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Example isn’t another way to teach, it is the only way to
teach.

Albert Einstein





Preface

These notes are, almost, a verbatim reproduction of my lectures on thermal physics,
to the undergraduate students of the Chennai Mathematical Institute, Chennai
during August-November, 2017. Prior to this I have taught thermodynamics and
statistical mechanics in ◦ the University of Hyderabad, Hyderabad from 2006-2015,
◦ the Rajeev Gandhi University for Knowledge Technology (RGUKT) (Video
lectures) 2010, ◦ the School of Basic Sciences, Indian Institute of Technology
Bhubaneswa during January - April 2017 and ◦ Chennai Mathematical Institute,
in the years 2004 and 2005. While preparing this document, I have extensively
drawn from the notes, assignment sheets, tutorial papers, and question papers
generated and distributed to the students of these courses.

Each chapter can be taught in some three to five hours. The material in the
entire document can be covered comfortably in one semester - forty to forty five
hours or so, including one problem - solving session every other week.

A major problem of teaching thermal physics is not about what to teach; it
is about what not to teach. Thermal Physics encompasses, the entire thermody-
namics, and a good part of statistical mechanics. While making this statement,
I am fully aware that strictly thermodynamics does not need any model or any
assumptions about atoms and molecules - that make up matter. Thermodynamics
does not require any help from statistical mechanics; nor does it require help from
any other disciplines.

Thermodynamics is a stand-alone subject, self-contained with a coherent struc-
ture and inner consistency and with concepts that are well defined and well-knit.

One can teach traditional thermodynamics following, for example the book
of Weinreich1 or Callen2 without involving statistical mechanics, stochastic-cum-
kinetic heat or atomic matter. But then in such an approach, a beginner shall most
likely, face huge difficulties. Defining internal energy in terms of adiabatic work is
a bit odd, to say the least. So is describing heat as difference between adiabatic
and actual work; entropy would remain enigmatic when defined in the context of
converting an inexact differential to an exact one; a beginner is likely get more
puzzled than wise if thermodynamic is taught this way3.

1 Weinreich, Fundamental Thermodynamics, Addison-Wesley (1968)
2 H B Callen, Thermodynamics, John wiley (1960)
3 It calls for a certain maturity, a deep knowledge, and a love for historical and traditional approach,
to appreciate, and enjoy thermodynamics in its pure form.
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Thermodynamics peppered with a bit of statistical mechanics, kinetic heat and
atomic matter, is a different ball-game altogether. The subject wold become know-
able, and easily at that; the subject would become transparent and even a bit more
interesting.

I would take the attitude that the notion of internal energy becomes transparent
when it is taught invoking atoms, their properties and their interactions; entropy
is best described and its tendency to increase, is best understood by invoking its
statistical moorings. All said and done, is isn’t that a macroscopic system chooses
that value of its macroscopic property, which is overwhelmingly most probable -
the one that has maximum entropy ?

Hence bringing in a little bit of statistical mechanics right at the beginning of
teaching thermodynamics would be very helpful. But then we should be careful to
keep it to a bare minimum, lest statistical mechanics should push thermodynamics
to its appendix-pages. I think I have maintained this balance in these lecture notes.

I have chosen to publish what I taught as lecture notes rather than a book. A
book would demand a reasonably complete discussion of various issues and call for
some serious efforts toward tying-up of all loose ends. Such problems are not there
for lecture notes. You simply write up what you teach, and the way you teach;
nothing more; and nothing less.

Leave it to the readers to complete the narrative you have initiated in the lecture
notes; and they can do it by consulting other books and articles. To facilitate such
an enterprise I have listed several books and articles, at the end of the first chapter.
The list, I must admit, is, by no means, exhaustive. I have picked up for listing,
the books I have studied and the ones that caught my fancy.

A reasonably good number of worked examples, and a set of practice problems,
are included in separate sections. These are drawn mostly from other books. Where
ever I remember, I have cited the sources.

The emphasis is on conceptual issues and on learning thermal physics by exam-
ples. I have made extensive use of toy-problems for illustrating important concepts.

I hope these lecture notes on Thermal Physics make one more useful addition
to your bookshelf. If you find any mistakes, or find any portions that lack clarity,
and if you have suggestions to improve the readability, please tell me4. I shall make
use of your comments and suggestions while preparing subsequent edition(s) : I
am hoping that there would be a demand for, atleast, one more edition !

Chennai Mathematical Institute, K. P. N.

Chennai, Tamilnadu, India
December, 2017

4 at k.p.n.murthy@gmail.com
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1. LECTURE 1

OPENING REMARKS

1.1 Nature of Heat

Thermodynamics deals with heat and work - two processes by which a system
transacts energy with its surroundings or with another system. By touching we
can tell a hot body from a hotter body; we can tell a biting cold metal knob from
the warm comfort of a wooden door5 on a winter morning. When a hot body comes
into contact with a cold body, we often observe, it is the hot body which cools down
and the cold body which warms up. Energy flows, naturally and spontaneously,
from hot to cold and not and never the other way around6. Heat 7 is a process
by which energy flows. Once the two bodies become equally warm, the flow stops.
Thermal equilibrium obtains. Thus, an empirical notion of thermal equilibrium
should have been known to man a long time ago.

1.2 Nature of Work

Coming to the notion of work, we observe that when an object moves against an
opposing force, work is done. When you pull water up, from a well, against gravity,
you do work. If you want to push a car against the opposing friction, you must do

5 Incidentally, the door knob, the wooden door, and the cold surrounding atmosphere have been in
contact with each other for so long they should have come into thermal equilibrium. That means their
temperatures should be the same. But then when you touch the metal knob, you feel the sharp chill;
and not so when you touch the wooden door. Why ? I am leaving it to you to figure out the answer.

6 at least we have not seen it yet!
7 What is heat ? I don’t think we know it as yet, completely. We mistook heat for a substance of
combustion and called it phlogiston in the seventeenth century; much later we mistook it for an
invisible fluid and called it calorie . Now we recognize, within the scope of thermodynamics, that
heat, like work, is a process by which energy is transacted. I like the analogy of J. S. Dugdale, Entropy
and its Physical Meaning, Taylor and Francis (1996)p.21 : Heat and work are like cheques and drafts
you use to transact (deposit or draw) money in your bank-account. Money is like energy. It is absurd
to ask how much of cheques are there in your account; it is equally absurd to ask how much of heat is
there in an object. What resides in your account is money; what resides in an object is energy. Only
at the time of transaction we need to specify whether the transaction occurs by heat or by work.

However, in statistical mechanics, we continuously endeavour to draw the elusive microscopic pic-
ture of heat and try to discover where and how it is buried in the phase space trajectories of some
1023 or more particles; we can not compute these trajectories; not just because they are obscenely
large in number; but also because they are inherently unpredictable due to sensitive dependence on
initial conditions. It is in this arena of phase space where dynamical trajectories repel / attract each
other, we need to look for a meaning of heat. More on theses interesting issues later if time permits.
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work. When you stretch a rubber band against the opposing entropic tension you
do work. When a fat man climbs up the stairs against gravity, he does work; he
does more work than what a not-so-fat man does. Of course in a free fall, you do
no work - you are not opposing gravity - though you will get hurt, for sure, when
you hit the ground!

Sir Isaac Newton (1643 - 1727) told us how to compute work : the dot product of
force and displacement. In thermodynamics we compute work employing pressure
and change of volume : Force divided by area is pressure; therefore pressure times
volume-change is work. Pressure is something we became familiar8 with, long time
ago.
−P dV = d̄ W is the work done9 in an infinitesimal expansion by dV at constant
pressure P . Do not read d̄ W as ‘ change of work ’ , sinceW is not a property of
the system. To put it mathematically, d̄ W is not an exact differential. To remind
us of this I have decorated d with a bar. d̄ W should be taken as small work, done
in an infinitesimal change of volume dV . Volume V is a property of the system;
dV is an exact differential.

1.2.1 Sign Convention for Work Done

The minus sign in the expression d̄ W = −PdV , is there by convention. When
a system does work, its energy decreases; hence work done by the system is taken
as negative. When you do work on a system its energy increases. Hence work done
on a system is taken as positive. Physicists and chemists employ this convention.
Engineers don’t; they take work done by the system as positive. Keep this in mind
while reading books on thermodynamics written for engineers or by engineers; e.g.
the beautiful little book of H. C. Van Ness10 based on his lectures to the engineering
students of Rensselaer polytechnic institute in the spring term of 1968.

1.2.2 Other Kinds of Work

What we have considered above is the pressure - volume work, relevant for a
system of compressible fluid. In general, any process by which energy is transacted
between the system and its surroundings, other than heat, is called work.

8 Galileo Galilei (1560-1642) knew of atmospheric pressure and knew that it can stand thirty four feet
of water. A few years later, his student Evangelista Torricelli (1608 - 1647) correctly surmised that
mercury, fourteen times heavier, would rise in the tube only upto thirty inches. He demonstrated it
experimentally. Blaise Pascal (1623 - 1662) was quick to point out that Torricelli’s reasoning would
imply that the air pressure at the top of mountain should be less. This was verified experimentally
in the year 1648. Daniel Gabriel Fahreinheit (1686 - 1736) invented mercury thermometer and the
temperature scale named after him. Andres Celcius (1701 - 1744) invented the centigrade scale of
temperature. Robert Boyle (1627 -1691) conducted numerous experiments and showed that the prod-
uct of pressure and volume of a given amount of air remains constant if the temperature is kept
constant. Boyle modelled air as a collection of tiny springs that resisted compression (which explains
air pressure); the springs expand and the air occupies fully the available volume.

9 The formula d̄ W = −PdV holds good only for a quasi static reversible process. What is a quasi
static reversible process ? I shall answer this important question later.

10 H. C. Van Ness, Understanding Thermodynamics, Dover (1969)
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Adjusting the tension in a metallic wire in a musical instrument like Veena
or violin for purpose of tuning, is something we often observe. When you stretch
the string by an infinitesimal length of dl, reversibly, against the opposing linear
tension F , the work done equals F dl. When dl is positive, work is done on the
system; hence the expression for work is consistent with our sign convention.

The surface tension, σ, in a thin film (like that in a soap bubble or in a mem-
brane) opposes any attempt to increase its area. If the surface is stretched by an
infinitesimal area dA, by a reversible process, the work done is σ dA.

Similarly we can talk of magnetic work done on a paramagnet or diamagnet,
given byB dM, whereB is the applied magnetic field andM , the magnetization.

When you stretch a rubber band, you do work against an opposing force which
is of entropic origin. We shall see more of thermodynamics of rubber elasticity
later, see Lecture Notes - 6.

In a dielectric material the work done is given by E dP , where E is the applied
electric field, and P is the dipole moment.

1.3 Equality of Temperature ⇒ Thermal Equilibrium

We saw of thermal equilibrium that is established when two systems are brought
into thermal contact with each other. When in thermal equilibrium, energy does
not flow by heat. Is it possible to tell of thermal equilibrium without bringing
the two systems into thermal contact with each other ? The answer is ”yes”. This
brings us to the most important concept in thermodynamics, namely temperature.

Measure the temperatures of the two systems. If they are the same, we can say
the systems shall be in thermal equilibrium if we were to bring them into thermal
contact with each other. The emergence of an empirical notion of temperature is a
giant step in the development of thermodynamics : Equality of temperature implies
thermal equilibrium11. Though temperature is one of the early concepts to enter
into thermodynamics, it remains the most difficult to define and to comprehend.
A simple and correct definition : temperature is what a thermometer measures !

We also talk of mechanical equilibrium signalled by equality of pressure and
diffusional equilibrium established by equality of chemical potential.

11 Thermal Equilibrium : Equivalence Relation Thermal equilibrium is a binary relation defined on
a set of thermal objects. The object A is in thermal equilibrium with B. Let us express it symbolically
: A R B. First we notice that this relation is reflexive : A R A. In other words A is in thermal
equilibrium with itself. Then we notice that the relation is symmetric : A R B ⇒ B R A. The
statement that A is in thermal equilibrium with B implies that B is in thermal equilibrium with A.
Then comes the third important empirical observation : the relation is transitive. A R B and B R C
imply A R C. If A is thermal equilibrium with B, and B is in thermal equilibrium with C, then A
is in thermal equilibrium with C. If a binary relation is reflexive, symmetric and transitive, we call
it an equivalence relation. We can segregate all thermal objects of a set into mutually exclusive and
exhaustive sub sets called equivalence classes. All elements of an equivalence class share a common
property. We name that shared property as temperature. Thus, each equivalence class is characterized
by a distinct empirical temperature.
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1.4 Extensive and Intensive Thermodynamic Properties

Temperature, pressure, and chemical potential are intensive thermodynamic prop-
erties. We also have extensive thermodynamic variables like energy, volume, en-
tropy etc. In general for a given system, we can write a thermodynamic property
as a function of several other thermodynamic properties.

1.4.1 Fundamental Equation

For example, considering an isolated system, we can express the internal energy
U as a function of entropy S, volume V and number of molecules N : U ≡
U(S, V,N). Such relations, exclusively amongst the extensive properties of a
system, are called fundamental equations. The adjective ’fundamental’ is there for
a good reason : a fundamental relation contains complete information about a
thermodynamic system.

1.4.2 Equations of State

We also have equations of state that expresses an intensive property as a function
of extensive properties. The most familiar equation of state is that for an ideal
gas, and it reads as

P (U,V ) =
2

3

U

V
.

In a more familiar form12 it reads as

PV = NkBT,

where N is the number of molecules, and kB = 1.38066 × 10−23 j k−1, the
Boltzmann constant or

PV = nRT,

where n denotes the number of moles and R = 8.3145 j k−1 mol−1, is the
universal gas constant. This is also known as ideal gas law 13. A single equation of

12 PV = (2/3)U ; U = 3NkBT/2 ⇒ PV = NkBT = nRT
13 Bernouilli and the Ideal Gas Law : I must tell you of a beautiful derivation of the ideal gas law

by Daniel Bernoulli (1700-1782). It goes as follows. Bernoulli speculated air to be made of spherical
molecules; they are like billiard balls; these billiard ball molecules are all the time in motion, colliding
with each other and with the walls of the container. When a billiard ball bounces off the wall, it
transmits a certain momentum. Bernoulli imagined it as pressure. It makes sense.

First consider air contained in a cube of side one meter. There is a certain amount of pressure
felt by the wall. Now imagine the cube length to be doubled with out changing the speeds of the
molecule. In modern language this assumption is the same as keeping the temperature constant. The
momentum transferred per collision remains the same. However since each billiard ball molecule has to
travel twice the distance between two successive collisions with the wall, the force on the wall should
be smaller by a factor of two.

Also pressure is force per unit area. The area of the side of the cube is four times more now. Hence
the pressure should be less by a further factor of four. Taking into account both these factors, we find
the pressure should be eight times less. But then, the volume of cube is eight times more. Bernoulli
concluded that the product of pressure and volume must be a constant when there is no change in
the molecular speeds - a brilliant argument indeed, based on simple scaling ideas.
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state does not contain all information about the system. We need several equations
of state to complete the thermodynamic picture.

Let us say x, y, z are extensive variables and η, µ, ν are intensive variables of
a system. Let x ≡ x(y, z, η, µ). We say the property x is extensive if it is a first
order homogeneous function14 of its extensive variables :

x(λy, λz, η, µ) = λ x(y, z, η, µ)

for any real number λ > 0. Let µ ≡ µ(x, y, η, ν). We say µ is intensive if it is
zero-th order homogeneous function of its extensive variables :

µ(λx, λy, η, ν) = µ(x, y, η, ν).

What I am saying is simple. If you have two bottles of water each of volume V
liters, entropy S units (joules/kelvin), energy U joules, temperature T kelvin, and
density ρ kilogram per cubic meter, and if you empty the bottles on to a vessel,
then the vessel shall contain 2V liters of water (Volume is extensive), having 2S
units of entropy (entropy is extensive), 2U joules of energy(energy is extensive) at
T kelvin (temperature is intensive) and density ρ kilogram per cubic meter (density
is intensive). An extensive property adds up; an intensive property15 doesn’t.

1.5 Then Came Sadi Carnot

Systematic development of thermodynamics as a distinct discipline of inquiry
started when heat engines - that extract work from heat - came into existence
during industrial revolution that started in the second half of eighteenth century.
Lazare Nicolas Marguerite Count Carnot a French military engineer, was wor-
ried that the French steam engines were invariably less efficient than the English
ones. It hurt his pride. He called his student son Sadi Carnot and asked him to
investigate.

The very fact that work could come out of heat in a steam engine, came as a big
surprise to Nicolas Léonard Sadi Carnot (1796 - 1832). It is work which dissipates
into heat by friction, in nature : when you apply the breaks, the car stops because
of friction; also because of friction, the break line heats up. However, the heat
generated shall never assemble back and move the car. For Sadi Carnot, what the
heat engine does is something unusual and very unnatural.

14 In general if f(λx, λy, λz) = λnf(x, y, z) we say that f is n-th order homogeneous function of its
variables x, y, and, z.

15 a property which is the ratio of two extensive properties is automatically intensive. For example,
consider density of a substance; it is the ratio of the extensive properties , mass and volume, of
the substance. Density hence, is an intensive property. Molar specific heat is the ratio of (extensive)
energy (required to raise the temperature by one degree kelvin) and number of moles (an extensive
quantity) of the substance; molar specific heat is an intensive property. Think of other examples. We
have temperature, pressure, and chemical potential which are intrinsically intensive.
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1.5.1 Birth of Thermodynamics

Carnot16 imagined an heat engine to be a simple mill wheel. Water from a height
falls on the mill wheel and it rotates. Similarly when q calories of heat falls from
temperature T1 to a lower temperature T2 it produces movement. If it were to fall
to absolute zero, then the whole of heat would have been converted to work. But
since it falls to T2 > 0, only the fraction (T1 − T2)/(T1 − 0) of q calories gets
converted to work. Hence the efficiency of a heat engine can, at best, be

η =
q

w
= 1 − T2

T1

.

Sadi Carnot concluded that just having a source of heat ‘ is not sufficient to give
birth to the impelling power. It is necessary that there should be cold; without
it heat is useless. ’We need both - the hot boiler, the heat source and the cold
radiator, the heat sink - to extract work from heat. Carnot announced his findings
in the year 1824, and was born the subject of thermodynamics.

1.6 End Remarks

Nobody took notice of Carnot’s work for over twenty years. The most beautiful
law of theoretical physics - the Second Law of thermodynamics, had arrived and
there was no one to welcome it ! It was Benoit Paul Émily Clapeyron (1799 -
1864) who gave a mathematical scaffolding17 to Carnot’s work and brought it to
the attention of Rudolf Julius Emanuel Clausius (1822 1888) and Lord Kelvin né
William Thomson (1824 - 1907). Clausius felt that Carnot’s finding was correct
and intuition told him that it is of great fundamental significance. Initially he
called it Carnot’s principle and later elevated to the status of a law - the second
law of thermodynamics.

Clausius however rejected Carnot’s derivation; justifiably so; for, Carnot’s
derivation was based on caloric theory; and caloric theory has been overthrown18

16 Nicolaus Léonard Sadi Carnot, Reflexions sur la puissance motrice du feu er sur les machines propres
á developer cette puissance, Paris (1824); English translation : Sadi Carnot, Reflections on the motive
power of fire and on machines fitted to develop that power, in J Kestin (Editor) The Second Law of
Thermodynamics, Dowden, Hutchinson and Stroudsburg, PA (1976)p.16

17 It was Capeyron who gave the Carnot cycle, that we all are familiar with since our school days,
consisting of an isothermal expansion followed by an adiabatic expansion, isothermal compression
and an adiabatic compression.

18 Count Rumford, né Benjamin Thompson (1753 - 1814), Julius von Mayer (1814 - 1878) and James
Prescott Joule (1818 - 1889) discovered that heat is equivalent to work; like work, heat is a way by
which thermodynamic systems transact energy amongst themselves or with their surroundings. The
change in internal energy of a system can be exactly accounted for, by the energy transacted by heat
and work :

dU = d̄ Q + d̄ W.

This is known as the first law of thermodynamics. Thermodynamics has grown in a topsyturvy fashion.
The Second law came first, when Sadi Carnot announced that a heat engine can not convert heat
completely to work, whereas work can be completed converted into heat. There is an asymmetry
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in the intervening years since the death of Sadi Carnot. When he was becoming
familiar with Carnot’s work, Clausius knew that heat, like work, was a process by
which energy is transacted. To derive Carnot’s principle Clausius discovered in the
year 1865 a new thermodynamic property called entropy. I shall tell you of these
exciting developments in the next lecture. For a beautiful, and an insightful ac-
count of the work of Sadi and Rudolf Clausius, see the book19 written by Michael
Guillen.

