, α is surjective.

For i > 1, we twist (4.1) by L⊗b−i and consider the long exact sequence in cohomology :

H i−1(L⊗a+b−i)→ H i(ML⊗a ⊗ L⊗b−i)→ H0(L⊗a)⊗H i(L⊗b−i)

We get the desired vanishing by Theorem 3.2(1).

Now let m > 1 and suppose that the theorem holds for m− 1. Let a ≥ 1 and b > m + d
be given. First let i = 1.

Tensor the sequence 4.1 with M
⊗(m−1)
L⊗a ⊗ Lb−1 and take cohomology:

H0(M
⊗(m−1)
L⊗a ⊗ L⊗b−1) ⊗ H0(L⊗a) α−→ H0(M

⊗(m−1)
L⊗a ⊗ L⊗a+b−1) → H1(M⊗m

L⊗a ⊗ L⊗b−1) →
H0(L⊗a)⊗H1(M

⊗(m−1)
L⊗a ⊗ L⊗b−1).

The last term is zero by induction hypothesis. Note that the hypothesis required for b
holds. Hence it suffices to show that α is surjective.

In order to show that α is surjective we will use Lemma 2.4 and first consider the following

α1 : H0(M
⊗(m−1)
L⊗a ⊗ Lb−1)⊗H0(L)→ H0(M

⊗(m−1)
L⊗a ⊗ L⊗b).
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By Lemma 2.5, this map surjects if Hj(M
⊗(m−1)
L⊗a ⊗ Lb−1−j) = 0 for j = 1, . . . , d. Since

b−1 > m−1 +d, the required vanishing is clear from induction hypothesis applied to m−1.

Now consider the map:

α2 : H0(M
⊗(m−1)
L⊗a ⊗ Lb)⊗H0(L)→ H0(M

⊗(m−1)
L⊗a ⊗ L⊗b+1).

Using Lemma 2.5, as we did for α1, we conclude that α2 is surjective too. Iterating this we
obtain surjectivity of αi for all i and hence α is also surjective.

Finally for i > 1, we have:

H i−1(M
⊗(m−1)
L⊗a ⊗ L⊗a+b−i)→ H i(M⊗m

L⊗a ⊗ L⊗b−i)→ H0(L⊗a)⊗H i(M
⊗(m−1)
L⊗a ⊗ L⊗b−i)

The middle term is zero because the other two are zero by induction.

This completes the proof of the theorem. �

Corollary 4.2. Let X be a flat scheme over Z and let G be a reductive group scheme over
Z acting on X. Suppose that all the hypotheses stated at the beginning of Section 3 hold. Let
L denote the descent to YC of the ample line bundle NC on XC.

Then L⊗a has Np property for a > p+ d.

Proof. By Theorem 2.1, L⊗a has Np property if H1(M⊗m
L⊗a ⊗L⊗an) = 0 for all 1 ≤ m ≤ p+ 1

and n ≥ 1.

We apply Theorem 4.1 with m = 1, . . . , p+ 1 and the required vanishing follows immedi-
ately. For instance, to obtain the result for m = p+ 1 and n = 1, the required inequality to
apply Theorem 4.1 is b > p + 1 + d where b− 1 = a. This is equivalent to a > p + d, which
is precisely our hypothesis. �

We get a stronger result when we assume that the top cohomology of the structure sheaf
OY vanishes.

Corollary 4.3. Let X be a flat scheme over Z and let G be a reductive group scheme over
Z acting on X. Suppose that all the hypotheses stated at the beginning of Section 3 hold. Let
L denote the descent to Y = YC of the ample line bundle NC on XC. Suppose further that
Hd(Y,OY ) = 0.

Then L⊗a has Np property for a ≥ p+ d.

Proof. We argue just as in Corollary 4.2. We need to use a stronger version of Theorem 4.1,
with the hypothesis b ≥ m+d in place of b > m+d. The proof is very similar to the proof of
Theorem 4.1. For instance, in the base case (m = 1), we required vanishing H i(Y,Lb−i) = 0,
for i = 1, . . . , d. For i < d, we apply Theorem 3.2(1). For i = d, we use the hypothesis on
the structure sheaf OY . �
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5. GIT quotients for the action of a finite group on a projective space

Let G be a finite group of order n. Let ρ : G→ GL(V ) be a representation of G over C.
G operates on the projective space X = P(V ) and every line bundle on X is G-linearised.
Let d be the dimension of X.

Note that for every point x ∈ X, the isotropy subgroup Gx of x in G acts trivially on the
fiber of x in OX(n). Hence, by [19, Prop 4.2, Page 83], OX(n) descends to the GIT quotient
Y = G\\Xss

G (OX(n)). Let L denote the descent of OX(n) to Y .

Let x ∈ X. Since G is finite, there is a s ∈ H0(X,OX(1)) such that s(gx) 6= 0 for all
g ∈ G. Let σ =

∏
g∈G g.s. Then σ ∈ H0(X,OX(n))G and σ(x) 6= 0. Hence L is base point

free. Also note that L is ample by Lemma 3.1.

Note that the statement of Theorem 3.2(1) holds in this case. The higher cohomolo-
gies of nonnegative powers of OX(n) are clearly zero and hence the higher cohomologies of
nonnegative powers of L are zero too (cf. [29, Theorem 3.2.a]).

Hence, by the Corollary 4.3, we have the following.