Before I proceed further, let me give you a list of books and articles which you
will find useful in your study of thermodynamics. I have listed several books. Each
author has his own narrative to make, his very special idiosyncrasies, and his own
pet stories to tell. My learning of thermodynamics has been influenced by several
of the books and articles listed here and it will reflect in my lectures. But then,
whenever I remember, I shall tell you what material I have picked up and from
where.

I recommend you glance through the books and pick up one or two that suits
your way of learning, for further serious study. It should also be quite fine if you
simply listen to what I say in the class, think it over later, ask questions and hold
discussions amongst yourselves and with me during and outside class hours, read
the notes that I shall give you from time to time, and work out the problems I
give in the class and in the assignment sheets.

1.7 Books

• H C Van Ness, Understanding Thermodynamics, Dover (1969). This is an
awesome book; easy to read and very insightful. In particular, I enjoyed reading
the first chapter on the first law of thermodynamics, the second on reversibility,
and the fifth and sixth on the Second law. My only complaint is that Van Ness
employs British Thermal Units. Another minor point : Van Ness takes work
done by the system as positive and that done on the system as negative. Engi-
neers always do this. Physicists and chemists employ the opposite convention.
For them the sign coincides with the sign of change of internal energy caused
by the work process. If the transaction leaves the system with higher energy,
work done is positive; if it results in lowering of energy, work done is negative.

• H B Callen, Thermodynamics, John Wiley (1960). Callen sets the standard
for how a text book should be. This book has influenced generations of teach-
ers and students alike, all over the world. The book avoids all the pitfalls in

in nature. Twenty years later came the first law of thermodynamics which talks of conservation of
energy. Then came the third law which talks of equilibrium system at absolute zero. It was discovered
by Walther Nernst (1864-1941) in the first quarter of twentieth century. The zeroth law which talks
about thermal equilibrium, came much later and the christening was done by R H Fowler(1899 - 1944)
when he was discussing the 1935 text of Meghnad Saha (1893 - 1956) and B N Srivastava. We shall
see, in detail, about these four laws of thermodynamics.

19 Michael Guillen, An Unprofitable Experience : Rudolf Clausius and the Second Law of Thermodynam-
ics, in Five Equations that Changed the World, Hyperion (1995)p.165



8 1. LECTURE 1

the historical development of thermodynamics by introducing a postulational
formulation.

• H B Callen, Thermodynamics and an Introduction to thermostatistics, Second
Edition, Wiley, India (2005). Another classic from H B Callen. He has intro-
duced statistical mechanics without undermining the beauty and the coherent
structure of thermodynamics. In fact, the statistical mechanics he presents,
enhances the beauty of thermodynamics.
The simple toy problem with a red die (the closed system) and two white dice
(the heat reservoir), and restricting the sum to a fixed number (conservation
of total energy) motivates beautifully the canonical ensemble formalism.
The pre-gas model introduced for explaining grand canonical ensemble of
fermions and bosons is simply superb. I also enjoyed the discussions on the
subtle mechanism underlying Bose condensation. I can go on listing several
such gems scattered in Callen’s narrative. The book is full of beautiful insights.
A relatively inexpensive, Wiley-student edition of the book is available in the
Indian market. Buy your copy now !

• Gabriel Weinreich, Fundamental Thermodynamics, Addison Wesley (1968).
Weinreich is eminently original; has a distinctive style. Perhaps you will feel
uneasy when you read this book for the first time. But very soon, you will
get used to Weireich’s idiosyncracies; and you would love this book. This book
is out of print. However a copy is available with Prof H S Mani, Chennai
Mathematical Institute, Chennai.

• N D Hari Dass, Principles of Thermodynamics, CRC Press, Taylor and Fran-
cis (2014). A beautiful book on thermodynamics; perhaps the most recent one
to arrive at the market place.
Hari Dass is a great story teller. He has the magic to convert prosaic things into
exciting objects. If you are a beginner and plan to learn thermodynamics, I will
recommend this book to you. There is pedagogy; titbits of history scattered all
through; and, no dearth of rigour. You will learn thermodynamics correctly.
To a teacher or an expert, I shall recommend this book whole-heartedly. I
am sure he will find something new, something interesting, and something
surprising, in every chapter. He will get useful hints and substantial material
which he can make use of while teaching the subject.
The only complaint I have is, the book gives a feeling of finality : the last
word on thermodynamics has been said. I think we are still struggling to know
what heat is. Thermodynamics tells us that heat is a process by which energy is
transacted amongst macroscopic bodies. This helps; for, then, we shall not mis-
take heat for a substance that resides in a system or a property of the system20.
But then this statement of heat as an instrument for energy transfer, does not
say anything about what exactly it is. Perhaps heat is something hidden, some-
where in the 1024 or so of trajectories; you can not compute these trajectories

20 Our fore-fathers mistook heat for Phlogiston, residing in the flames or a Caloric fluid residing in
thermal objects.
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: not just because the numbers are obscenely large; but because their dynamics
is inherently unpredictable due to sensitive dependence on initial conditions.
It is perhaps here we have to look for a meaning of heat. I would like to hear
of these in the words of Hari Dass, perhaps in the next edition of his book !

• Evelyn Guha, Basic Thermodynamics, Narosa (2000). Guha makes an ex-
tremely simple and beautiful exposition of traditional thermodynamics. The
book contains an excellent set of worked-out examples and a large collection of
well-chiselled problems. In particular I liked the chapter on the consequences
of the Second law. I was also delighted to see a simple and beautiful exposi-
tion of the Carathéodary formulation based on the existence of adiabatically
inaccessible states in the neighbourhood of every equilibrium thermodynamic
state.

• C B P Finn, Thermal Physics, Nelson Thornes (2001). Beautiful; concise;
develops thermodynamics from first principles. Finn brings out the elegance
and the raw power of thermodynamics.

• Max Planck, Treatise on Thermodynamics, Third revised edition, Dover; first
published in the year 1897. Translated from the seventh German edition (1922).
A carefully scripted master piece; emphasizes chemical equilibrium. I do not
think any body can explain irreversibility as clearly as Max Planck does. If you
think the third law of thermodynamics is irrelevant, then read the last chapter;
you will change your mind.

• E Fermi, Thermodynamics, Dover (1936). A great book from a great mas-
ter; concise; the first four chapters (on thermodynamic systems, first law, the
Second law, and entropy) are simply superb. I also enjoyed the parts covering
Clapeyron and van der Waal equations.

• J S Dugdale, Entropy and its physical meaning, Taylor and Francis (1998).
An amazing book. Dugdale de-mystifies entropy. This book is not just about
entropy alone, as the name would suggest. It teaches you thermodynamics and
statistical mechanics. A book that cleverly avoids unnecessary rigour. The anal-
ogy Dudgale gives for explaining internal energy, and the chapter on entropy
in irreversible changes are beautiful. I shall make abundant use of this book in
my lectures.

• David Goodstein, States of Matter, Dover (2002). A delightful and enter-
taining text. You are reminded of Feynman’s writing when you read this book.
The discussion on dimensional analysis is excellent. This book is a must in your
bookshelf.

• F Rief, Fundamentals of statistical and thermal physics, McGraw-Hill (1965).
One of the best text books on statistical thermodynamics. Felix Rief develops
thermal physics entirely in the vocabulary of statistical mechanics. As a result
after reading this book, you will get an uneasy feeling that the subject of
thermodynamics has been relegated to the status of an uninteresting appendix
to statistical mechanics.
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My recommendation : read this book for learning statistical - thermodynamics;
then read Callen, or Van Ness or Fermi for learning thermodynamics. Then you
will certainly fall in love with both statistical mechanics and thermodynamics
separately!

• Joon Chang Lee, Thermal physics - Entropy and Free Energies, World Sci-
entific (2002). Joon Chang Lee presents statistical thermodynamics in an un-
orthodox and distinctly original style. In particular I like the discussions on
Landau free energy. The presentation is so simple and so beautiful that you do
not notice that the book is written in an awful English; almost at all places,
the language is flawed. But then you hear very clearly what Joon Chang Lee
wants to tell you; and what you hear is beautiful. You get a strange feeling
that perhaps flawed English communicates better than chaste, grammatically
correct and poetic English !

• James P Sethna, Entropy, Order Parameters, and Complexity, Clarendon
Press, Oxford (2008) James Sethna covers an astonishingly wide range of
modern applications; a book, useful not only to physicists, but also to biolo-
gists, engineers, and sociologists. I find exercises and footnotes very interesting,
often more interesting than the main text! The exercises can be converted into
exciting projects.

• C Kittel, and H Krömer, Thermal physics, W H Freeman (1980). A good
book; somewhat terse. I liked the parts dealing with entropy, and Boltzmann
weight; contains a good collection of examples.

• Daniel V Schröder, An Introduction to Thermal Physics, Pearson (2000).
Schröder has excellent writing skills. The book reads well. Contains plenty of
examples. Somewhat idiosyncratic.

• M W Zamansky, and R H Dittman, Heat and Thermodynamics, an inter-

mediate textbook, Sixth edition, McGraw-Hill (1981). A good and dependable
book for a first course in thermodynamics.

• R Shanthini, Thermodynamics for the Beginners, Science Education Unit,
University of Peredeniya (2009). Student-friendly. Shanthini has anticipated
several questions that would arise in the mind of an oriental student when he
or she learns thermodynamics for the first time. The book has a good collection
of worked out examples. A bit heavy on heat engines.

• Dilip Kondepudi and Ilya Prigogine, Modern Thermodynamics : From heat

engines to Dissipative Structures, John Wiley (1998). Classical, statistical, and
non equilibrium thermodynamics are woven into a single fabric. This book tells
us learning thermodynamics can be fun. Contains lots of interesting tit-bits on
history. Deserves a better cover design; the present one looks cheap.
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1.8 Extra Reading : Books

• Nicolaus Sadi Carnot, Reflexions sur la puissance motrice du feu et sur les

machines propres á déveloper cette puissance, Paris (1824); for English transla-
tion see Sadi carnot, Reflections on the motive power of fire and on machines

fitted to develop that power, in J Kestin (Ed.) The second law of thermody-

namics, Dowden, Hutchinson and Ross, Stroudsburg, PA (1976)p.16
• J Kestin (Ed.), The second law of thermodynamics, Dowden, Hutchinson and
Ross (1976)

• P Atkin, The Second Law, W H Freeman and Co. (1984)
• G Venkataraman, A hot story, Universities Press (1992)
• Michael Guillen, An unprofitable experience : Rudolf Clausius and the sec-

ond law of thermodynamics p.165, in Five Equations that Changed the World,
Hyperion (1995)

• P Atkins, Four Laws that drive the Universe, Oxford university Press (2007).
• Christopher J T Lewis, Heat and Thermodynamics : A Historical Perspec-

tive, First Indian Edition, Pentagon Press (2009)
• S G Brush, Kinetic theory Vol. 1 : The nature of gases and of heat, Pergamon
(1965) Vol. 2 : Irreversible Processes, Pergamon (1966)

• S G Brush, The kind of motion we call heat, Book 1 : Physics and the Atomists

Book 2 : Statistical Physics and Irreversible Processes, North Holland Pub.
(1976)

• I Prigogine, From Being to Becoming, Freeman, San Francisci (1980)
• K P N Murthy, Excursions in thermodynamics and statistical mechanics,
Universities Press (2009)

1.9 Extra Reading : Papers

• K K Darrow, The concept of entropy, American Journal of Physics 12, 183
(1944).

• M C Mackay, The dynamical origin of increasing entropy, Rev. Mod. Phys.
61, 981 (1989).

• T Rothman, The evolution of entropy,pp.75-108, in Science á la mode : phys-

ical fashions and fictions Princeton University Press (1989)
• Ralph Baierlein, Entropy and the second law : A pedagogical alternative,
American Journal of Physics 62, 15 (1994)

• G. Cook, and R H Dickerson, Understanding the chemical potential, Amer-
ican Journal of Physics 63, 738 (1995).

• K. P. N. Murthy, Ludwig Boltzmann, Transport Equation and the Second

Law, arXiv: cond-mat/0601566 (1996)
• Daniel F Styer, Insight into entropy, American Journal of Physics 68, 1090
(2000)
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• T P Suresh, Lisha Damodaran, and K M Udayanandan, Gibbs’ Paradox

: Mixing and Non-Mixing Potentials, Physics Education 32(3), Article No. 4
(2016).

• B J Cherayil, Entropy and the direction of natural change, Resonance 6, 82
(2001)

• J K Bhattacharya, á la Boltzmann, Resonance 6, 19 (2001)
• J Srinivasan, Sadi and the second law of thermodynamics, Resonance 6 42
(2001)

• D C Shoepf, A statistical development of entropy for introductory physics

course, American Journal of Physics 70, 128 (2002).
• K P N Murthy, Josiah Willard Gibbs and his Ensembles Resonancs 12, 12
(2012).
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U AND S IN STATISTICAL MECHANICS AND THERMODYNAMICS

2.1 Opening Remarks

We have acquired some nodding acquaintance with terms like internal energy, U
and entropy, S in the previous lectures. We already know that U and S are
extensive properties of a macroscopic system. It is time, we get to know more of
these two important properties.

In thermodynamics the nature of internal energy and that of entropy are sort of
shrouded in a bit of a mystery. Of course I must say these quantities are defined,
in thermodynamics, unambiguously and rigorously; but they remain abstract. Let
us take internal energy. Thermodynamics does not help us visualize this quantity :
What is it ? Is it kinetic ? Is it potential ? Where does it reside inside the material ?
and how ? The story is the same with entropy : What is the nature of entropy ?
Can I understand this property of a macroscopic system like I ‘ understand ’ other
properties e.g. volume, pressure, density, temperature, etc. ? why should entropy
always increase in a spontaneous process ? How do I form a mental picture of
entropy ?

Hence, first, I shall tell you of these quantities very briefly, in the language
of statistical mechanics. Hopefully, this will help you get a feel for internal en-
ergy and entropy, and to some extend comprehend what they are and why they
behave the way they do. Then I shall tell, how these properties are defined in
thermodynamics21.

2.2 Internal Energy : Statistical Mechanics

Matter is made up of atoms and molecules. When two molecules are far apart they
move about independently; they do not interact with each other. When they come
close, they start attracting each other. The attraction can come about for example
due to dipole-dipole interaction : when the centre of mass of the cloud of electrons
and that of the positively charged core nucleus of a neutral atom, do not coincide,
then a dipole emerges. Two dipoles attract each other.

21 to be precise, in thermodynamics, we shall define change in internal energy, ∆U and change in entropy,
∆S, and not absolute energy or absolute entropy.
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When you try to push the two molecules closer, they start repelling each other.
We know for example, the distance between the centres of two hard spheres can
not be smaller than the sum of their radii. We call it hard core repulsion. But
atoms are more like soft balls; electron clouds around each nucleus can overlap to
some extend, when squeezed; their centres can come a bit closer than the sum of
their radii, but not too close : the repulsion increases rather steeply.

2.2.1 Lennard-Jones 6-12 Potential

A good model for describing such interactions described above, between two atoms,
is given by Lennard-Jones potential, also known as 6 − 12 potential. It is given
by

V(r) = 4ǫ

[(
σ

r

)12

−
(
σ

r

)6
]

(2.1)

The potential is depicted in the Fig. (2.2.1), below.
The symbol r denotes the distance between two molecules. For plotting the

graph, we have taken σ = 0.1 and ǫ = −3.5. V(r = σ) = 0. The depth of
the potential well is ǫ. The potential is minimum at r = r⋆ = 21/6σ. When the
atoms are separated by a distance of r⋆ there is no force between them. The atoms
attract each other when their separated by distance more than r⋆. If they come
closer than r⋆, they start repelling each other.
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Fig. 2.1. Lennard-Jones potential

Consider all possible distinct pairs of atoms which are sufficiently close to each
other; each pair carries some tiny potential energy. Since there are a large number
of such pairs in a substance, the potential energy adds up to a substantial value.

The atoms are also moving all the time in gases and liquids and vibrating around
their mean positions in a crystalline solid. There is kinetic energy

∑3
i=1 p

2
i/2m

associated with each atom of mass m and momentum (p1, p2, p3). These tiny
contribution to potential energy and kinetic energy from some 1023 or so of atoms,
add up to a substantial number which we call internal energy.
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2.3 Internal Energy : Thermodynamics

That the physicists and chemists of the yesteryears could at all come up with
a property like internal energy, is amazing. They did not know of atoms and
molecules that make up the object and the kinetic energy and interaction energy
they carry. Hence there was no way they could know how and where does the
internal energy arise and how and where does it reside inside an object.

Of course, they had their own compelling reasons to come up with the notion of
internal energy. The compulsion came from the work of Rumford, Mayer and Joule.
The trio had de-throned the caloric theory and had unambiguously established
that heat is equivalent to work. From careful experiments with a vessel of water
(isolated by adiabatic walls), paddle wheel (to stir the water), and falling weights
(to measure the work done), see figure below, Joule had obtained the mechanical
equivalence of heat : 1 calorie = 4.18 joules.

If we want to take this mechanical equivalence of heat to its logical end, then
we must define heat, completely in terms of work. How do we do this ? We know
that in an adiabatic process22 no energy is transacted by heat. Consider a system
going from one thermodynamic state to the another. If it does this adiabatically a
certain amount of work is done. If it does this by an arbitrary process then also, a
certain amount of work gets done. The difference between these two work values
is heat. Thus heat is adiabatic work done minus actual work done. We
have done the job. We have expressed heat completely in terms of work. Stated
differently we have adiabatic work equals actual work plus heat. Take two points on
the thermodynamic phase diagram. Take the system from one point to the other by
an arbitrary process. Measure the work done (in units of joule) employing falling
weights. Let it beW1. Measure the heat exchanged (in units of calories) by noting
the temperature change and employing the standard calorimetric methods. Express
the heat exchanged in units of joule, employing the calorie to joule conversion
factor. Call it Q1.

Now consider another path between the same two points and calculate the work,
W2 and heat, Q2. In general Q1 6= Q2 and W1 6= W2; But their sum was found
to be invariably the same : Q1+W1 = Q2+W2. What ever may be the path, the
heat and work measured add up to the same quantity, provided the starting point
and the end point of all the paths are the same. Heat plus work is found to be
independent of the path. Hence the sum can be expressed as a difference between
the values of a thermodynamic property at these two points. This observation
provides a neat justification for calling the adiabatic work done in a process, as
change in some property of the system. We name this property as internal energy
of the system and denote it by the symbol U .

Accordingly, take an arbitrary point on a thermodynamic phase diagram. Call
it O. Define a function/property U and assign to it an arbitrary value at the

22 a process that happens in a system which is isolated from the surroundings by a non conducting wall.
Stuff kept inside a thermos flask is a good example of an isolated system.
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Fig. 2.2. Engraving of James Joule’s apparatus for measuring the mechanical equivalence of heat, in
which potential energy from the falling weight on the right is converted into heat through stirring of
water on the left. Source Harper’s New Monthly Magazine, No. 231, August, 1869.

chosen reference point O. Then consider a point A on the phase diagram and an
adiabatic process that takes the system from O to A. Measure23 the work done.
Define

U(A) = U(O) +W
(A)
O→A. (2.2)

In the aboveW
(A)
O→A is the work done in the process that takes the system from O

to A adiabatically. Carry out this exercise for all the points on the thermodynamic
phase plane.

Let us say there exists a point B on the phase diagram which is not acces-
sible adiabatically from O. In that case it is assured the system could go in the
reverse, i.e. from B to O, adiabatically. Then, employing falling weights, make a
measurement of the work done in an adiabatic process from B to O. We can write

U(O) = U(B) +W
(A)
B→O or

U(B) = U(O) −W
(A)
B→A. (2.3)

Thus, you can define U at all points on the phase diagram.
Consider now two points A and B such that you can go from A to B adiabat-

ically. Let W
(A)
A→B denote the work done. Consider an arbitrary thermodynamic

23 Work done is measured as follows. Link the process to a falling weight. Determine by what height the
weight falls during the process. That gives you the work done. Joule actually carried out experiments
with falling weights and measured the work equivalence of heat quite accurately.
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process that takes the system from A to B. Let WA→B be the work done. We

have W
(A)
A→B −WA→B = Q.

In terms of the function U we have U(B) − U(A) = W + Q. The function
or the property denoted by the symbol U is given the name Internal Energy. The
reason for calling it energy is obvious : we have learned in in our school days that
energy is ability to do work.

What is the nature of this property we call internal energy ? What is its ori-
gin ? How and where does it reside in the interior of the object ? We have to
wait for Boltzmann to arrive, formulate statistical mechanics and answer all these
questions. Until then we shall define internal energy in terms of adiabatic work.

Every time we observe a change in the (internal) energy of a system and on each
of these occasions we are able to account for the change in terms of heat and work,
then we can say that energy is conserved24. The idea is to explicitly recognize that
the system and its surroundings are separated by a boundary. Energy enters or
exits through the boundary. When it enters by work, we say the work is positive;
when it enters by heat we say the heat is positive. In the same fashion when energy
exits the system by work we say the work is negative; when it exits the system by
heat we say the heat is negative. There are only two ways - heat and work - by
which such a transaction can take place and we have the law of conservation of
energy expressed in thermodynamics as

∆U = W +Q. (2.4)

I must reiterate that the quantity ∆U in the above is the change in a property of
the system, when you go from an equilibrium thermodynamic state A to another
equilibrium thermodynamic state B. It does not depend on the path taken. It
depends only on the initial and the final states. We can not say of this about the
two quantities W and Q sitting on the right hand side of the above equation.

If the two points A and B are infinitesimally close to each other in the ther-
modynamic phase plane, then ∆U can be expressed as an exact differential dU .
Again, we can not say of this about the other two quantities sitting on the right
hand side of equation (2.4). For an infinitesimal process we write the first law of
thermodynamics as

dU = d̄ Q+ d̄ W. (2.5)

Heat can not be expressed as an exact differential. Heat is not a property of the sys-
tem. Hence we have put a bar on d and we have denoted the small amount of heat
as d̄ Q. Do not read d̄ Q as change of Q. It is absurd. Q is not a thermodynamic
state variable. These observations hold equally good for work as well.

24 I would strongly recommend : read the first chapter of the little book of Van Ness, Understanding
Thermodynamics, Dover (1969) where he talks about a mother, a son, thirty seven sugar cubes, and
a room with two windows one named W and the other Q.
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We have already seen that though d̄ W is not an exact differential the quantity
−d̄ W/P is an exact differential25 called dV . We have d̄ W = −P dV , in an
infinitesimal (quasi-static) reversible process. We can calculate the work done as

WA→B = −
∫ B

A

P dV, (2.6)

The integral is carried out along a pre-specified quasi static reversible path taking
the system from a thermodynamics state A to a thermodynamic state B, on the
P −V phase plane. −1/P is the integrating factor that gives you an exact differ-
ential dV from an in-exact differential d̄ W . The expression d̄ W = −PdV holds
good only for a (quasi static) reversible processes. If the process is not reversible,
then the expression given for work does not hold good.

Thus, in thermodynamics, internal energy is a state function defined for equilib-
rium states of a system; the difference in internal energy between two equilibrium
states is given by the adiabatic work done while going from one of the states to
the other.

2.4 Entropy : Statistical Mechanics

Consider a macroscopic system which can exist in more than one micro states.

• A coin has two sides labeled ”Heads” - H and ”Tails” - T . We say these are
the two (micro) states of the coin : {H, T}.

• Consider a system of two independent fair coins; there are four micro states :
{HH, HT, TH, TT}.

• A system of N independent fair coins has 2N micro states. Each micro state
is a string of N elements; each element is H or T .

• A die has six micro states - the six sides of a cube notched with 1, 2, · · · , 6
dots.

• A point particle is specified by three position coordinates and three momentum
coordinates. At any time it is represented by a point in six dimensional phase
space. We imagine the six dimensional phase space to be made up of tiny six
dimensional cubes. We can take the cube to have a minimum uncertainty 26

volume of h3. Then we count the number of cubes in the phase space region
accessible to the single-particle system. This gives the total the number of micro
states of a single particle.

25 A natural question arises : Is it possible to express d̄ Q also in terms of some exact differential and
some integrating factor ? Rudolf Emmanuel Clausius answered this question in the affirmative and in
doing so he invented a new thermodynamic property called usually denoted by the symbol S. I shall
tell you of this later. Suffice is to say d̄ Q/T = dS

26 We have the uncertainty relation ∆x ∆px ' h, where h denotes the Planck’s constant : h =
6.626176 j s.
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• Consider a system ofN ideal gas molecules confined to a volume V and having
energy E. A string of 6N number - 3N for specifying the positions and 3N
for momenta, represents a micro state. The entire system is specified by a single
point in the 6N dimensional phase space. We can count the number of cubes,
each cube being of volume h3N , required to fill up the phase space volume
accessible to the system. This count gives the number of micro states of the
system. Let us denote this count by Ω̂(E,V,N) and proceed to calculate this
quantity as follows.

First we notice that for spatial coordinates, we have
∫
dq1

∫
dq2

∫
dq3 · · ·

∫
dq3N−2

∫
dq3N−1

∫
dq3N = V N , (2.7)

where the integral over the three positions of each molecule extends over the volume
V of the container.

The energy is given by

E =

3N∑

i=1

p2i
2m

. (2.8)

Since the system is isolated, the energy is a constant. The trajectory of the system
is confined to the surface of a 3N dimensional sphere of radius

√
2mE. For

purpose of counting the micro states, we shall consider the volume of the 3N
dimensional sphere. This brings us to to the issue of determining the volume of
hyper spheres and to this we turn our attention below.

2.4.1 Volume of an N -Dimensional Sphere

The volume of an N - dimensional sphere of radius R is formally given by the integral,

VN(R) =

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN Θ

(

R2 −
N∑

i=1

x2
i

)

, (2.9)

Change the coordinate system from

{xi : i = 1,N} to {yi = xi/R : i = 1, N}.

dxi = Rdyi ∀ i = 1,N ;

Θ

(
R2

[
1 −

N∑

i=1

y2
i

])
= Θ

(
1 −

N∑

i=1

y2
i

)
.

We have,

VN(R) = RN

∫ +∞

−∞

dy1 · · ·

∫ +∞

−∞

dyN Θ

(

1 −
N∑

i=1

y2
i

)

; (2.10)

= VN(R = 1)RN . (2.11)

where VN(R = 1) is the volume of an N - dimensional sphere of radius unity.
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To find the volume of N -dimensional sphere of radius R, we proceed as follows.

VN(R = 1)RN =

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN Θ

(
R2 −

N∑

i=1

x2
i

)
. (2.12)

Differentiate both sides of the above expression with respect to R and get,

NVN(R = 1)RN−1 =

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN δ

(
R2 −

N∑

i=1

x2
i

)
2R. (2.13)

Now, multiply both sides by exp(−R2)dR and integrate over R from 0 to ∞.
Left Hand Side:

LHS = NVN(R = 1)

∫
∞

0

dR exp(−R2)RN−1. (2.14)

Let x = R2; then dx = 2RdR. This gives

dR =
1

2

dx

x1/2
. (2.15)

We get,

LHS = VN(R = 1)
N

2

∫
∞

0

x
N

2
−1 exp(−x)dx,

= VN(R = 1)
N

2
Γ

(
N

2

)
,

= Γ

(
N

2
+ 1

)
VN(R = 1). (2.16)

Right Hand Side :

RHS =

∫
∞

0

dR exp(−R2)

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN δ

(

R2 −
N∑

i=1

x2
i

)

2R;

t = R2 ; dt = 2RdR,

RHS =

∫
∞

0

dt exp(−t)

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN δ

(

t −

N∑

i=1

x2
i

)

,

=

∫ +∞

−∞

dx1 · · ·

∫ +∞

−∞

dxN exp
[
−(x2

1 + x2
2 + · · · x2

N)
]
,

=

[∫
∞

−∞

dx exp(−x2)

]N
= πN/2. (2.17)

Thus we get

VN(R = 1) =
πN/2

Γ
(
N
2

+ 1
) . (2.18)

VN(R) =
πN/2

Γ
(
N
2

+ 1
)RN . (2.19)

What we require is the volume of a thin shell, confined between spheres of radius R and R − ∆R. We

show below that for large N this quantity is the same as the volume of the sphere.
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2.4.2 An N(→ ∞) Dimensional Sphere Lives on its Outer Shell

In the limit of N → ∞, the volume of a thin outer shell tends to the volume of
the whole sphere. This intriguing behaviour is a consequence of the power law.

VN(R) − VN(R−∆R)

VN(R)
=
RN − (R−∆R)N

RN
,

= 1 −
(
1 − ∆R

R

)N

= 1 for N → ∞.(2.20)

Consider the case withR = 1 and∆R = 0.1. The percentage of the total volume
contained in the outermost shell of an N dimensional sphere for N ranging from
1 to 100 is given in the table below.

Table 2.1. Percentage of volume of an N dimensional sphere contained in a thin outer shell between
R = 0.90 and 1

N
VN (R = 1) − VN (R = 0.9)

VN (R = 1)
× 100

1 10.000%
2 19.000%
3 27.000%
4 34.000%
5 41.000%
6 47.000%
7 52.000%

N
VN (R = 1) − VN (R = 0.9)

VN (R = 1)
× 100

8 57.000%
9 61.000%
10 65.000%
20 88.000%
40 99.000%
60 99.000%
80 99.980%
100 99.997%

2.4.3 Counting of Micro States

The volume of a 3N dimensional sphere of radius
√
2mE is thus, given by

V3N(R =
√
2mE) =

(2πmE)3N/2

Γ
(
3N
2

+ 1
) . (2.21)

The number of micro states of N molecules of an ideal gas confined to a volume
V and with energy less than or equal to E is formally given by

Ω̂(E, V,N) =
V N

h3N

(2πmE)3N/2

Γ
(
3N
2

+ 1
) (2.22)

Entropy is defined as proportional to the logarithm of the number of micro
states accessible to the system.
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• For a coin with two micro states, S ∝ ln 2.
• For a die with six micro states, S ∝ ln 6.
• If we have a system of N independent fair coins, there are 2N micro states.
We have S ∝ N ln 2.

• Entropy of N non interacting particle of energy E confined to a volume V is
given by

S ∝ ln Ω̂(E,V,N)

∝N lnV + (3N/2) ln(E/N) + (3N/2) ln(4πm/[3h2]) + 3N/2.

In deriving the above, I have used the fact that Γ (n + 1) = n!, and I have
employed the first Stirling formula27 : N ! = NN exp(−N), for large factorials.
Thus, when the volume of the container increases, entropy increases because the
system gets access to more number of micro states; the above formula tells you how
does it increase : S ∝ lnV . When energy increases, entropy increases, because
the system gets access to more number of micro states; the dependence is lnE.

2.5 Entropic Presure

Consider the following experiment : A gas is confined to a vertical cylinder open at
the top and fitted with a movable piston. When you try to push the piston down,
the gas resists and records its displeasure by trying to push the piston up. You can
feel the pressure.

Now pull the piston up. There is no resistance. The gas happily expands and
fills up the extra volume made available to it. The gas is all the time making efforts
to increase its entropy. If what you do, decreases its entropy the gas opposes it by
exerting pressure. If what you do, increases its entropy, the gas accepts it; poses
no opposition to it. Thus we see that the pressure in this example is of entropic
origin28.

Thus, given an opportunity, the system would like to increase its entropy. In
other words, in any spontaneous process, entropy increases. Given certain con-
straints, the system would take those numerical values for its macroscopic proper-
ties that maximize its entropy.

27 First Stirling Formula : We have, N ! = N × (N − 1) × · · · × 3 × 2 × 1. Therefore, ln N ! [=

ln 1+ln 2+ln 3+·+ln N =
∑N

k=1 ln(k) ≈
∫N

1
ln x dx = (x ln x−x)

∣∣N
1

= N ln N−N−1]

≈ N lnN − N =⇒ N ! ≈ NN exp(−N)
28 We are familiar with pressure of mechanical origin. Consider a spring with plates fitted on either

side. Catch hold of the plates and push them toward each other, thereby, compressing the spring.
The spring resists and exerts pressure to throw your hands out. Try to pull the plates apart thereby
increasing the spring length. The spring resists again, exerts a pressure and pulls your hands inwards.
In this experiment the pressure is of mechanical origin.
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For now, this picture of statistical mechanical entropy is adequate29. An impor-
tant point is that entropy is a (logarithmic) measure of the number of micro states
of a macroscopic system. The system is all the time taking efforts to increase the
number of micro states. A macroscopic system has a natural tendency to go to
states of higher entropy.

2.6 Entropy : Thermodynamics

Start with the first law of thermodynamics and write heat as adiabatic work30

minus actual work : d̄ Q = dU − d̄ W. For a quasi static reversible process, we
have

d̄ W = −PdV =−P d(nRT/P )

=−P
(−nRT

P 2
dP +

nR

P
dT

)

=
nRT

P
dP − nR dT (2.23)

Also for an ideal gas, internal energy U depends only on temperature; hence we
have dU = CV dT , where CV is the heat capacity at constant volume. Therefore
we have,

d̄ Q= (CV + nR) dT − nRT

P
dP

= f(T, P ) dT + g(T, P ) dP (2.24)

In the above,

f(T, P ) = CV + nR and g(T, P ) = −
nRT

P
(2.25)

Let us check if d̄ Q is an exact differential or inexact differential. We have

∂f

∂P
= 0 and

∂g

∂T
= −nR

P
(2.26)

Thus we find
∂f

∂P
6= ∂g

∂T
(2.27)

29 In the description of entropy, I have not explicitly employed the word probability, for defining entropy.
Nor have I invoked the notion of probability toward defining internal energy. We shall see later, entropy
defined completely in term of probabilities of the micro states of a macroscopic system; and what we
call as internal energy in thermodynamics corresponds to average energy, in statistical mechanics

30 we have named adiabatic work as dU : the change in internal energy.
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From this we conclude that d̄ Q is not an exact differential and hence, Q is not a
(state) function of the (state) variables P and T . Q is not a property of the ideal
gas system.

What I am saying is extremely simple. If I have a (state) function ζ of (state)
variables P and T , then I can write,

ζ ≡ ζ(P, T ) (2.28)

dζ =
∂ζ

∂P
dP +

∂ζ

∂T
dT (2.29)

If ζ = ζ(P, T ), then

∂

∂T

[
∂ζ

∂P

]
=

∂

∂P

[
∂ζ

∂T

]
(2.30)

The above can be written as

∂2ζ

∂T∂P
=

∂2ζ

∂P∂T
(2.31)

The order of differentiation is immaterial for a state function.

2.6.1 Clausius Invents Entropy

Clausius started with the equation,

d̄ Q= (CV + nR) dT −
nRT

P
dP (2.32)

Divide all the terms in the above equation by T and get

d̄ Q

T
=
CV + nR

T
dT − nR

P
dP (2.33)

= f(T, P ) dT + g(T, P ) dP (2.34)

In the above,

f(T, P ) =
CV + nR

T
(2.35)

g(T, P ) = −
nR

P
(2.36)

Let us check if d̄ Q/T is an exact differential or inexact differential. We have

∂f

∂P
= 0 and

∂g

∂T
= 0 (2.37)
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Thus d̄ Q/T is an exact differential. Let dS = d̄ Q/T , then S is state variable;
it is a property of the system. Clausius named the new thermodynamic variable
as entropy. Clausius writes31 ‘ I have intentionally formed the word entropy so as

to be as similar as possible to the word energy since the two magnitudes that are

given their names are so closely related in their physical significance that a certain

likeness in their names has seemed appropriate. ’
Having invented a new thermodynamic variable entropy, Clausius asserts that

the entropy has a tendency to always increase in any spontaneous processes. At
best it remains constant in a reversible process. It never decreases.

• First Law : The energy of the universe is a constant
• Second Law : The entropy of the universe always increases, until it reaches a
maximum and shall remain the same subsequently.

2.6.2 Heat flows from hot to cold

The second law assertion that ∆S ≥ 0 in all processes helps us comprehend
several phenomenon that occurs in nature. For example consider a certain amount
of heat moving from a heat reservoir-1 at temperature T1 to a heat reservoir-2 at
temperature T2. The reservoir-1 loses entropy : dS1 = −q/T1. The reservoir-2
gains entropy : dS2 = q/T2. The total change in entropy is thus

dS = dS1 + dS2 = q

(
1

T2

−
1

T1

)
(2.38)

= q × T1 − T2

T1 × T2

(2.39)

Clausius assertion that dS ≥ 0 implies that T1 ≥ T2 : Heat always moves from
hot to cold.

2.7 Carnot engine and the Second Law

Consider now an engine M that draws a certain amount of heat from the heat
reservoir at temperature T1 and delivers work W , see figure below.

This is permitted as far as the first law of thermodynamics is concerned. We
demand that W = q1. The entropy of the reservoir decreases by q1/T1. The

31 Clausius presented this work in Züricher naturforschende Gesellschaft on April 24, 1865; see R Clau-
sius, On different forms of the fundamental equations of the mechanical theory of heat and their
convenience for applications, in J Kestin (Editor), The Second Law of Thermodynamics, Dowden-
Hutchinson-Ross, Stroudsburg, PA (1976)pp.162-193
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q

1T

1

w
M

Fig. 2.3. An hypothetical engine that draws a certain amount of heat from a heat reservoir at temper-
ature T1 and converts the whole of it into work.

machine after delivering the work returns to its initial state to start all over again.
Since entropy is a state function, there is no change in entropy of the machine.
Therefore the net change in entropy in the process is dS = −dq1/T1. The second
law tells that dS ≥ 0. Hence the process of converting heat completely into work
is not permitted by the second law.

Now introduce a sink at lower temperature T2, see figure below. The machine
dumps a certain amount of heat q2 into the sink. The sink gains an entropy of
q2/T2. Then we should have the following constraints:

q1 − q2 =W from the first law of thermodynamics (2.40)

dS

(
=
q2

T2

−
q1

T1

)
≥ 0 from the second law of thermodynamics(2.41)

Consider an ideal engine for which dS = 0. Therefore

q1

T1

=
q2

T2

⇒ q2

q1
=
T2

T1

(2.42)

Now start with the first-law- equation,

W = q1 − q2 ⇒ W

q1
= 1 − q2

q1
⇒ η = 1 − T2

T1

(2.43)

The above is the familiar equation for the efficiency of a Carnot engine, of which
we have seen earlier while discussing Carnot and his work.

Thus Clausius did what he said he would do. He had a hunch that Carnot’s
formula for the efficiency of an ideal heat engine, in terms of the source and sink
temperatures, was correct and of fundamental import, even though he did not
approve of the way Carnot arrived at the formula based on Caloric heat. But then,
the caloric heat has since, given way to kinetic heat, thanks to Rumford, Mayer,
and Joule. Clausius wanted to justify Carnot’s principle in the light of kinetic
heat. In the process he invented a new thermodynamic property called Entropy.
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By demanding that entropy always increases except in ideal processes32, he derived
Carnot’s formula.

M w

1

q
1

2

T

T2

q

Fig. 2.4. Carnot Engine

Thus the Second law of thermodynamics can be stated as dS ≥ 0 for any
process; equality obtains for a reversible process. dS refers to change in entropy
of the system plus that of the surroundings. We also know that Second law of
thermodynamics is rooted in heat engine that produces work from heat. It would
be interesting to see the Second law stated completely in terms of heat engines,
see below.
Clausius statement of the Second law :
No process is possible whose only final result is the transfer of heat from a colder
to a hotter body.
Kelvin-Planck statement of the Second law :
No process is possible whose only final result is the absorption of heat from a
reservoir and conversion of the whole of heat into work.

In both the statements above, the phrase ‘ the only final result ’ is extremely
profound. This phrase is there for a purpose : The familiar refrigerator transfers
heat from cold to hot; but then this is not the ‘ only final result ’ ; the refrigerator
is plugged to a power point; an external source does work on the refrigerator; this
is what enables the refrigerator to do what it does,

32 quasi-static and reversible
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In a reversible isothermal process, the gas absorbs heat and converts the whole
of it into work. But then this is not the ‘ only final result ’ ; the gas also expands
during the process.

The Second law can be stated in several different ways33. From one statement,
we should be able derive all other statements. I leave it to you prove that the
Clausius statement of the Second law is equivalent to the Kelvin-Planck statement.

The invention of entropy and the assertion that it always increases - called
the Second law of thermodynamics is going to have far-reaching consequences.
It is going to change completely the way we are going to look at macroscopic
phenomena. Entropy and the Second law are going to haunt us !

Thus, in thermodynamics the defining equation for entropy is

dS =
d̄ Q

T
. (2.44)

It is energy (joule) divided by temperature (kelvin). Entropy is measured in units
of joule per kelvin.

2.8 Tying up loose ends

2.8.1 Boltzmann Constant

I said that in statistical mechanics, entropy is defined as proportional to logarithm
of the number of micro states of a macroscopic system. Why do we need logarithm ?