Theorem 5.1. L⊗a has Np property for any a ≥ p+ d.

For p = 0, we deduce the following corollary. This result is new compared to [18] since it
works for every group. This result is also new compared to [13] since the bound on degree is
small.

Corollary 5.2. L⊗d has N0 property.

6. GIT quotients for the action of a maximal torus on the flag variety

For the preliminaries on semisimple algebraic groups, semisimple Lie algebras and root
systems, we refer to [14, 15]. For the preliminaries on Chevalley groups we refer to [28].

Let G be a semisimple Chevalley group over C of rank n. Let T be a maximal torus of
G, B a Borel subgroup of G containing T , which are defined over Z. Let NG(T ) denote the
normaliser of T in G. Let W = NG(T )/T denote the Weyl group of G with respect to T .

We note that G, T,B,W are all defined over Z. Hence the flag variety G/B of all Borel
subgroups of G and Schubert varieties are also defined over Z [28, Page 21]. Note that the
base change of any Schubert variety to Fp is Frobenius split (cf [23, Theorem 2, Page 38] or
[1, Theorem 2.2.5, Page 69]).

We denote by g the Lie algebra of G. We denote by h ⊆ g the Lie algebra of T . Let R
denote the roots of G with respect to T . Let R+ ⊂ R be the set of positive roots with respect
to B. Let S = {α1, α2, · · · , αn} ⊂ R+ denote the set of simple roots with respect to B. Let
〈., .〉 denote the restriction of the Killing form to h. Let α̌i denote the coroot corresponding
to αi. Let $1, $2, · · · , $n denote the fundamental weights corresponding to S.

Let si denote the simple reflection in W corresponding to the simple root αi. For any
subset J of {1, 2, · · · , n}, we denote by WJ the subgroup of W generated by sj, j ∈ J . We
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denote the complement of J in {1, 2, · · · , n} by J c. For each w ∈ W , we choose an element
nw in NG(T ) such that nwT = w. We denote the parabolic subgroup of G containing B
and {nw : w ∈ WJc} by PJ . In particular, we denote the maximal parabolic subgroup of G
generated by B and {nsj ; j 6= i} by Pi.

Let X(B) denote the group of characters of B and let χ ∈ X(B). Then, we have an
action of B on C, namely b.k = χ(b−1)k, b ∈ B, k ∈ C. Consider the equivalence relation
∼ on G × C defined by (gb, b.k) ∼ (g, k), g ∈ G, b ∈ B, k ∈ C. The set of all equivalence
classes is the total space of a line bundle over G/B. We denote this G- linearised line bundle
associated to χ by Lχ.

Let G = SL(n + 1,C). Let J be a subset of {1, 2, · · ·n} and let PJ be the parabolic
subgroup of G corresponding to J . Since G is simply connected, every line bundle on G/PJ
is G-linearised (cf. [19, 3.3, Page 82]).

Let W Jc
be the minimal representatives of elements in W with respect to the subgroup

WJc . For w ∈ W Jc
, let X(w) = BwPJ/PJ ⊂ G/PJ be the Schubert variety corresponding

to w. Note that X(w) is T -stable. Hence restriction of any line bundle on G/PJ to X(w) is
T -linearised.

Let χ be a dominant character of T which is in the root lattice such that 〈χ, αj〉 > 0 for
every j ∈ J . Let w ∈ W Jc

be such that X(w)ssT (Lχ) is nonempty. By [20, Theorem 3.10.a,
Page 758], Lχ descends to the GIT quotient T\\X(w)ssT (Lχ). Let Nχ denote the descent.

Since χ is in the root lattice, by [12, Theorem 2.3], for every x ∈ X(w)ssT (Lχ), there is
a T -invariant section s of Lχ such that s(x) 6= 0. Hence Nχ is base point free. Also Nχ is
ample by Lemma 3.1.

Theorem 6.1. Let Y = T\\X(w)ssT (Lχ) be the GIT quotient of X(w) for the T -linearised
line bundle Lχ on X(w). Let d be the dimension of Y . Let Nχ be the descent of Lχ to Y .
Then N⊗aχ has Np property for a ≥ p+ d.

Proof. This follows from the above discussion and Corollary 4.3. �

Now let X = G/PJ . We apply this theorem to the inverse of the canonical line bundle
KX of X.

Let R+
J denote the set of all positive roots β satisfying β ≥ αj for some j ∈ J . Let χJ be

the sum of all elements in R+
J . Then, by equality (6) in [16, Page 229], we have, K−1X = LχJ

.
Note that 〈χJ , αj〉 > 0 for every j ∈ J . Hence, by [16, Remark 1, Page 232], K−1X is ample.

By using similar arguments as above, K−1X descends to the GIT quotient T\\Xss
T (K−1X ).

Let L denote the descent. Again using similar arguments as above, we see that L is ample
and base point free.

Let d = dim(X)− dim(T ). We have

Corollary 6.2. L⊗a has Np property for a ≥ p+ d.

Remark 6.3. For simple algebraic groups G of types different from An canonical line bundle
of the flag variety G/B does not, in general, descend to the GIT quotient. For instance, if G
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is of type B3, the coefficient of simple root α1 in the expression of 2ρ is 5. By [20, Theorem
3.10.b, Page 758], we see that the canonical line bundle of G/B does not descend to the GIT
quotient T\\(G/B)ssT (L(2ρ)).
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