The number of micro states of a composite system is the product of the number
of micro states of the individual systems. A single coin has two micro states. A
system of two coins has 2 × 2 = 4 micro states. In thermodynamics we have
already defined entropy as extensive. Entropy of the individual systems add up
when we combine them to form a composite system. Logarithm of a product is the
sum of logarithms : ln(ab) = lna+ ln b.

In statistical mechanics entropy is a mere number. In thermodynamics, entropy
is measured in units of joules/kelvin. But we know, now, that joule and kelvin are
just two units of measuring energy. The conversion factor that helps us to go from
joule to kelvin is called the Boltzmann constant. It is denoted by the symbol kB .
We have kB = 1.3807 × 10−23 j k−1. To express statistical mechanical entropy
in units of joule per kelvin, we take the proportionality constant as kB. Thus we
have,

33 a beautiful statement of the Second law obtains when Omar Khayyam (1048 - 1131) surrenders to
the irreversibility of life with the words

The Moving Finger writes; and, having writ,
Moves on: nor all your Piety nor Wit
Shall lure it back to cancel half a Line,

Nor all your Tears wash out a Word of it.
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S = kB ln Ω̂. (2.45)

The above is called the Boltzmann entropy.

2.8.2 Classical Entropy is not Extensive

For an isolated system of N ideal gas molecules with energy E and confined to a
volume, we found that the number of micro states is given by

S(E, V,N) =NkB

[
lnV +

3

2
ln

(
E

N

)
+

3

2
ln

(
4πm

3h2

)
+

3

2

]
. (2.46)

The first thing we notice is that the above expression for entropy is not extensive
:

S(λE, λV, λN) 6= λS(E, V,N). (2.47)

2.8.3 Boltzmann Counting

To restore the extensive property of entropy, Boltzmann introduced an ad-hoc
notion of indistinguishable particles. He proposed that N ! permutations of the
particles, should all be counted as one micro state since they are indistinguishable.

With Boltzmann counting, we have,

Ω̂(E, V,N) =
1

N !

V N

h3N

(2πmE)3N/2

Γ
(
3N
2

+ 1
) (2.48)

The expression for reads as,

S(E, V,N) =NkB

[
ln

(
V

N

)
+

3

2
ln

(
E

N

)
+

3

2
ln

(
4πm

3h2

)
+

5

2

]
(2.49)

The expression for entropy given above is extensive; it called Sackur-Tetrode equa-
tion.

Historically Boltzmann counting was proposed to resolve Gibbs paradox, which
was a consequence of the non-extensive entropy. Gibbs formulated the paradox in
terms of entropy of mixing of like and unlike gases.

2.8.4 Entropy of Mixing, Gibbs Paradox and its Resolution

The number of micro states of N non interacting gas molecules confined to a
volume V is given by, Ω̂(V ) = V N , where we have retained ony the dependence
on V . We have ignored all other terms since they are irrelevant for the discussion
below. The entropy is given by S = N ln(V ) where we have set without loss of
generality kB = 1.
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Consider a box divided by a partition into two portions by a shutter. portion
1 has N1 molecules in volume V1 and portion 2 has N2 molecules in volume V2 .
Entropy of the two systems are S1 = N1 ln(V1) and S2 = N2 ln(V2). The two
systems are in equilibrium.

Now remove the shutter and allow the gas to mix and equilibrate. We now
have N1 +N2 molecules occupying a volume of V1 + V2 . The entropy is S =
(N1 +N2) ln(V1 +V2). Let us calculate the change in entropy when the shutter
is removed. It is given by ∆S = S − (S1 + S2). We get,

∆S = N1 ln

(
V1 + V2

V1

)
+N2 ln

(
V1 + V2

V2

)
. (2.50)

We find that∆S > 0. ∆S is called entropy of mixing. Consider now a situation
when N1/V1 = N2/V2 = ρ. The entropy of mixing can be written as,

∆S = ρV1 ln

(
V1 + V2

V1

)
+ ρV2 ln

(
V1 + V2

V2

)
(2.51)

The entropy of mixing is positive. There is some thing wrong. We expect ∆S to
be zero, because there is no distinction between the system with and without the
shutter.

Let us say we remove the shutter, wait for sometime and insert the shutter.
We get back to the initial state. We have reversibility. Hence entropy of mixing
should be zero. This is called Gibbs paradox. Boltzmann introduced the notion of
indistinguishability of particles to correct for over counting of the micro states :
Divide Ω̂(V ) by N !. Thus we have Ω̂ = V N/N !. The entropy of mixing is then,
given by,

∆S = (N1 +N2) ln

(
V1 + V2

N1 +N2

)
−N1 ln(V1/N1) −N2 ln(V2/N2)(2.52)

=N1 ln(N1/V1) +N2 ln(N2/V2) − (N1 +N2) ln

(
N1 +N2

V1 + V2

)
(2.53)

Now let us consider the situation when N1/V1 = N2/V2 = ρ. We get ∆S =
N1 ln(ρ) +N2 ln(ρ)− (N1 +N2) ln(ρ) = 0 as required. Entropy of mixing is
zero. Boltzmann resolves Gibbs paradox.

Boltzmann counting can be described, at best, as a patch work. You don’t
demolish a well-built wall simply because it has developed a small crack. It is wise
to cover the crack by pasting a paper over it. Boltzmann did just that.

A good formalism is not dismissed because of a small flaw34. You look for an
immediate quick-fix. Boltzmann counting provides one such quick-fix.

34 Desperate and often elaborate patch work are not new to physicists. They have always indulged
’papering’ when cracks appear in their understanding of science. A spectacular example is the entity
aether proposed to justify the wave nature of light; Maxwell’s work showed light is a wave. Waves
require medium for propagation. Hence the medium aether, with exotic properties, was proposed to
carry light.



2.8 Tying up loose ends 31

In fact non extensive entropy in classical derivation is a pointer to a deeper
malady. We shall discover soon, the fault is not with statistical mechanics but
with classical formalism employed to describe ideal gas. For the correct resolution
of the Gibbs’ paradox we have to wait for the arrival of quantum mechanics and
for the arrival of bosons and fermions.

2.8.5 Equivalence of Boltzmann and Clausius entropies

Let me end this lecture after making a few remarks on Boltzmann entropy and
Clausius entropy. On the face of it they seem to be very different. Clausius entropy
is deeply rooted in thermal phenomenon : entropy is heat divided by temperature.
Boltzmann entropy is based on counting of the micro states of a system, thermal
or otherwise. Let me quickly show you that these two entropies are consistent with
each other for thermal systems.

Consider the Sackur-Tetrode equation, that expresses Boltzmann entropy in
terms of E, V , and N . Let us concentrate on the dependence of S on V which
can be written as

S = NkB lnV + φ(E,N),

where φ is a function of E and N only. We have

(
∂S

∂V

)

E,N

=
NkB

V
. (2.54)

The left hand side of the above equation35 equals P/T. Therefore,

NkB

V
=
P

T
⇒ PV = NkBT.

We have derived the ideal gas law.
More importantly, we have,

dS =
NkB

V
dV =

PdV

T
=
d̄ Q

T
(2.55)

Thus, starting from Boltzmann entropy, we have derived the thermodynamic en-
tropy of Clausius. In the derivation of the above, I have made use of the ideal gas
law PV = NkBT and the fact that for an ideal gas, in an isothermal process
d̄ Q + d̄ W = 0 which implies d̄ Q = PdV . The above equation indicates that
Boltzmann entropy and Clausius entropy are indeed consistent with each other.

35 for the present, assume this result. I shall derive it in the next lecture where I shall deal with partial
derivatives of the fundamental equation U ≡ U(S, V,N) or S ≡ S(U, V,N).
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ENTROPY, IRREVERSIBILITY, AND

THE SECOND LAW

3.1 Preliminaries

We have been using the terms like quasi-static process, reversible process, and
irreversible process rather freely so far. For example

• while talking about work, I said that the formula d̄ W = −PdV is valid only
if the process is (quasi-static and) reversible.

• I have repeatedly emphasized that
• only systems in equilibrium can be represented by points on the thermo-
dynamic phase diagram; and

• only a (quasi-static and) reversible process can be depicted by a curve
in the phase diagram.

• The expression dS = d̄ Q/T gives the increase in entropy only when the
system absorbs d̄ Q of energy by heat reversibly. Hence d̄ Q in this expression
is often called reversible heat.

3.1.1 Clausius Inequality

If the process is not reversible then dS > d̄ Q/T . This is called Clausius inequal-
ity. This should be understood as follows. The entropy change in an irreversible
process is more than what you would have otherwise calculated employing the
expression d̄ Q/T . Thus, for any general process, we can write dS ≥ d̄ Q/T ,
wherein equality obtains when the process is (quasi - static and) reversible.

Consider a system that undergoes a cyclic process. Since S is property of the
system and since the system returns to its initial state after a cycle, dS = 0. This
is true irrespective of whether the cycle is reversible or has one or more segments
that are irreversible. If the different segments that constitute the cyclic process
are all reversible, then

∮
d̄ Q
T

= 0. However if the cyclic process contains one or

more irreversible segments, then,
∮

d̄ Q
T

< 0. This is also known as Clausius
inequality. Thus in general we have,

∮
d̄ Q

T
≤ 0, (3.1)
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where equality obtains if the cyclic process is quasi static and reversible.
It is time we get to know what exactly does one mean by a quasi static reversible

process. We shall do this by considering two examples. A quasi static process, as
its very name36 suggests, is a process which can be viewed as if it were static - a
process which is extremely slow.

3.2 Example - 1 : Adiabatic Expansion-Reversible and

Irreversible

Consider a cylindrical vessel open at the top, fitted with a movable piston, and
filled with some n = 80.186 moles of a mono atomic ideal gas. Let the cylinder
be isolated by non-conducting walls so that no heat enters or exits the cylinder.
Let the volume of the gas be VA = 1 m3 and pressure PA = 2 × 105 pa., when
the piston is in some position. Let us now move the piston up until the volume
increases to VF = 2VA = 2 m3. Let us say we take some τ units of time to carry
out this process. Formally we have,

V (t) = VA +
VF − VA

τ
× t, 0 ≤ t ≤ τ. (3.2)

The initial equilibrium state of the system can be represented by a pointA(PA, VA)
in the Pressure-Volume phase diagram, see Fig. (3.1). TA = PAVA/nR = 300
k.

3.2.1 Switching Process

If τ is finite, the process can not be represented by a curve on the phase diagram,
The system disappears fromA when we start pulling the piston. When the volume
reaches VF = 2VA = 2 m3, we stop. Then, if we wait sufficiently long, the system
would come to an equilibrium state and appear at some point on the line parallel
to the P -axis at V = 2VA = 2m3. Where exactly it will be on this line will
depend on the value of τ . Let us say, the system appears at a point C, dictated
by a particular value of τ . Since the system disappears at A and re-appears at C
at a later time we call it a switching process and call τ the switching time. Thus,
in the irreversible adiabatic process, the system switches from A to C, see Fig.
(3.1). The short arrow directed from A to C indicates that the switching is from
an equilibrium state A to an equilibrium state C, the process is irreversible, and
hence you can not draw a continuous curve starting at A and ending at C. The
process is also adiabatic.

36 quasi means ”having some resemblance usually by possession of certain attributes”, derived from
Quam (as) + si (if). For example a phonon is a quasi particle : you can treat phonon as if it is a
particle. It behaves almost like a particle though strictly it is not a particle.
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P

V

A

B

C

Fig. 3.1. Pressure - Volume phase diagram of an ideal gas. The system disappears at A and late appears
at C. At the points A, C and B the system is in equilbrium. The process C → B and B → A are quasi
static and revesible processes.

3.2.2 Quasi-static Reversible Process

Contrast this with an ideal quasi-static reversible adiabatic process which obtains
in the limit τ → ∞. This process can be represented by a curve PV γ = Θ
describing an adiabatic process, see figure in which the points A and B are con-
nected by a reversible adiabatic curve. Θ is a constant. γ = CP/CV , the ratio of
the specific heats at constant pressure and constant volume. For a mono-atomic
ideal gas γ = 5/3.

A quasi static reversible process is an idealization. We can imagine it as follows.
The system is at A. Move the piston up a wee bit. The system disappears from
A and equilibrates very quickly and re-appears at a point extremely close to A.
Now move the piston a little bit more. Again the system disappears, equilibrates
taking a very small amount of time, and appears at a point very close. Continue
this until the volume becomes VB = 2 × VA = 2 m3. We get a dense set of
points between A and B. Slower you carry out the process, denser shall be the set
of points. The line that passes through such a dense set of points, from A to B
represents a quasi-static reversible process, see Fig. (3.1). Right now, do not worry
about the direction of arrows marked in the figure. I shall talk about these arrows
later.

The pressure and temperature can be easily calculated employing the formula
PV γ = Θ. We get PB = 6.3 × 104 pa. and TB = 189 k.
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3.2.3 Entropy and Irreversible Processes

What is the change in entropy of the system and the surroundings, when you go
irreversibly and adiabatically from A to C ?

Since the process is adiabatic, there is no transaction of heat between the system
and the surroundings. Therefore d̄ Q/T = 0. Clausius inequality tells us that
dS > 0. To calculate dS we proceed as follows.

We take the system from C to B by a convenient reversible process. The ar-
rowed line connecting C to B denotes this quasi static reversible process. Since
VB = VC , we consider a constant-volume reversible process. The change in en-
tropy of the system when you go reversibly from C to B can be calculated as,

∆S(B → C) = CV

∫ TB

TC

dT

T
=

3nR

2

∫ 189

250

dT

T
= −279.7 j k−1 (3.3)

The system loses 279.7 units of entropy. Since the process is reversible, the sur-
roundings gain an entropy of 279.7 units. Now return the system from B to A
along the arrowed adiabatic curve shown in the figure. Since the system returns
to the start of the cycle, the change in entropy is zero. This means that

∆S(A → C) − 279.7 = 0.

There is no change in the entropy of the surroundings during the process A → C,
since the system is thermally isolated. There is no change in entropy of the sur-
roundings during the process B → A since it is adiabatic and reversible. The
entropy of the surroundings increases by 279.7 units during the constant-volume
process from C → B.

The cyclic process A → C → B → A, consists of

• an irreversible segment A → C (adiabatic expansion)
• a reversible segment C → B (constant - volume cooling) and
• a reversible segment B → A (adiabatic compression).

The system starts at A and ends at A in the cyclic process; Entropy is a state
variable. The change in entropy of the system in the cyclic process is therefore
zero.

The change in entropy of the surroundings is +279.7 units. The net entropy
change is positive and this is because of the presence of an irreversible segment
A → C in the cyclic process A → C → B → A. The whole scenario is
consistent with the Second law of thermodynamics.

Also we find that for the system,

∮
d̄ Q

T
= −279.7 (3.4)

The system obeys Clausius inequality :
∮

d̄ Q
T
< 0
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Let me make a simple observation before we leave this example. I said when
the gas expands irreversibly and adiabatically, from VA to VF = 2VA, there is no
way we can say what shall be its pressure or temperature upon equilibration. This
is not quite correct. Let me explain.

We assumed a particular finite switching time and said the system would emerge
at C, for purpose of subsequent calculations. The Second law of thermodynamics
tells us that the point C should be vertically above B and never below. For, if it
were below B, then we need to heat the system to bring it reversibly, to B and
then complete the cycle by an adiabatic and reversible compression B → A. This
would result in increase of entropy of the system and decrease of entropy of the
surroundings; this would clearly violate the Second law of thermodynamics, and
we shall see this when we do the book keeping of entropy changes in the system
and the surroundings in the cyclic process.

We shall consider one more example to drive home the meaning of a quasi-static
reversible process.

3.3 Example - 2 : Cooling and Heating of a Metal Coin

I have picked up this problem from Dudgale37. I have a metal coin in an equilibrium
state A, at 400 k. Let the heat capacity of the coin be denoted by CV = 1000 j
k−1. CV is independent of temperature. The volume of the coin does not change
during cooling and heating processes. The coin is cooled to an equilibrium state
B at 100 k following the procedure described below.

We organize N + 1 heat baths38 The k-th heat bath is at temperature Tk,
given by,

Tk = 400 −
(
400 − 100

N

)
k. (3.5)

We see that T0 = 400 k and TN = 100 k. The coin constitutes the system and
all the heat baths together constitute the environment.

3.3.1 Cooling Process

The coin is first plunged into bath-1 and kept inside until it comes to thermal
equilibrium at T1 . This process is repeated with bath-2 and then with bath-3 ...
etc. Eventually when it comes out of bath-N, it is at T = TN = 100 k.

37 J D Dudgale, Entropy and its Physical Meaning, Taylor and Francis (1998)pp.58-59
38 a heat bath is one which transacts energy by heat with a system with out suffering any change in its

own temperature. In other words the heat bath has infinite heat capacity. Keep a hot cup of coffee
in a room. The coffee cools. Its temperature decreases. However, the temperature of the room does
not increase. The room takes the heat from the cup of coffee but this does not result in increase of its
temperature.
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3.3.2 Change in Entropy of the coin

The coin goes from an equilibrium state A to an equilibrium state B. Entropy is
a state function. Therefore the change in entropy of the system i.e., the coin, is
(∆S)S = S(B) − S(A), and is given by,

(∆S)S = CV

∫ 100

400

dT

T
= −CV ln 4 = −1.386 CV j k−1 (3.6)

Alternately,

(∆S)S = CV

N∑

k=1

∫ Tk

Tk−1

dT

T
= CV

N∑

k=1

ln

(
Tk

Tk−1

)

= CV ln

(
N∏

k=1

Tk

Tk−1

)

= CV ln

(
TN

T0

)

=−CV ln

(
T0

TN

)

=−CV ln 4 j k−1 (3.7)

3.3.3 Change in Entropy of the Environment

When the coin enters the k-th bath, it is at temperature Tk−1 ; when it comes out
of bath-k it is at temperature Tk . It loses heat to the bath. The bath gets ∆Q
of heat,

∆Q = CV

(400 − 100)

N
. (3.8)

The entropy of bath-k changes by

(∆S)k = CV

300/N

Tk

= CV

(300/N)

400 − (300/N)k

= CV

(3/N)

4 − (3/N)k
j k−1 (3.9)

Therefore the change in the entropy of the environment is given by,

(∆S)E =

N∑

k=1

(∆S)k = CV

N∑

k=1

3/N

4 − (3/N)k
(3.10)
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3.3.4 Value of (∆S)E in the Limit of N → ∞

We have

(∆S)E = CV

N∑

k=1

(3/N)

4 − (3/N)k
(3.11)
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Fig. 3.2. The system i.e. the Coin, is cooled from 400 k to 100 k : Change in entropy of the system
plus the environment denoted by the symbol ∆S, is plotted as a function of number of heat baths N .
In the limit N → ∞, we find that ∆S → 0. We say that in the limit N → ∞, the process becomes
(quasi-static and) reversible.

In the limitN → ∞, the sum over k can be written as integral over x = k dx,
where dx = 3/N . We get,

(∆S)E = CV

∫ 3

0

dx

4 − x
= CV

∫ 4

1

dy

y
= +CV ln 4 (3.12)

Therefore, ∆S = (∆S)S + (∆S)E = 0.

3.3.5 Change in Entropy of the system plus the environment

The change in entropy of the system plus the environment is formally given by,

∆S = (∆S)S + (∆S)E.
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We can calculate∆S for various values ofN ranging from 1 to 50. The results on
∆S versus N are depicted in the figure below. We find that when N → ∞ the
total change in entropy goes to zero. N → ∞ represents (quasi-static) reversible
limit.

Why do we say that in the limit N → ∞, the process A → B is reversible
and for any finite value of N , it is irreversible ?

To answer this question, let us reverse the pro cess and go from B → A, see
below.

3.3.6 Heating

Let us now reverse the process : heat the coin from 100 to 400 k by successively
plunging the coin in heat bathsN−1,N−2, · · · , 1 and eventually in the bath-0
at 400 k.

Thus we have a cyclic process : coin is cooled from 400 to 100 k and then heated
from 100 to 400 k. The coin returns to its initial state; hence change in entropy
of the coin in the cyclic process is zero. Each of the baths from 1 to N − 1, gain
a certain amount of entropy while the coin gets cooled and lose the same amount
of entropy when the coin gets heated. However bath-N participates only in the
cooling process; it gains an entropy of CV × 300/(100N). Bath-0 participates
only in the heating process; it loses entropy by an amount CV × 300/(400N).
Therefore the change in entropy of the environment in the cyclic process is

(∆S)cyclic = CV

3

N

(
1 − 1

4

)
=

9CV

N
(3.13)

3.3.7 Irreversible Process

For any finite N the process A → B is irreversible, because when we we reverse
the process, and take the system from B to A, the environment does not return
to its original state; its entropy increases by an amount 9CV /N

3.3.8 Reversible Process

The process A → B is reversible in the limit of N → ∞, because when we
reverse the process, and take the system from B → A, the environment returns
to original state : there is no change in the entropy of the environment. Note this
obtains only when N → ∞.

Reversible processes are an idealization. Strictly you can not achieve a reversible
process in the laboratory. However, you can make a process as close to a reversible
process as required, by rendering it slower and slower.

Thus a reversible process has to be necessarily extremely slow, i.e. quasi static,
meaning almost static.
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3.4 End Remarks

The general approach followed is clear. By invoking adiabatic processes we de-
fined a thermodynamic property called internal energy, U . However we employed
internal energy in the context of processes which are not adiabatic. This allowed
us to talk of change of internal energy by work as well as heat. We got the first
law of thermodynamics dU = d̄ Q + d̄ W . In the same fashion, by invoking
reversible processes we defined a thermodynamic property called entropy, S. We
can talk of change in entropy of a system when its other properties change by
thermodynamic processes. We found that if we consider the change in entropy of
the system plus the change in entropy of the surroundings with which the system
interacts, then this quantity is always zero in reversible processes. In other words,
if the system entropy increases(decreases) in a reversible process, then the entropy
of the surroundings decreases(increases) exactly by the same amount, so that the
total change in entropy is always zero. Let me emphasize that this statement is
true only if the process is reversible.

Having established how entropy behaves in reversible processes, we started em-
ploying entropy in the context of irreversible processes and obtained the Second
law of thermodynamics. The Second law asserts that the total change in entropy
in an irreversible process is always positive. Thus, in general we have dS ≥ 0,
wherein equality obtains when the process is reversible.
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PARTIAL DERIVATIVES IN THERMODYNAMICS

4.1 U(S, V,N) and its partial derivatives

Let us turn our attention to some formal stuff. We start with internal energy U .
We shall express U as a function of entropy S and volume V . We shall assume
N to be a constant. Formally we have

dU =

(
∂U

∂S

)

V,N

dS +

(
∂U

∂V

)

S,N

dV (4.1)

We have the First Law of thermodynamics

dU = T dS − P dV.

Equating the coefficients of dS and dV in the above two expressions for dU , we
identify,

T =

(
∂U

∂S

)

V,N

; P = −
(
∂U

∂V

)

S.N

. (4.2)

4.2 S(U, V,N) and its partial derivatives

In statistical mechanics or statistical thermodynamics we take entropy as a basic
entity and express it as a function of energy and volume for a fixed number of
molecules : S ≡ S(U,V ). We can change entropy by changing energy, and,
volume. Formally we have

dS =

(
∂S

∂U

)

V,N

dU +

(
∂S

∂V

)

U,N

dV (4.3)

We need to identify the partial derivatives in the above expression in terms of the
intensive properties T and P . To this end we proceed as follows. We have,

dU = TdS − PdV (4.4)

From the above we get,
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TdS = dU + PdV (4.5)

dS =
1

T
dU +

P

T
dV (4.6)

Equating the coefficients of dU , and dV , we get
(
∂S

∂U

)

V,N

=
1

T
;

(
∂S

∂V

)

U,N

=
P

T
. (4.7)

4.2.1 Properties of Partial Derivative

Thus we find the following important property of partial derivatives. If x, y and
z, are three variables each dependent on the other two, then

(
∂x

∂y

)

z

=
1(
∂y

∂x

)

z

(4.8)

Another important property of partial derivatives is :
(
∂U

∂S

)

V

×
(
∂S

∂V

)

U

×
(
∂V

∂U

)

S

=−1 (4.9)

We see this by noticing that the left hand side of the above equation can be
identified as

(T ) ×
(
P

T

)
×
(

1

−P

)
= −1 (4.10)

where we have made use of the first property of the partial derivative
(
∂V

∂U

)

S

=
1(

∂U

∂V

)

S

=
1

(−P )
(4.11)

In terms of x, y, and z, this property reads as,
(
∂x

∂y

)

z

×
(
∂y

∂z

)

x

×
(
∂z

∂x

)

y

= −1 (4.12)

4.2.2 Chemical Potential

We can include explicitly the dependence on N and write the fundamental equa-
tion U ≡ U(S, V,N). The partial derivative of U with respect to N is called
the chemical potential, and is usually denoted by the symbol µ. We have,

µ =

(
∂U

∂N

)

S,V

. (4.13)

In the entropic picture, we have,
(
∂S

∂N

)

U,V

= −
µ

T
. (4.14)
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4.3 Closed System and Helmholtz Free Energy

Let us consider a closed system - a system which is in thermal contact with the
surroundings. It exchanges energy but is closed to exchange of matter. The sys-
tem is in thermal equilibrium with its surroundings39 whence the system and its
surroundings are at the same temperature. Thus temperature is a natural variable
for describing the system.

Consider thermodynamics processes occurring at constant temperature. We
have, from the first law of thermodynamics,

dU = d̄ Q+ d̄ W (4.15)

= TdS + d̄ W (4.16)

dU − TdS = d̄ W (4.17)

Since the temperature remains constant, we can write the above as,

d(U − TS) = d̄ W.

For a process that takes the system reversibly from an equilibrium state 1 to an
equilibrium state 2, at constant temperature T , we can write,

(U2 − TS2) − (U1 − TS1) = W (4.18)

where W is the work done during the isothermal reversible process 1 → 2. This
suggests that we can treat U − TS as a thermodynamic property of the system.
We call it Helmholtz free energy and employ it for studying closed systems.

It is readily seen that the principle of minimum energy and maximum entropy
can be combined into a single principle of minimum free energy. Spontaneously a
system would go to a state with minimum free energy. We also see that work done
on the system is minimum for a reversible process.

4.3.1 Free Energy and the Second Law

We can state the second law of thermodynamics as

W ≥ ∆F , (4.19)

where the equality obtains for a reversible process.

39 we have earlier seen that equality of temperature is a universal indicator of thermal equilibrium
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4.4 Legendre Transform : General

Thus free energy provides an alternate formulation of thermodynamics suitable
for describing closed system. In what follows we shall see of general alternate
formulations of thermodynamics based on Legendre transform.

To start with we shall consider passage from internal energy picture suitable
for studying isolated systems to free energy picture, suitable for closed systems, as
a transform :

S → T and U → F.

The basic idea is to view the curve U(S), as an envelop of a set of tangents;
each tangent is specified by its slope and the intercept. The slope is temperature,
T and the intercept is Free energy, F . Thus we go from U versus S picture to F
versus T picture.

Consider f , a quantity that varies when x is varied.

• We can prepare a table of values of x and the corresponding values of f . Also,
• we can trace it as a curve in the x− f coordinate plane with f on the y-axis.

Let us now look for an alternate way of expressing the contents of the table or of
the graph.

• Take a point (x, y = f(x)) on the graph.
• Draw a line tangent to the curve at this point. Let the slope of this tangent
be denoted by m. Note that m depends of x. We can prepare a table with m
and the corresponding x. We can draw a curve to represent the table. Will this
description provide a unique correspondence to f(x) ? We see it does not. All
curves that are parallel to the curve f(x) shall have the same representation.
A way to distinguish one curve from the other in the family of parallel curves
is to specify the intercept C for each tangent, see figure below.

• We see from the figure,

f(x)− C

x
= m (4.20)

In other words,

C = f(x)−m× x (4.21)

m=
df

dx
(4.22)

• We see that C(m) provides an alternate description of f(x).
• We have Legendre-transformed x → m and f → C.
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f

x

f(x)−C

x

C

slope = f(x)−C
x

Fig. 4.1. Principle of Legendre Transform : Intercept C is expressed as a function of slope

4.4.1 Legendre Transform : S → T and U(S, V,N) → F (T, V,N)

Take f as U and x as S. We see that the slope m corresponds to temperature,
T . Denote the intercept by F and we have the Legendre transform : S → T and
U → F .

F (T, V,N) = U − TS; T =

(
∂U

∂S

)

V,N

(4.23)

We carry out the Legendre transform as follow.

Start with U ≡ U(S, V,N).
Derive an expression for the partial derivative of U with respect to S. This
partial derivative is a function of S, V and N .
Equate it to T and invert it to express S ≡ S(T, V,N).
Replace S by this function in the expression : U(S, V,N) − TS.
You will get an expression involving only T , V , and N . This is the desired
expression for the free energy F (T, V.N).

The problem below shall illustrate the operations involved.

4.5 Free Energy : Illustrative Example

Let the fundamental equation of substance be given by

U(S, V,N) =Θ
N2 + S2

V
(4.24)

where Θ is a constant.
In the first step we derive an expression for temperature as a function of S, V

and N . We have
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T (S, V,N) =

(
∂U

∂S

)

V,N

= Θ
2S

V
(4.25)

In the second step, we invert the above expression and get S as a function of T ,
V , and N .

S(T, V,N) =
TV

2Θ
(4.26)

In the third step we carry out the Legendre transform :

F = U(S(T, V,N), V,N) − TS(T, V,N) (4.27)

=Θ

(
N2 + (T 2V 2)/(4Θ2)

V

)
− T

TV

2Θ
(4.28)

=
ΘN2

V
− T 2V

4Θ
(4.29)

The independent variables of F are T , V and N .
By taking the partial derivatives of F with respect to T , V , and N we obtain

expressions for entropy, pressure and chemical potential respectively. We have

F (T, V,N) = U − TS

dF = dU − TdS − SdT

= TdS − PdV + µdN − TdS − SdT

=−PdV − SdT + µdN (4.30)

Thus we get,

P = −
(
∂F

∂V

)

T,N

=Θ
N2

V 2
+

1

4Θ
T 2 (4.31)

S = −
(
∂F

∂T

)

V,N

=
1

2Θ
TV (4.32)

µ = +

(
∂F

∂N

)

T,V

= 2Θ
N

V
(4.33)

4.6 Enthalpy

Let us now consider processes taking place at constant pressure40. We start with
the first law of thermodynamics.

40 Chemists are usually interested in such processes; the chemical reactions they study occur at constant
atmospheric pressure.
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dU = d̄ Q+ d̄ W

= d̄ Q− PdV

dU + PdV = d̄ Q

d(U + PV ) = d̄ Q

(U2 + PV2) − (U1 + PV1) =Q (4.34)

Let us denote the quantity U + PV by the symbol H and call it enthalpy.
Thus the change in H when the system undergoes a reversible process, equals

energy transacted by heat, or what the chemists call as heat of reaction.
Enthalpy increases when the chemical reaction is endothermic, i.e. when energy

enters the system by heat. Enthalpy is negative if the process is exothermic, whence
energy exits the system by heat.

4.6.1 Legendre Transform : V → P and U(S, V,N) → H(S, P,N)

It is easily checked that enthalpy is a Legendre transform :

V → P ; U(S, V,N) → H(S,P,N) (4.35)

H(S, P,N) = U + PV ; P = −
(
∂U

∂V

)

S,N

. (4.36)

4.6.2 Enthalpy : Illustrative Example

Consider the fundamental equation,

U(S, V,N) =Θ
N2 + S2

V
(4.37)

An expression for pressure in terms of S, V, N can be derived, see below.

P (S, V,N) =−
(
∂U

∂V

)

S,N

= Θ
N2 + S2

V 2
(4.38)

Now take P as an independent variable and express V as a function of P :

V =

√

Θ
N2 + S2

P
(4.39)

Enthalpy is formally given by

H(S, P,N) = U(S, V,N) + PV (S,P,N).

Eliminating V from the above we get
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H(S, P,N) = 2PV (4.40)

= 2P

√

Θ
N2 + S2

P
(4.41)

= 2Θ1/2
√
P (N2 + S2) (4.42)

By taking the partial derivatives of enthalpy with respect to S, P and N , we can
derive expressions, see below, for T , V and µ. We have,

H(S,P.N) = U + PV (4.43)

dH = dU + PdV + V dP (4.44)

= TdS − PdV + µdN + PdV + V dP (4.45)

= TdS + V dP + µdN (4.46)

We see immediately that,

T =

(
∂H

∂S

)

P,N

= 2Θ1/2 (S/N)
√
P√

1 + (S/N)2
(4.47)

V =

(
∂H

∂P

)

S,N

=Θ1/2

√
N2 + S2

√
P

(4.48)

µ =

(
∂H

∂N

)

S,P

= 2Θ1/2

√
P√

1 + (S/N)2
(4.49)

4.7 Gibbs Free Energy

Gibbs free energy is denoted by the symbolG. It obtained by carrying out Legendre
transform of two variables, S and V . S is transformed to T , V is transformed to
P and U gets transformed to G. Gibbs free energy is a function of T, P, and N .

4.7.1 Legendre Transform : S → T , V → P , and U(S, V,N) → G(T, P,N)

We have,

G(T, P,N) = U − TS + PV ; T =

(
∂U

∂S

)

V,N

; P = −
(
∂U

∂V

)

S,N

(4.50)

4.7.2 Legendre Transform : S → T and H(S, P,N) → G(T, P,N)

Alternately, we can obtain Gibbs free energy as a Legendre transform of enthalpy.
We have H ≡ H(S, P,N), and we transform S → T

G(T, P,N) = H − TS; T =

(
∂H

∂S

)

P,N

. (4.51)
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4.7.3 Gibbs Free Energy : An Illustrative Example

Gibbs Free Energy : Illustrative Example We have

H(S,P,N) = 2Θ1/2
√
P (N2 + S2) (4.52)

(
∂H

∂S

)

P,N

= T = 2Θ1/2 S
√
P

√
N2 + S2

(4.53)

Now consider T as an independent variable and express S as a function of
T, P, amd N . We get,

S =
NT

√
4ΘP − T 2

(4.54)

G(T, P,N) =H(S(T, P,N), P,N) − TS(T, P,N) (4.55)

=N
√

4ΘP − T 2 (4.56)

By taking partial derivatives of G with respect to the variables T , P , and N , we
can derive expressions for S, V , and µ. We have,

G= U − TS + PV (4.57)

dG=−SdT + V dP + µdN (4.58)

We see immediately,

S = −
(
∂G

∂T

)

P,N

=
NT

√
4ΘP − T 2

(4.59)

V = +

(
∂G

∂P

)

T,N

=
2ΘN

√
4ΘP − T 2

(4.60)

µ = +

(
∂G

∂N

)

T,P

=
√
4ΘP − T 2 (4.61)

4.8 Euler theorem for Homogeneous Functions

Let f(x1, x2, · · ·xN) be an n-th order homogeneous function of x1, x2, · · ·xN .
We can express this formally as,

f(λx1, λx2, · · · , λxN) = λnf(x1, x2, · · ·xN). (4.62)

Differentiate both sides of the equation with respect to λ. We get,

N∑

i=1

∂f

∂(λxi)

∂(λxi)

∂λ
= nλn−1f(x1, x2, · · · , xN) (4.63)

n∑

i=1

xi

∂f

∂(λxi)
= nλn−1f(x1, x2, · · · , xN) (4.64)
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The above is valid for any value of λ. let λ = 1; we get, the theorem for homoge-
neous functions discovered by Euler41 and is given by,

nf(x1, x2, · · · , xN) =

N∑

i=1

xi

∂f

∂xi

. (4.65)

Let us apply Euler’s theorem to functions in thermodynamics. The thermo-
dynamic functions are first order homogeneous. We call first order homogeneous
functions as extensive. For example the internal energy U is first order homoge-
neous function of S, V , and N , which are also extensive. Helmholtz free energy
F is first order homogeneous function of extensive variables V and N and in-
tensive variable T ; enthalpy is first order homogeneous in S and N , and zeroth
order homogeneous in P . Gibbs’ free energy is a first order homogeneous function
of N ; it depends also on intensive properties T and P ; and so on. Therefore in
thermodynamics we have n = 1.

4.8.1 Euler Relation and Internal Energy

Let us explicitly derive the Euler relation for the internal energy U , which is a first
order homogeneous function of entropy S, volume V , and number of particles N .
We express this formally as

U(λS, λV, λN) = λ U(S, V,N). (4.66)

Let us differentiate both sides of the above equation with respect to λ, We get,

U(S, V,N) =
∂U

∂(λS)

∂(λS)

∂λ
+

∂U

∂(λV )

∂(λV )

∂λ
+

∂U

∂(λN)

∂(λN)

∂λ
(4.67)

=
∂U

∂(λS)
S +

∂U

∂(λV )
V +

∂U

∂(λN)
N (4.68)

The above is valid for any number λ. Let us set λ = 1. We get,

U(S, V.N) =

(
∂U

∂S

)

V,N

S +

(
∂U

∂V

)

S,N

V +

(
∂U

∂N

)

S,V

N (4.69)

= TS − PV + µN (4.70)

The Euler equation above is one of the most beautiful equations in thermodynam-
ics. It tells us, how the seven thermodynamic properties four of which are extensive
and rest three intensive, are related.

41 Leonhard Euler (1707-1783) is one of the most eminent mathematicians. He is also widely considered
to be the most prolific mathematician of all time.
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I told you in an earlier lecture, that what resides in a thermodynamic system is
energy. The energy comes into the system or exits from the system either by heat
or by work. There is no way to tell the energy that has come into the system by
work from the energy that has come from heat. Euler tells that you may not be
able to distinguish between ”Heat” and ”Work”, but you can definitely do a book
keeping and say how much of the internal energy has come from heat and how
much from P − V work and/or µ−N work.

4.8.2 Euler Relation for Helmholtz Free Energy

Helmholtz free energy F is a function of T , V and N . Of the three variables V
and N are extensive properties. Hence, Euler theorem reads as

F =

(
∂F

∂V

)

T,N

V +

(
∂F

∂N

)

T,V

N = −PV + µN (4.71)

4.8.3 Euler Relation for Enthalpy

Enthalpy H is a function of S, P , and N . Of these S and N are extensive
properties. Hence Euler theorem reads as,

H =

(
∂H

∂S

)

P,N

S +

(
∂H

∂N

)

S,P

N = TS + µN (4.72)

4.8.4 Euler Relation for Gibbs Free Energy

Gibbs free energy G is a function of T , P , and N . There is only one dependent
variable which is extensive, namely N . Hence Euler theorem reads as,

G=

(
∂G

∂N

)

T,P

N = µN (4.73)

4.9 Gibbs-Duhem Relation

Start with the Euler relation, for the internal energy,

U = TS − PV + µN. (4.74)

Take the derivatives on both sides and get,

dU = TdS − PdV + µdN + sdT − V dP +Ndµ. (4.75)

The first law of thermodynamics tells us that

dU = TdS − PdV + µdN.
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Hence we find, SdT − V dP +Ndµ = 0, which can be written as,

dµ = −
(
S

N

)
dT +

(
V

N

)
dP. (4.76)

Let s = S/N denote entropy per particle and v = V/N denote the volume
per particle. s and v are now intensive properties. We can now write the above
equation as,

dµ = −sdT + vdP. (4.77)

The above is called Gibbs-Duhem42 relation. It tells us the three intensive proper-
ties T , P , and µ are not all independent. If you know any two, the third can be
obtained from them.

Gibbs - Duhem relation can be derived starting from Helmholtz free energy,
enthalpy, or the Gibbs free energy . I leave this as a exercise for you.

42 Josiah Willard Gibbs (1839 1903), an American physicist and one of the founding fathers of statistical
mechanics; Pierre Maurice Marie Duhem (1861-1916), a French physicist, mathematician, historian
and philosopher of science.
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MAXWELL RELATIONS

5.1 Basic Idea

Let us take a look at Maxwell relations involving partial derivatives of intensive
variables taken with respect to extensive variables.

We have internal energyU expressed as a function of S, and V :U ≡ U(S, V ).
Let us take partial derivative of U with respect S first and with respect to V next.
We get, in general, a function of S and V . Now let us take the partial derivative
of U with respect to V first and then with respect to S next. We should get the
same result.

Maxwell relations are based on this observation that the order with which we
take the partial derivatives does not matter. Either way we should get the same
result :

(
∂

∂V

[(
∂U

∂S

)

V

])

S

=

(
∂

∂S

[(
∂U

∂V

)

S

])

V

(5.1)

We can write the above in a more suggestive way,

∂2U

∂V ∂S
=

∂2U

∂S∂V
(5.2)

5.1.1 Internal Energy and First Maxwell Relation

We identify that the partial derivative ofU(S, V ) with respect to S is temperature
T (S, V ). The negative of partial derivative of U(S, V ) with respect to V is
pressure P (S, V ). Then we write,

(
∂T

∂V

)

S

=−
(
∂P

∂S

)

V

(5.3)

The above is called the first Maxwell relation.

5.1.2 Helmholtz Free Energy and Second Maxwell Relation

We can do the same thing with Helmholtz free energy, F (T, V ). We have
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(
∂

∂V

[(
∂F

∂T

)

V

])

T

=

(
∂

∂T

[(
∂F

∂V

)

T

])

V

or
∂2F

∂V ∂T
=

∂2F

∂T∂V
(5.4)

We identify that the partial derivative of F with respect to T is −S; the partial
derivative of F with respect to V is−P . Then we get the second Maxwell relation,

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

(5.5)

5.1.3 Enthalpy and Third Maxwell Relation

Consider now enthalpy H which is a function of S and P . We get,

(
∂H

∂P

[(
∂H

∂S

)

P

])

S

=

(
∂

∂S

[(
∂H

∂P

)

S

])

P

or
∂2H

∂P∂S
=

∂2H

∂S∂P
(5.6)

We identify that the partial derivative of H with respect to S is T ; the partial
derivative of H with respect to P is V . Then we get the third Maxwell relation,

(
∂V

∂S

)

P

=

(
∂T

∂P

)

S

(5.7)

5.1.4 Gibbs Free Energy and Fourth Maxwell Relation

Starting with Gibbs free energy G(T, P ), we get,

(
∂

∂P

[(
∂G

∂T

)

P

])

T

=

(
∂

∂T

[(
∂G

∂P

)

T

])

P

or
∂2G

∂P∂T
=

∂2G

∂T∂P
(5.8)

We identify that the partial derivative of G with respect to T is −S; the partial
derivative of G with respect to P is V . Then we get the fourth Maxwell relation,

−
(
∂S

∂P

)

T

=

(
∂V

∂T

)

P

(5.9)

5.2 Mnemonic for Maxwell Relations

Maxwell relations are easy to derive. However it would be extremely useful to re-
call them directly, whenever we need them. There is a simple mnemonic device
described in the book by Finn43 that helps us write the Maxwell relation directly.
Finn invites us to join the Society forPrevention ofTeachingVectors, written as

43 C B P Finn, Thermal Physics, Second Edition, Chapman and Hall (1993)pp.121-122
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− S

P V

T

• Start at any of the above four letters.
• Go round clock-wise or anti-clock wise to the third alphabet. Mark

it as outer arc.
• This gives the partial derivative of the first letter with respect to the

second letter keeping the third letter constant.
• Proceed one letter further along the same direction and stop.
• Reverse the direction and go to the third alphabet along an inner

circle.

Fig. 5.1. Mnemonic base for Maxwell relations

• Get the partial derivative of the first letter with respect to the second letter keeping the third letter
constant, along the inner circle.

• Maxwell relation obtains upon equating the partial derivative of the outer circle to the partial
derivative of the inner circle

• When both P and S occurs in a partial derivative, put a negative sign. The negative sign on the
top left corner should remind us of this.

5.2.1 Mnemonic for First Maxwell Relation from U(S, V )

− S

P

T

V

∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)

(
∂T

∂V

)

S

=−
(
∂P

∂S

)

V

Fig. 5.2. Mnemonic for the first Maxewell relation

5.2.2 Mnemonic for Second Maxwell Relation from F (T, V )

∂

∂V

(
∂F

∂T

)
=

∂

∂T

(
∂F

∂V

)

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

− S

P

T

V

Fig. 5.3. Mnemonic for the second Maxwell relation
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5.2.3 Mnemonic for Third Maxwell Relation from H(S.P )

− S

P

T

V

∂

∂S

(
∂H

∂P

)
=

∂

∂P

(
∂H

∂S

)

(
∂V

∂S

)

P

=

(
∂T

∂P

)

S

Fig. 5.4. Mnemonic for the third Maxwell relation

5.2.4 Mnemonic for Fourth Maxwell Relation from G(T, P )

∂

∂P

(
∂G

∂T

)
=

∂

∂T

(
∂G

∂P

)

−
(
∂S

∂P

)

T

=

(
∂V

∂T

)

P

− S

P

T

V

Fig. 5.5. Mnemonic for the fourth Maxwell relation

5.3 Isothermal Compression

Take a piece of metal. Squash it reversibly from an initial pressure P1 to a final
pressure P2 > P1 at constant temperature. The metal shall give away a certain
amount say q of heat. Aim is to calculate q.

To this end, we start with expressing entropy as a function of temperature and
pressure : S ≡ S(T, P ). we have,

dS =

(
∂S

∂T

)

P

dT +

(
∂S

∂P

)

T

dP (5.10)

d̄ q = TdS (5.11)

= T

(
∂S

∂T

)

P

dT + T

(
∂S

∂P

)

T

dP (5.12)

In the above, the first term on the right hand side is zero since the process is
isothermal : dT = 0. Therefore,
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d̄ q = T

(
∂S

∂P

)

T

dP (5.13)

Employing the first Maxwell relation, the above can be written as,

d̄ q =−T
(
∂V

∂T

)

P

dP (5.14)

The coefficient of thermal volume expansion at constant pressure is defined as

γ =
1

V

(
∂V

∂T

)

P

Therefore, d̄ q = −γ T V dP , and hence q = −γ T V (P2 − P1). This
expression for q is true only if the change in volume is negligible during compression
and the initial and final pressures are P1 and P2 respectively.

In we want to take into account the change of V during the compression process,

q = −γ T
∫ P2

P1

dP V (P ) dP

where V ≡ V (P ) is the dependence of the volume on pressure during the com-
pression process.

When you squash a piece of metal it gets heated. In the quasi static reversible
process considered the temperature is maintained constant; hence the energy is
instantaneously liberated to the surrounding as heat. Since the system loses energy,
q is negative.

5.4 Adiabatic Compression

Start with T ≡ T (S, P ). T can change either by change of S at constant P
and/or change of P at constant entropy. For an adiabatic process the change of
S at constant P is zero, since there is no heat transaction with the surroundings.
Hence,

dT =

(
∂T

∂P

)

S

dP (5.15)

Use the following identity of the partial derivatives,

(
∂T

∂P

)

S

×
(
∂P

∂S

)

T

×
(
∂S

∂T

)

P

=−1 (5.16)

Take the second term. Employing a property of the partial derivatives, and the
fourth Maxwell relation,
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(
∂P

∂S

)

T

=
1(
∂S

∂P

)

T

=
1

−
(
∂V

∂T

)

P

= −
1

γV
(5.17)

Maxwell relation gives,

(
∂S

∂P

)

T

=−
(
∂V

∂T

)

P

= −γ V (5.18)

We also have

T

(
∂S

∂T

)

P

= CP (5.19)

We get,

(
∂T

∂P

)

S

×
(
−

1

γV

)(
CP

T

)
=−1 (5.20)

Thus in an adiabatic squashing of a metal piece the rise in temperature is given
by,

dT =
γV T

CP

dP (5.21)

5.5 Rubber Band and Entropic Tension

When you stretch a rubber band, it develops a linear tension F which opposes
the stretching process; work done is d̄ W = +Fdl for a quasi static reversible
stretching; dl is the infinitesimal increase in length. Work is done on the rubber
band and hence the expression for work is consistent with the sign convention.

In an earlier lecture, see Lectures - II, while discussing about work, I had men-
tioned that rubber elasticity has its origin in entropy. Let me elaborate on this
now. A rubber band is made of a large number of strands. Each strand is a chain
of molecules. These chains are intertwined. Each chain is full of twists and turns
and is in a coiled state. Take any single strand. It is obvious that the number of
configurations in which the chain can organize itself is larger when the strand is
coiled than when it is straight. Thus the entropy of a coiled strand is more than
that of a straight strand. When you stretch a rubber band the strands un-twine
and straighten up. Entropy decreases. The rubber band tries to coil back and in-
crease its entropy. This inherent tendency to increase its entropy manifests itself
as a linear tension.

Let us look at the stretching of a rubber band thermodynamically. We ignore
the very small change in volume that accompanies stretching. This means we
can ignore −PdV work compared to +Fdl work. We can write the first law of
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thermodynamics as dU = d̄ Q+Fdl. Thus we have a F , V, T system instead of
P, V, T with −F replacing P in all the thermodynamic relations. In particular
the Maxwell relations are modified : Replace P by −F ; and V by l. We have
the modified mnemonic base for the rubber-thermodynamics, see the boxed item
below.

− S

−F l

T

From the mnemonic we can write down the second
Maxwell relation (originating from Helmholtz free energy)
as,

(
∂S

∂l

)

T

= −
(
∂F
∂T

)

l

(5.22)

Since S decreases with increase of l,

(
∂S

∂l

)

T

< 0. From the Maxwell relation

we see that this is equivalent to
(
∂F
∂T

)

l

> 0.

Consider the following properties of partial derivatives,
(
∂l

∂T

)

F

=
1(

∂T

∂l

)

F

(5.23)

(
∂F
∂T

)

l

×
(
∂T

∂l

)

F

×
(
∂l

∂F

)

T

= −1 (5.24)

We find,
(
∂l

∂T

)

F

= −
(
∂F
∂T

)

l

×
(
∂l

∂F

)

T

(5.25)

The first term on the right hand side is positive, we have shown this just now. The
second term is also positive - upon increase of tension the length of the rubber
band increases. Therefore, (

∂l

∂T

)

F

< 0.

The equation above tells you that when you stretch a rubber band it will cool
down; or when when a stretched rubber band shrinks it will warm up.

Keep a rubber band across and touching your forehead; then stretch it; the
rubber band throws out heat and you can feel it.

Hang an appropriate weight to the end of a rubber band; slightly heat the
rubber band; it will shrink and the weight shall be pulled up.
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5.6 First Energy Equation

We start with the first law of thermodynamics dU = TdS−PdV . Let us consider
U ≡ U(T, V ) and S ≡ S(T, V ). we get,

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV (5.26)

dS =

(
∂S

∂T

)

V

dT +

(
∂S

∂V

)

T

dV (5.27)

The first law of thermodynamics can now be written as
(
∂U

∂T

)

V

dT+

(
∂U

∂V

)

T

dV

= T

(
∂S

∂T

)

V

dT + T

(
∂S

∂V

)

T

dV − PdV (5.28)

• Equate the coefficients of dT and get the familiar expression,
(
∂U

∂T

)

V

= T

(
∂S

∂T

)

V

(5.29)

• Equating the coefficient of dV we get,
(
∂U

∂V

)

T

= T

(
∂S

∂V

)

T

− P (5.30)

Re write the first term on the right hand side of the above equation employing
the second Maxwell relation

− S

P

T

V

and get,

(
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P (5.31)

The above is called the first energy equation. An important
point is that the right hand side of the first energy equation
can be calculated from the equation of state.

5.6.1 First Energy Equation and Ideal Gas

We have for an ideal gas P = NkBT/V . Therefore
(
∂P

∂T

)

V

=
NkB

V
=
P

T
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Substituting the above in the first energy equation, we get,

(
∂U

∂V

)

T

= 0.

The internal energy does not depend on volume. It depends only on temperature.

5.6.2 First Energy Equation and van der Waal Gas

Let us alculate

(
∂U

∂V

)

T

for van der Waal gas for which,

(
P +

aN2

V 2

)
(V −Nb) = NkBT (5.32)

We can write the equation of state for van der Waal gas as,

P =
NkBT

V −Nb
−
aN2

V 2
(5.33)

(
∂P

∂T

)

V

=
NkB

V −Nb
− P (5.34)

(
∂U

∂V

)

T

=
NkBT

V −Nb
− P (5.35)

=
aN2

V 2
(5.36)

We find that internal energy depends on volume. This is a general result. For any
non-ideal gas, internal energy shall depend on both temperature and volume.

5.6.3 First energy equation in terms of γ and κT

First energy equation in terms of γ and κT The first energy equation can be
expressed in terms of experimentally measurable properties of the system like
isothermal compressibility denoted by the symbol κT and coefficient of thermal
expansion denoted by the symbol γ, as follows. indexthermal expansion We have

(
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P (5.37)

We can write
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(
∂P

∂T

)

V

=
1(

∂T

∂P

)

V

(5.38)

(
∂T

∂P

)

V

×
(
∂P

∂V

)

T

×
(
∂V

∂T

)

P

=−1 (5.39)

(5.40)

In terms of isothermal compressibility as κT and coefficient of thermal expansion
γ, we can write the above equation as,

(
∂T

∂P

)

V

×
(

1

−V κT

)
× (V γ) =−1 (5.41)

(
∂P

∂T

)

V

=
γ

κT

(5.42)

The first energy equation can now be written as,
(
∂U

∂V

)

T

=
Tγ

κT

− P (5.43)

5.7 Second Energy Equation

The aim is to first express U as a function of T and P ; then we shall evaluate the
partial derivatives of U with respect to T and P .

To this end we write

U ≡ U(T, P ) (5.44)

dU =

(
∂U

∂T

)

P

dT +

(
∂U

∂P

)

T

dP (5.45)

Similarly, we have,

S = S(T, P ) (5.46)

dS =

(
∂S

∂T

)

P

dT +

(
∂S

∂P

)

T

dP (5.47)

and

V = V (T, P ) (5.48)

dV =

(
∂V

∂T

)

P

dT +

(
∂V

∂P

)

T

dP (5.49)



5.8 TdS Equations 65

Begin with the first law of thermodynamics for reversible process

dU = TdS − PdV (5.50)

In the above substitute for dU , dS and dV respectively from the equations above,
and get,

(
∂U

∂T

)

P

dT +

(
∂U

∂P

)

T

dP = T

(
∂S

∂T

)

P

dT + T

(
∂S

∂P

)

T

dP −(5.51)

P

(
∂V

∂T

)

P

dT − P

(
∂V

∂P

)

T

dP (5.52)

Equating the coefficients of dT we get,
(
∂U

∂T

)

P

= T

(
∂S

∂T

)

P

− P

(
∂V

∂T

)

P

(5.53)

(5.54)

This can be written as
(
∂U

∂T

)

P

= T

(
∂S

∂T

)

P

− PV γ (5.55)

Equating the coefficients of dP we get,
(
∂U

∂P

)

T

= T

(
∂S

∂P

)

T

− P

(
∂V

∂P

)

T

(5.56)

(5.57)

Now employing the fourth Maxwell relation in the above, we get the second energy
equation,

(
∂U

∂P

)

T

=−
[
T

(
∂V

∂T

)

P

+ P

(
∂V

∂P

)

T

]
(5.58)

(5.59)

In terms of isothermal compressibility κT and coefficient thermal expansion γ,
the second energy equation can be written as,

(
∂U

∂P

)

T

== −T γ V + V κt P (5.60)

5.8 TdS Equations

The so-called TdS equations are obtained by considering S as a function of (i) T
and V , (ii) T and P , and (iii) P and V .
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5.8.1 First TdS equation : S ≡ S(T, V )

TdS = T

(
∂S

∂T

)

V

dT + T

(
∂S

∂V

)

T

dV (5.61)

(5.62)

Employing the second Maxwell relation in the above, we get the first TdS
equation :

TdS = T

(
∂S

∂T

)

V

dT + T

(
∂P

∂T

)

V

dV (5.63)

We can write the above in terms of experimentally measurable properties of the
system as follows We have

(
∂P

∂T

)

V

×
(
∂T

∂V

)

P

×
(
∂V

∂P

)

T

=−1 (5.64)

(
∂P

∂T

)

V

× 1

V γ
× (−V κT ) =−1 (5.65)

(
∂P

∂T

)

V

=
γ

κT

(5.66)

T

(
∂S

∂T

)

V

= CV (5.67)

We thus have the first TdS equation,

TdS = CV dT +
γ

κT

TdV (5.68)

5.8.2 Second TdS equation : S ≡ S(T, P )

TdS = T

(
∂S

∂T

)

P

dT + T

(
∂S

∂P

)

T

dP (5.69)

= T

(
∂S

∂T

)

P

dT − T

(
∂V

∂T

)

P

dP, (5.70)

where we have made use of the fourth Maxwell relation. We can also write the
second TdS equation as,

T dS = CP dT − γ T V dP (5.71)
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5.8.3 Third TdS equation : S ≡ S(P, V )

dS =

(
∂S

∂P

)

V

dP +

(
∂S

∂V

)

P

dV (5.72)

We have the following identities

(
∂S

∂P

)

V

=

(
∂S

∂T

)

V

×
(
∂T

∂P

)

V

=
CV

T

(
∂T

∂P

)

V

(5.73)

(
∂S

∂V

)

P

=

(
∂S

∂T

)

P

×
(
∂T

∂V

)

P

=
CP

T

(
∂T

∂V

)

P

(5.74)

Thus we get the third TdS equation,

TdS = CV

(
∂T

∂P

)

V

dP + CP

(
∂T

∂V

)

P

dV, (5.75)

which can also be written as,

TdS = CV

κT

γ
dP +

CP

V γ
dV (5.76)
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7. LECTURES 21 - 25

VAN DER WAALS EQUATION OF STATE AND ELEMENTS OF

PHASE TRANSITION

7.1 PV = NkBT ⇒ (P + aN 2/V 2)(V −Nb) = NkBT

The equation of state for an ideal gas is PV = NkBT . It provides a reasonably
good description of the behaviour of air near room temperatures. Real gases are
not ideal. An equation of state for a non-ideal gas was proposed by Johannes
Diderik van der Walls (1837 - 1923). in the year 1873. van der Waals retained the
basic structure of the ideal gas law and made empirical corrections to P and V ,
based on heuristic arguments.

7.1.1 A Molecule is of Finite Size

The first correction comes from realizing that a molecule is not a geometrical
point with zero volume. A molecule occupies a finite, though tiny, space. We have
already seen of Lennard-Jones potential, see Eq. (2.1) and Fig. (2.2.1), which
tells us that when two molecules come very close to each other, they repel each
other rather strongly. The repulsion increases steeply with decrease of the inter-
molecular distance. Effectively each molecule has a tiny private space which it owns
exclusively; it does not permit any other molecule to come into its private space.
The excluded volume for a molecule can be taken as b = (4/3)πσ3, where σ is
the ’size’ parameter appearing in the Lennard-Jones potential, see Eq. (2.1). There
are N molecules. If the volume of the container is V then the volume available
for the N molecules to move freely around is V −Nb. The value of b shall differ
from one substance to another. For some chosen materials, these are given in Table
(7.1).

van der Walls argued that this is the volume we have to use in the ideal gas law
and not the volume of the container. With this correction, the equation of state
reads as P (V −Nb) = NkBT . We notice that

NkBT

V −Nb
>

NkBT

V
. (7.1)

The above implies that the pressure after correction to the volume is more than
the pressure before correction. Repulsion at short range leads to an increase of
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pressure, as indeed one would expect. Each molecule pushes out its neighbours
and as a consequence, overall there is an increase in pressure.

While the strong, short-range repulsion leads to increase of pressure, the weak,
long range attraction leads decrease of pressure, see below.

7.1.2 Molecules Attract Each Other

A molecule in the interior, is attracted by all the molecules surrounding it; hence it
does not experience on the average any net force. Of course it will be subjected to a
tiny fluctuating force whose average over time is zero. Such a statistical cancellation
does not obtain for a molecule near the wall of the container. It is pulled by the
molecules present in the interior; there are no molecules in the opposite side to
cancel, statistically, the force. As a result a molecule near a wall of the container
experiences a net pull inwards. This diminishes the effect of impact on the wall;
the pressure thus, becomes less. The reduction in pressure depends on two factors.

1. The number of molecules that pull and
2. the number of molecules that get pulled.

Hence we can say P → P − a(N/V )2 where a is a proportionality constant.
The value of a shall differ from material to material. For some chosen substances
the value of a is given in Table (7.1).

7.2 van der Waals Equation of State

Incorporating the corrections to pressure and volume, we get,

P =
NkBT

V −Nb
− aN2

V 2
(7.2)

The above can be written in a more familiar form,

(
P +

aN2

V 2

)
(V −Nb) =NkBT (7.3)

7.2.1 Vc, Pc, and Tc for a van der Waals Gas

Let v = V/N denote the specific volume of a molecule. We can write the van der
Waals equation of state as

(
P +

a

v2

)
(v − b) = kBT (7.4)

We can re-write the above as a cubic equation in v, see below.
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Material a (pa m6) b (m3 mol−1)

Helium 0.00346 2.371× 10−5

Neon 0.0212 1.710× 10−5

Hydrogen 0.00245 2.661× 10−5

Carbon-di-Oxide 0.396 4.269× 10−5

Water Vapour 0.5471 3.052× 10−5

Table 7.1. The constants a and b of van der Waals equation of state

v3 −
(
b +

kBT

P

)
v2 +

a

P
v − ab

P
= 0 (7.5)

In general the above cubic equation has three roots, which we denote by the
symbols v1, v2, and v3. We write the equation of state as

(v − v1)(v − v2)(v − v3) = 0 (7.6)

The three roots v1, v2, and v3 depend on P , T , a, and b. Consider a situation
where v1 = v2 = v3 = vc. Also when the three roots of v are the same, let
P = Pc and T = Tc. We can determine vc, Pc, and Tc as described below.

Formally we have,

(v − vc)
3 = 0 (7.7)

v3 − (3vc) v
2 + (3v2c) v − (v3c) = 0 (7.8)

Compare Eq. (7.8) with Eq. (7.5) and equate the coefficients of equal powers of v.
We get,

3vc = b +
kBT

P
; 3v2c =

a

P
; and v3c =

ab

P
. (7.9)

We can get vc, Pc and Tc solving the above three equations. These are,

vc = 3 b ; Pc =
1

27

a

b2
; kBTc =

8

27

a

b
. (7.10)

We can obtain the same results by taking the first and second derivatives of P
with respect to v and setting them to zero44.

44 Pc, vc, and Tc are those values of P , v and T respectively, at which both first and second derivatives
of P with respect to v vanish. To calculate the critical pressure, volume and temperatures we proceed
as follows.

P =
kBT

v − b
−

a

v2
;

dP

dv
= −

kBT

(v − b)2
+

2a

v3
;

d2P

dv2
=

2kBT

(v − b)3
−

6a

v4

Setting
dP

dv
=

d2P

dv2
= 0 and solving the resulting algebraic equations gives vc, Pc and Tc.
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Let us measure v in units of vc, P in units of Pc, and T in units of Tc.
Accordingly we set, v̂ = v/vc, P̂ = P/Pc and T̂ = T/Tc. In terms of the scaled

variables v̂, P̂ and T̂ , the van der Waals equation of state reads as,

P̂ =
8

3

T̂

v̂ − (1/3)
− 3

v̂2
(7.11)

(
P̂ +

3

v̂2

) (
v̂ −

1

3

)
=

8T̂

3
(7.12)

Notice that in the above equation of state, the material-dependent properties a
and b do not appear. The pressure versus volume of a van der waals gas is plotted
in Fig. (7.1) for T̂ = 1.2, 1.0 and 0.8.

1 2 3 4 5
-0.5

0

0.5

1

1.5

2

Fig. 7.1. P̂ versus V̂ for three values of T̂ .

At high temperatures (T̂ > 1) the van der Waals gas behaves somewhat, like
an ideal gas. When you confine a given quantity of the gas to smaller and smaller
volumes, the pressure increases smoothly; at very small volumes, the pressure
increases rather steeply with decrease of volume and goes to infinity in the limit
of v̂ → 1/3 (or v → b or V → Nb). For an ideal gas, the limiting divergent
behaviour obtains when v or V → 0.

7.2.2 Isotherm at Low T for a van der Waals Gas

At low temperatures (T̂ < 1) the phase diagram exhibits some seemingly peculiar
behaviour. Keeping the temperature at a constant low value, if we compress the
gas, its pressure increases initially; upon further compression, the pressure falls
down and then starts increasing and eventually goes to infinity rapidly as v̂ →
1/3. The important point is that there exists regions of temperature, pressure and
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volume, in which if you compress the gas its pressure drops instead of increasing.
How do we understand this behaviour ?

7.2.3 G at Low Temperatures for a van der Waals Gas

To this end, let us investigate the behaviour of Gibbs free energy at low tempera-
tures. For a fixed T and P , the equilibrium value of V a fluid system is determined
by minimizing the Gibbs free energy.

Gibbs free energy G is a function of T, P, and, N . It is obtained by Legendre
transform of S → T , V → P and U → G and the defining equations are,

G(T, P,N) = U(S, V,N) − TS + PV ; T =

(
∂U

∂S

)

V,N

; P = −
(
∂U

∂V

)

S,N

We have,

dG = +V dP − S dT + µdN (7.13)

Let us investigate the behaviour of G at constant temperature and at a constant
quantity of material. Accordingly, in the equation above, we set dT = 0 and
dN = 0. Therefore,

dG= V dP (7.14)

(
∂G

∂V

)

T,N

= V

(
∂P

∂V

)

T,N

(7.15)

We can write Eq. (7.15), in terms of scaled variables. Note Ĝ ≡ Ĝ(T̂ , v̂). We
have,

(
∂Ĝ

∂v̂

)

T̂

= v̂

(
∂P̂

∂v̂

)

T̂

(7.16)

The Right Hand Side of the above equation can be obtained from the van der
Waals equation of state, see Eq. (7.11). We have,

P̂ =
8T̂

3v̂ − 1
−

3

v̂2
(7.17)

(
∂P̂

∂v̂

)

T̂

=− (8T̂ ) × 3

(3v̂ − 1)2
+

6

v̂3
(7.18)



76 7. LECTURES 21 - 25

(
∂Ĝ

∂v̂

)

T̂

=−
(8T̂ )3v̂

(3v̂ − 1)2
+

6

v̂2

=−(8T̂ )(3v̂ − 1 + 1)

(3v̂ − 1)2
+

6

v̂2

=−
8T̂

3v̂ − 1
−

8T̂

(3v̂ − 1)2
+

6

v̂2
(7.19)

Ĝ(T̂ , v̂) =−
8T̂

3
ln(3v̂ − 1) +

8T̂

3

1

3v̂ − 1
−

6

v̂
+ φ(T̂ ) (7.20)

For a fixed temperature, the equation above gives Gibbs free energy as a function
of volume, upto an additive constant. The van der Walls equation gives pressure as
a function of volume for a fixed temperature. Combining these two we can express
the Gibbs free energy as function of pressure. We have plotted Ĝ against P̂ at
T̂ = 0.8 in figure (7.2) below.

-0.05 0 0.05 0.1 0.15
-4.5

-4.4

-4.3

-4.2

-4.1

-4

-3.9

Fig. 7.2. Gibbs free energy (scaled) versus pressure (scaled) for isotherm at T̂ = 0.8. The points marked
1 − 7 correspond to the states indicated in the isotherm below in Fig.(7.3).

From Fig. (7.2) we observe that the thermodynamic states corresponding to the
points on the loop 2 → 3 → 4 → 5 → 6 should be unstable since for every such
state there exists a state with lower Gibbs free energy. Note, (stable) equilibrium
states are characterized by minimum Gibbs free energy.

The isotherm underlying Fig. (7.2) is shown in Fig. (7.3).
How do we locate the points 2 and 6 so that I can draw an horizontal line

connecting these two points which incidentally passes through 4 ? The states on
this line have all the same free energy since this line is isobaric and isothermal.
Let me remind you that G is a function of T , P and N . Also this constant free
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1 2 3 4 5 6

-0.4
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0
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0.4

0.6

Fig. 7.3. Isotherm at T̂ = 0.8 : Pressure (scaled) versus volume (scaled), see Eq. (7.11)

energy is less than the free energy on the points lying on the unstable segment
2 → 3 → 4 → 5 → 6.

7.2.4 Maxwell Construction

To locate the horizontal line passing through 2, 4, and 6 we proceed as follows.
Look at Fig. (7.2). First we observe the integral of dĜ over the loop C : 2 →
3 → 4 → 5 → 6 is zero.

∮

C

dĜ = 0 : C = 2 → 3 → 4 → 5 → 6 (7.21)

To evaluate the above integral we recognize that dĜ = v̂dP̂ at constant T̂ and
N . Thus the integral over dĜ equals integral over v̂dP̂ , which is best seen in the
isotherm plotted with v̂ on the y-axis and P̂ on the x axis. Figure (7.4) depicts
such a curve with the points 1 to 7 marked on it.

We have
∫

C

v̂dP̂ =

∫ 3

2

v̂dP̂ +

∫ 4

3

v̂dP̂ +

∫ 5

4

v̂dP̂ +

∫ 6

5

v̂dP̂ = 0 (7.22)

=

(∫ 3

2

v̂dP̂ −
∫ 3

4

v̂dP̂

)
−
(∫ 4

5

v̂dP̂ −
∫ 6

5

v̂dP̂

)
= 0 (7.23)

Inn the above, the integrals in the first bracket on the RHS, give the area of the
loop 2 → 3 → 4 → 2. The integrals in the second bracket correspond to the
area in the lo op 4 → 5 → 6 → 4

Now look at Fig. (7.3). The above statement of equal areas means that the
points 2, 4 and 6 fall on the horizontal line which is positioned in such a way that
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0
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6

Fig. 7.4. Isotherm at T̂ = 0.8 : Volume (scaled) versus Pressure (scaled), at T̂ = 0.8 see Eq. (7.11)

the area contained in the closed loop 2 → 3 → 4 → 2 is the same as the area
contained in the closed loop 4 → 5 → 6 → 4. The horizontal line can be located
either graphically or numerically. Drawing a straight line to ensure equality of
enclosed areas, as described above, is called the Maxwell construction.

7.2.5 Vapour - Liquid Phase Transition

Look at the figure (7.3); at point 1, the fluid system is in a homogeneous vapour
state; when you confine the system to smaller and smaller volume, its pressure
increases smoothly; the system manages to retain its homogeneous vapour state,
until it reaches the point 2. The pressure at 2 is the maximum the system can
withstand if it wants to remain in a homogeneous vapour state. Upon further con-
finement, the states on the van der Waals curve are metastable. A metastable state
is an unstable state. The system can not remain in a homogeneous vapour phase in
the meta stable state. By a mechanism called nucleation, liquid droplets are formed
locally at several points in vapour system The system remains in metastable state
until it reaches the point 3. Note that in this segment 2 → 3, the slope of the
pressure - volume curve is negative; this ensures that isothermal compressibility is
positive.

Beyond the point 3 and in the segment 3 → 4 → 5 the system is unstable.
The slope of the pressure versus temperature curve is positive; isothermal com-
pressibility is negative which is un-physical. Hence in this region the system can
not remain in a homogeneous phase (liquid or gas); it will spontaneously breaks
into two phases by a a mechanism called spinodal decomposition. Beyond 5 and
in the segment 5 → 6 the system is again metastable. Beyond 6, the system
is in a homogeneous liquid phase. On the Maxwell line, the vapour and liquid
coexist. We have already seen that at all the states on the entire Maxwell line
2 → 3′ → 4 → 5′ → 6, the Gibbs free energy is smaller at points on the
Maxwell line compared to that at the corresponding states on the van der Waals
curve. As we move on the Maxwell line, from point 2 toward the point 6, more and
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more of vapour gets converted into liquid. At 6 the phase transition from vapour
state to liquid state is complete.

Upon further confinement, the pressure of the liquid increases and goes to in-
finity when v̂ → 1/3 (same as V → Nb). The volume drops abruptly from
v̂(2) to v̂(6) at constant pressure. The transition from vapour to liquid phase is
discontinuous. Hence it is called discontinuous or first order phase transition.

7.2.6 T − V Phase Diagram of a van der Waals Gas

From the isotherm at T̂ = 0.8 depicted in Fig. (7.3) we find the points 2 and 6
are the end points of the Maxwell line. As we increase the temperature, the two
points move toward each other; the length of the Maxwell line becomes smaller
and smaller. In the limit of T̂ → 1 the two points merge and we call it a critical
point for which T̂ = v̂ = P̂ = 1. Let us plot the value of v̂ of the points 2 and
6 for various values of T̂ from say 0.8 to 1. These points are plotted on a graph
with T̂ on the y-axis and v̂ on the axis. The temperature - volume phase diagram
is schematically shown in Fig. (7.5).

T

V

vapourliquid

Vc

Tc

SINGLE PHASE

TWO PHASE

Fig. 7.5. Schematic of a Temperature-Volume Phase Diagram

The interior of the dome is the two phase region and the exterior is the single
phase region. The curve that separates the single phase and the two-phase regions
has two wings, one on the right - the vapour side and the other on the left - the
liquid side. If the system enters the dome straight down through the apex whose
coordinates are (Vc, Tc), the phase transition is continuous - second order phase
transition. If the system enters the dome at any other point where V 6= Vc, the
phase transition is first order.

Now consider the segment from 3′ to 5′ on the Maxwell line depicted in Fig.
(7.3). These two points are the vertical projections of the points 3 and 5 from the
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van der Walls curve. The states on the segment of the van der Waals line between
3 and 5 are unstable45. As the temperature increases from T̂ = 0.8 to 1, the
points 3′ and 5′ come closer and closer to each other and in the limit T̂ → 1 they
merge at the critical point. Let us plot the value of v̂ of the points 3′ and 5′ for
various values of T̂ from say 0.8 to 1. These points are plotted on a graph with
T̂ on the y-axis and v̂ on the axis. These data generate a dome inside the dome
defining the two-phase region, as depicted Fig (7.6. The region inside the smaller
dome is un stable.

The system in a meta stable state the region outside the inner dome but inside
the outer dome. In the metastable region, the phenomenon of nucleation is the
mechanism that is responsible for the emergence of new phase.

Inside the inner dome, the system is unstable and breaks up locally and sponta-
neously into two phases by a mechanism called Spinodal decomposition. The inner
unstable region and the outer meta stable region is separated by the spinodal
curve, indicated in Fig. (7.6).

T

V

vapour

Vc

Tc binodal line
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Fig. 7.6. Schematic Temperature-Volume Phase Diagram

7.2.7 P − T Phase Diagram for a van der Waals Gas

Maxwell construction tells us that for each isotherm below the critical temperature,
there exists a well defined pressure at which the vapour-liquid phase transition
takes place. Let us name it as vapour pressure curve. The liquid and gas coexist
on this curve. The vapour - pressure curve terminates at the critical point. Figure
(7.7) depicts the schematic of the pressure temperature phase diagram for the van
der Waals fluid.

It is indeed astonishing that simple corrections to pressure and volume in the
ideal gas law, which led to the van der Waals equation state, could capture the es-

45 the thermal expansion coefficient is negative since the slope of the van der Waals curve is positive in
the region between the points 3 and 5.
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Fig. 7.7. A Schematic of the Pressure-Temperature Phase Diagram

sential contents of vapour-liquid phase transition. The transition is discontinuous
- the properties of the system change abruptly. The vapour pressure curve termi-
nates at a critical point. The phase transition at the critical point a continuous.

We have looked at only the vapour pressure curve on the pressure temperature
phase diagram of a simple fluid system. There are several other interesting features
in the phase diagram of a simple substance. We have the melting line that separates
solid and liquid phases; the sublimation line at low temperatures and pressure,
which separate the solid and gaseous phases; the tri-critical point at which the
three coexistence curves meet. The solid, liquid and the gaseous phases coexist at
the tri-critical point. The slope of the coexistence curve holds a vital information
about how certain physical properties change upon phase transformation and this
is enshrined in the Clausius - Clapeyron equation. We shall see of these, briefly, in
what follows.

7.3 Phase Transition - An Elementary Introduction

We expect a substance to be in solid phase at low temperatures and high pressures.
It will be in a gaseous state at high temperatures and low pressures. Figure (7.8)
depicts the phase diagram of a normal substance.

An astonishing thing about phase transition is that a sharp line separates two
phases. The solid and Gas are separated by the sublimation line; the solid and
fluid phases are separated by the melting line; the liquid and the gas phases are
separated by the vapour pressure line which terminates at a critical point. Beyond
the critical point there is no distinction between liquid and vapour states. We
call it a fluid phase - which include both liquid state and gaseous state. The two
adjacent phases coexist on the line separating them. We call it a co-existence line.
The three co-existence curves meet at the triple point.
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Fig. 7.8. Schematic of Pressure-Temperature Phase behaviour of a Normal Substance

That different phases are separated by a sharp line implies even an infinitesi-
mally small change in pressure or temperature across the coexistence line drives
the system from one phase to the other. The molecules of the substance that un-
dergo phases transition organize themselves differently in the two phases. These
two kinds of organization require different energies. The difference in the energies
is called latent heat. Hence you have to supply or remove the latent heat to bring
about phase transition.

The vapour pressure line terminates at the e critical point. To the best of our
experimental knowledge the melting line does not terminate. It goes on and on ad

infinitum.The distinction between the liquid phase and the gaseous phase decreases
as you move toward the critical point. The difference disappears at the critical
point. We have second order phase transition at the critical point. The transition
is continuous and there is no latent heat. Unlike the first order transition which
occurs abruptly unannounced, the second order phase transition gives adequate
warning signals when it arrives. The fluctuations grow larger and larger as you
approach the phase transition temperature from either directions - i.e. from liquid
to gas or from gas to liquid.

7.3.1 Clausius - Clapeyron Equation

Consider two points on either side of the melting line but very close to it. A
molecule residing in the solid phase has no compelling reason to migrate to liquid
phase and vice versa. However on the melting line, a molecule can live on both
phases with equal comfort. With equal ease it can migrate from the solid phase
to liquid phase or vice versa. If µ1 and µ2 are the chemical potential of the two
phases, then µ1(T, P ) = µ2(T, P ) for a point T, P on the melting line. Consider
a neighbouring point on the melting line. Let its coordinates be T+∆T, P+∆P .
We have,
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µ1(T +∆T, P +∆P ) = µ2(T +∆T, P +∆P ) (7.24)

µ1(T, P ) +∆T

(
∂µ1

∂T

)

P

+∆P

(
∂µ1

∂P

)

T

=

µ2(T, P ) +∆T

(
∂µ2

∂T

)

P

+∆P

(
∂µ2

∂P

)

T

(7.25)

∆T

[(
∂µ1

∂T

)

P

−
(
∂µ2

∂T

)

P

]
=∆P

[(
∂µ2

∂P

)

T

−
(
∂µ1

∂P

)

T

]
(7.26)

∆T (−s1 + s2) =∆P (v2 − v1) (7.27)

dP

dT
=
s2 − s1

v2 − v1
(7.28)

In the above, we have made use of Gibbs-Duhem relation46 for going from Eq.
(7.26) to (7.27).

Equation (7.28) tells us that the slope of the co-existence line is determined by
the entropies and volumes of the two phases. We can write Eq. (7.28) in a more
convenient form as follows. We have S = Ns and V = Nv. Also S2−S1 = L/T ,
where L denotes the latent heat. Let ∆V = V2 − V1. We have then,

dP

dT
=

L

T∆V
(7.29)

The above is called the Clausius-Clapeyron equation. Consider the schematic phase
diagram shown in Fig. (7.8). Let subscript 1 refer to solid phase and 2 to liquid.
It is quite obvious that S2 > S1 : A solid is ordered and liquid is disordered.
The melting line has a positive slope. This means V2 > V − 1. A given amount
of substance occupies more space when in liquid phase than when in solid phase.
When a solid melts it expands.

7.3.2 Anomalous Expansion of Water

Now consider the phase diagram for water, shown below. The melting has a neg-
ative slope. Since entropy of water is more than the entropy of ice, the volume of
water must be less that that of ice; only then the slope of the vapour pressure line
shall be negative.

46 dµ = −sdT + vdP.
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In other words, when water
freezes into ice it expands. Hence
do not keep a glass bottle of wa-
ter in a freezer. The bottle will
break when water freezes to into
ice. A major advantage of the
anomalous expansion is that a
lake freezes in winter from top
to bottom. Ice floats on water.
Icebergs on lakes and ponds are
a consequence of the anomalous
expansion of water.

Fig. 7.9. Pressure-Temperature phase diagram of water

The floating ice on he top of water acts as an insulator impeding freezing of water
underneath. The water underneath does not freeze even during peak of winter,
enabling fish and other aquatic life forms and organisms to survive. Of course
anomalous expansion of water leads to bursting of water pipelines in winter, a
nuisance indeed !
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WORK, AND HEAT : MICROSCOPIC INTERPRETATION,
FLUCTUATIONS AND THE SECOND LAW

8.1 Micro-Macro Connections

Corresponding to every thermodynamic property, we have, in statistical mechanics,
a random variable. The average of this random variable over a suitable ensemble47,
or equivalently over the corresponding probability distribution, equals the value of
the thermodynamic property. Thus, statistical mechanics provides us with a ma-
chinery to calculate macroscopic properties from the properties of its microscopic
constituents - atoms and molecules, and interactions amongst them.

For example we saw that the mechanical pressure in thermodynamics corre-
sponds to the sum of the momenta transferred to the wall of the container by
a very large number molecular impacts. The internal energy in thermodynam-
ics corresponds to the sum of the kinetic energies and the interaction energies of
the atoms and molecules of the macroscopic body. Statistical mechanics provides
several such examples of micro-macro connections.

When a macroscopic body absorbs a quantity q of reversible heat, at constant
temperature T , its entropy increases by q/T . What is the microscopic counterpart
of entropy in statistical mechanics ? Answer : Boltzmann entropy.

Ludwig Eduard Boltzmann defined entropy completely in terms of the proba-
bilities of the micro states of a macroscopic system. Formally we have

S = −kB
∑

i

pi ln pi, (8.1)

where a micro state is indexed by the integer i, and its probability denoted by
the symbol pi. The sum runs over all the micro states of the macroscopic system
under the given constraints. The Boltzmann constant ensures that, we measure
entropy in units of joules per kelvin. Thus we have S ≡ S(p1, p2, · · · ) : Entropy
is a function of the probabilities of the micro states.

A natural question that arises in this context relates to the microscopic nature
of work and heat - the two principal ingredients of thermodynamics, and to this
issue we turn our attention below.

47 micro canonical ensemble for isolated system, canonical ensemble for a closed system, and grand
canonical ensemble for an open systemetc.
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8.1.1 Work and Heat

In thermodynamics, work and heat are two processes by which a macroscopic sys-
tem transacts energy with its surroundings or with another macroscopic system.
Therefore let us recall the micro - macro connection for the internal energy de-
scribed in Lecture Notes -2. Whatever we discussed in Lecture Notes -2, can be
formally expressed as,

U = 〈E〉 =
∑

i

piǫi, (8.2)

where ǫi is the energy of the micro state indexed by i and pi its probability.
Thus internal energy is a function of the energies of micro states and of their
probabilities : U ≡ U(ǫ1, ǫ2, · · · , p1, p2, · · · ).

We can change U by two ways.

1. Change {ǫi : i = 1, 2, · · · }, keeping {pi : i = 1, 2, · · · } unchanged. The
change in internal energy brought about this way corresponds to work48.

2. Change {pi : i = 1, 2, · · · } keeping {ǫi : i = 1, 2, · · · } unchanged49. The
change in internal energy brought about in this fashion is called heat50.

We express the above two processes formally as,

dU =
∑

i

pi dǫi +
∑

⋆

i

ǫi dpi (8.3)

In the second term on the right hand side of the above equation, I have su-
perscripted the summation sign with a star to remind us of the constraint that∑

i dpi = 0.

8.1.2 Micro to Macro : Work

We start with the first term on the right hand side of Eq. (8.3). We keep in mind
that the probabilities are kept constant. We have,

∑

i

pidǫi =
∑

i

pi
∂ǫi

∂V
dV =

∂

∂V

(
∑

i

piǫi

)
dV =

∂U

∂V
dV =−P dV

48 In a quantum mechanical description, the micro states are the eigenstates; {ǫi : i = 1, 2, · · · }
are the energies of the eigenstates; the energy eigenvalues will change when you change the boundary
condition of the underlying Schrödinger equation. Changing the boundary condition is the equivalent
to changing the volume. Work results of when volume changes. Hence it is correct to call this term as
work.

49 ensure
∑

i dpi equals zero, since the total probability is unity.
50 In statistical mechanics, entropy is purely of probabilistic origin. In thermodynamics, it is the product

of change in entropy and temperature that corresponds to heat. Hence this change in energy brought
about by changing the probabilities should correspond to heat.
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8.1.3 Micro to Macro : Heat

We start with the second term on the right hand side of Eq. (8.3). We keep in
mind that the energies are kept constant. We have,

∑
⋆

i

ǫidpi =
∑

⋆

i

ǫi
∂pi

∂S
dS =

∂

∂S

(
∑

i

ǫipi

)
dS =

∂U

∂S
dS = T dS

8.1.4 Work, Heat, Children, and escalator

Let me illustrate the microscopic nature of heat and work by an analogy involving
children playing in an escalator.

Let the rungs of the escalator be labeled (and re-labeled, when the escalator
moves) by integers that stand for their energies. The energy of a rung at any instant
of time is determined by how far above it is from a reference level 0 at entry point of
the escalator. A fixed number, say N , of children are playing - going up and down
- in the escalator. At a particular instant of time let ni be the number children
in the rung labeled by i. Figure (8.2) depicts a schematic of the escalator-children
system; the children depicted as filled circles on the rungs labeled by their energies.
We have takenN = 10. To begin with we have n1 = 4;n2 = 2;n3 = 1;n4 = 3.
The other rungs are unoccupied and do not contribute to energy. The energy of
the system is

E0 = (1 × 4) + (2 × 2) + (3 × 1) + (4 × 3) = 23 units.

The first step is a work step. The escalator moves up; the distribution of children
remains the same. Each rung moves up by two energy units carrying with it the
children it holds. We relabel the rungs by their new energy values. Thus the rungs
labelled 1, 2, 3, 4 are relabelled and the new labels are 3, 4, 5, 6. In the revised
labelling the distribution is given by n3 = 4;n4 = 2;n5 = 1;n6 = 3 and all
other rungs are are unoccupied. At the end of the first work step the energy of the
system is

EW
1 = (3 × 4) + (4 × 2) + (5 × 1) + (6 × 3) = 43 units.

The energy has increased. Hence in this step work is done on the system.
The next step is a heat step. The escalator does not move. But the children

move and the distribution change to n2 = 2;n3 = 1;n4 = 1;n5 = 3;n6 =
1;n7 = 2. The energy of the system after the first heat step is

EH
1 = (2× 2)+ (3× 1)+ (4× 1)+ (5× 3)+ (6× 1)+ (7× 2) = 56 units.

The energy has increased. This means that in the first heat step system has drawn
energy from the thermostat.

We have depicted two more work and heat steps in Fig. (8.2).
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8.2 Work Fluctuations : Jarzynski Identity

Consider a closed system in thermal equilibrium with a thermostat at temperature
T = 1/(kBβ). Consider a process in which we change a macroscopic property,
denoted by the symbol λ of the system from a value λ1 to another value λ2,
following the time protocol, λ(t) = λ1 + τ−1(λ2 − λ1)t, with 0 ≤ t ≤ τ. The
system is under the influence of the thermostat at temperature T , throughout the
experimental process. If τ is finite, we call it a switching process : the system
disappears from A at the start of the the process. It continues to be in a non-
equilibrium state even after the completion of the process. However, if you wait
long enough after the process is completed the system will equilibrate purely by
heat exchange and appear at a point B. Since the system disappears from A and
appears at B we call it a switching process.

Fix the value of switching time τ , carry out the process and calculate or mea-
sure the work done. If you repeat the switching experiment employing the same
protocol, you will get, in general, a different value for the work done. Repeat the
switching experiment several times and collect an ensemble of work values. Let
ρ(W ; τ ) denote the probability distribution describing the ensemble.

Jarzynski work fluctuation theorem51 says,

〈exp(−βW )〉 = exp(−β∆F ), (8.4)

where the angular brackets denote averaging over W -ensemble, see below.

〈exp(−βW )〉 =

∫ +∞

−∞

dW exp(−βW )ρ(W ; τ ). (8.5)

The Jarzynski identity is remarkable in the sense that it relates an equilibrium
property of the system to non equilibrium measurements made on it. The left
hand side of Jarzynski identity, see Eq. (8.4), is based on irreversible processes (for
finite τ ) while the right hand side involves equilibrium free energies.

8.2.1 Reversible limit : τ → ∞

Consider the case with τ → ∞. The switching process becomes reversible in this
limit. The entire process can be represented by a curve in the pressure-volume
phase diagram. Every time you carry out the experiment you will get the same
work value W = WR. The reversible work WR equals the change in free energy
: WR = ∆F = F (B)− F (A).

We have ρ(W ; τ → ∞) = δ(W −WR). Therefore,

∫ +∞

−∞

exp(−βW )δ(W −WR)dW = exp(−βWR) (8.6)

51 C Jarzynski, Physical Review Letters 78, 2690 (1997)
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Then from Jarzynski identity we get, exp(−βWR) = exp(−β∆F ) which im-
plies that WR = ∆F. The work fluctuation theorem gives the thermodynamic
identity namely the work done in a reversible isothermal process equals the change
in free energy.

8.2.2 Dissipation ∝ fluctuations : 0 << τ << ∞

When τ is large, a large number of micro states of the system contribute to deciding
the consequences of the switching experiment. Then by virtue of the central limit
theorem 52, we expect the distribution of W to be Gaussian. Let ζ1 (= 〈W 〉)
denote the first cumulant (the mean) of the Gaussian and ζ2 (= σ2) the second
cumulant (the variance).

ρ(W ; 0 << τ << ∞) =
1

σ
√
2π

exp

(
−1

2

(W − ζ1)
2

σ2

)
(8.7)

For a Gaussian, the third and higher order cumulants are zero. We have

〈exp(−βW )〉=
1

σ
√
2π

∫ +∞

−∞

dW exp(−βW ) exp

(
−
1

2

(W − ζ1)
2

σ2

)

= exp

[
−βζ1 +

β2

2!
ζ2

]
(8.8)

From Jarzynski identity we get,

exp
[
−βζ1 + (1/2)β2ζ2

]
= exp(−β∆F )

−βζ1 + (1/2)β2ζ2 =−β∆F

〈W 〉 − (1/2)βσ2
W =∆F (8.9)

52 Let {xi = Xi(ω) : i = 1, 2, · · ·N} be a set of N independent, identically distributed, and finite

variance random variables, with a common probability distribution f(x). Let Y = (1/N)
∑N

i=1 Xi,
be their sum. The probability distribution of the random variable Y is formally given by,

fY (y) =

∫ +∞

−∞

dx1

∫ +∞

−∞

dx2 · · ·

∫ +∞

−∞

dxN

N∏

i=1

f(xi)δ

(
y − N−1

N∑

i=1

xi

)

Multiply both sides of the above by exp(−βy) and carry out an integration over y from −∞

to +∞. Make use of the property of the delta function :
∫+∞

−∞
g(x)δ(x − x0) = g(x0), while

carrying out the integration on the right hand side. We get φY (β) = [φX(β → β/N)]N , where

φX(β) =
∫+∞

−∞
dx exp(−βx)f(x). Therefore,

φY (β) = exp

[
∞∑

n=1

(−β/N)n

n!
ζn

]N
= exp

[
−βζ1 +

β2

2

ζ2
N

+ O(1/N2)

]

Thus when N → ∞, the third and higher order cumulants of Y go to zero and the distribution of y
tends to a Gaussian with mean 〈y〉 = 〈x〉 and variance σ2

Y = σ2
X/N .
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The quantity 〈W 〉 − ∆F is called the dissipation or dissipative work53 Callen
and Welton showed that in a thermostatted process, dissipation is proportional to
fluctuation and we have the Callen-Welton theorem,

〈W 〉 −∆F =
1

2
βσ2

W (8.10)

which says that dissipation is proportional work fluctuations.
Figure (8.1) depicts the Gaussian distribution of work. 〈W 〉 = 60 units of

energy; WR = 40; σ2
W = 160; The area under the curve for W ≤ WR is

sometimes called the probability of violation of the Second law, since in this regime
W is less thanWR. However we must remember that 〈W 〉 is always greater than
WR consistent with the Second law; also see the next section.

Fig. 8.1. Gaussian distribution of work. 〈W 〉 = 60; σ2 = 160; WR = ∆F = 40

When the switching time τ increases two things happen.

1. σW → 0.
2. 〈W 〉 → WR.

In the reversible limit, the work distribution tends is a delta function centered at
WR consistent with thermodynamic wisdom.

53 A work performed irreversibly is called dissipative work. For example when you stir a cup of coffee
with a spoon, you do dissipative work. Imagine a resistor R immersed in a fluid. A current i passes
through the resistor for a duration of say t units of time. The work done is i2Rt. This is dissipative
work or irreversible work.
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8.2.3 Jarzynski Identity and the Second Law

The exponential is a convex function54. Hence,

〈exp(−βW )〉 ≥ exp(−β〈W 〉)T (8.11)

The Left Hand Side of the above is exp(−β∆F ) according to jarzynski identity,
Therefore,

exp(−β∆F ) ≥ exp(−β〈W 〉) (8.12)

The above is equivalent to 〈W 〉 ≥ ∆F , which is a statement of the second law55.

8.3 Heat Fluctuations : Crooks’ Identity

Consider a closed system in thermal equilibrium with a thermostat at temperature
T = 1/(kBβ). Let Ω = {X1,X2, · · · } denote the set of all possible micro states
of the closed system. Consider a sequence of micro states visited by the system at
discrete times starting from X0 at time 0. Let us denote the sequence by

F : X0 → X1 → · · · → XN−1 → XN ,

where the subscript is the discrete time index and Xi ∈ Ω : i = 1, 2, · · ·N .
This sequence of micro states is a result of the system transacting energy with the
thermostat by a heat processes. Our aim is to discover a good mathematical model
for generating and characterizing such a sequence. To this end we shall turn our
attention below.

Let P (F) be the probability for the sequence F . From Bayes’ theorem we have,

P ( XN ,XN−1, · · · ,X0) = P ( XN | XN−1,XN−2 · · · ,X0 ) × P ( XN−1,XN−2 · · · ,X0 ).(8.13)

Let us assume

P ( XN | XN−1,XN−2, · · · ,X0 ) = P ( XN | XN−1 ) , (8.14)

This means that the future depends only on the present and not on the past. This
is called Markovian assumption and

X0 → X1 → · · ·XN−1 → XN

54 A convex function is one for which λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2) for any x1, x2

belonging to the domain of f and 0 < λ < 1. If we think of λ as the probability for x1 and 1−λ
as the probability of x2, then the Left Hand Side of the above equation is 〈f(x)〉 and the Right Hand
Side is f(〈x〉). Generalizing we can that the function f(x) is convex if 〈f(x)〉 ≥ f(〈x〉), where the
angular brackets denote averaging over the probability distribution of the random variable x.

55 Start with Clausius inequality, which is a consequence of the Second law of thermodynamics, and
process as follows : dS ≥ q/T ⇒ q ≤ TdS ⇒ dU − q ≥ dU − TdS ⇒ dU − q ≥ d(U −
TS) (T remains constant) ⇒ W ≥ dF.
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which obeys such a condition is called a Markov chain. Once the present is specified,
the future is independent of the past.

Under Markovian condition, the expression for the joint probability of the chain
of micro states, simplifies to

P ( XN ,XN−1, · · · ,X0 ) = P ( XN | XN−1 ) × P ( XN−1,XN−2 · · ·X0 )

= P ( XN | XN−1 ) × P ( XN−1 | XN−2 ) × P ( XN−2,XN−3 · · · ,X0 ),

= · · · · · · · · · ,

= P ( XN | XN−1 ) × P ( XN−1 | XN−2 ) × · · · × P ( X1 | X0 ) × P ( X0 ).

(8.15)

Since we are interested in equilibrium properties of the closed system, we consider
a sequence of states visited by an equilibrium system : The conditional probability,
P ( Xi | Xi−1 ) is independent of the time index. In other words

P ( Xi = Xµ | Xi−1 = Xν ) = Wµ,ν, (8.16)

and this quantity is independent of time. We call it time homogeneous Markov
chain. Once we know the transition probability matrixW and initial probabilities
of all the micro states, we can calculate the probability of any given Markov Chain.

The transition probability matrix W is a square matrix of size Ω̂. We have

0 ≤ Wµ,ν ≤ 1 ∀ µ, ν (8.17)

Ω̂∑

µ=1

Wµ,ν = 1 ∀ ν. (8.18)

W is called Markov matrix or stochastic matrix. Its elements are all between zero
and unity. The elements of each column add to unity56

We consider time homogeneous Markov chain. Let P (Xj, n) be the probability
for the system to be in micro state Xjat discrete time n. Let Wi,j denote the
probability for transition from micro state Xj to micro state Xi in one time step.
We have

Wi,j = P ( Xi | Xj ), (8.19)

the conditional probability that the system is in micro state Xi at any instant of
time given it was in micro stateXj at the previous instant of time. The probabilities
obey the Master equation given below.

P (Xi;n+ 1) =
∑

j : j 6=i

P (Xj, n) Wi,j + P (Xi, n) Wi,i (8.20)

∑
iWi,j = 1 ∀ j. Therefore,

Wi,i = 1 −
∑

j : j 6=i

Wj.i. (8.21)

56 In addition, if the elements of each row also add to unity, then the transition probability matrix is
doubly stochastic
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We can write the above as

P (Xi;n+ 1) =
∑

j 6=i

P (Xj, n) Wi,j + P (Xi, n)

(
1 −

∑

j : j 6=i

Wj.i

)

= P (Xi, n) +
∑

j 6=i

[P (Xj, n) Wi,j − P (Xi, n)Wj,i]

= P (Xi, n) +
Ω̂∑

j=1

[P (Xj, n) Wi,j − P (Xi, n)Wj,i] ∀ i(8.22)

8.3.1 Balance Condition

When the system equilibrates we have P (Xi, n+ 1) = P (Xi, n) = π(Xi) ∀ i.
Therefore we have

∑

j

[
π(Xj) Wi,j − π(Xi) Wj,i

]
= 0.

This is called the balance condition which ensures that the Markov chain eventually
equilibrates.

8.3.2 Detailed Balance Condition

Look at the balance condition given as a sum over j for each i. We can make
a stricter demand that each term in the sum be zero. Then we get the detailed
balance condition :

π(Xj) × Wi,j = π(Xi) × Wj,i ∀ i, j = 1, 2, · · · , Ω̂.

An important consequence of this is that detailed balance ensures that the
Markov chain is reversible; hence it is most suited for describing an equilibrium
system. For, no matter what kind of observations you make on an equilibrium
system, you can not tell which direction time moves. Both directions are equally
plausible and equally unverifiable. Equilibrium is a time-reversal invariant state.
Detailed balance captures this subtle property.

8.3.3 Time Reversed Markov Chain

At discrete time N let us reverse the Markov chain and get

R : XN → XN−1 → · · · → X1 → X0.

A little thought will tell you the chain R is also a Markov chain : for, the future
in R (which is past in F) is independent of past in R (which is future in F) once
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the present in R (which is the same as present in F) is specified. Hence the time
reversed chain is also Markovian.

Let us denote the transition probability matrix of the time reversed chain by
the symbol W (R). We have

W
(R)
i,j = P (Xn = Xi|Xn+1 = Xj) =

P (Xn = Xi, Xn+1 = Xj)

π(Xj)

=
P (Xn+1 = Xj|Xn = Xi) π(Xi)

π(Xj)

=Wj,i

π(Xi)

π(Xj)
(8.23)

The condition for reversibility isW
(R)
i,j = Wi,j. The transition probability matrix

should be the same for both Markov chains - the time forward and the time
reversed. Hence on the left hand side of the above equation replace WR

i,j by Wi,j

and reorganize the terms. Then the condition for reversibility reads as,

Wi,j π(Xj) = Wj.i π(Xi). (8.24)

We immediately recognize this as detailed balance condition. Thus a Markov chain
of micro states of an equilibrium system obeys detailed balance condition and hence
is reversible.

Now we have a good mathematical model - a reversible Markov chain, to de-
scribe an equilibrium closed system transacting energy with the thermostat by
heat processes. We need an algorithm that will give us the right transition matrix
obeying detailed balance. Consider two micro states Xi, and Xj of the equilibrium
closed system. Let ǫi and ǫj denote their energies. Also let πi ∝ exp(−βǫi)
and πj ∝ exp(−βǫj be their probabilities. These are also called Boltzmann
weight. Let r = πj/πi = exp[−β(ǫj − ǫi)]. Metropolis algorithm prescribes
that Wj,i = min.(1, r). It is easily verified that the Metropolis algorithm obeys
detailed balance condition : Let πi > πj . Then Wi,j = 1 and Wj,i = πj/πi;
Therefore Wi,jπj = πj and Wj,iπi = (πj/πi)πi = πj , consistent with the
detailed balance condition.

8.3.4 Crooks identity

Now we are ready to state Crooks’ identity about heat fluctuations. Let Q(F)
be the energy transacted by the system with the thermostat, during a forward
sequence of micro states starting fromX0. Let P (F|X0) be the conditional prob-
ability of the forward Chain given the initial micro state X0. Let P (R|XN) be the
conditional probability of reverse chain, given the initial micro state XN . Crooks’
identity 57 says

57 G E Crooks, Journal of Statistical Physics 90 1481(1998)
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P (F|X0)

P (R|XN)
= exp[−βQ(F)]. (8.25)

where Q(F) is the energy transacted by heat in the forward process.

8.3.5 Crooks’ Identity : A Back-of-the-Envelope Calculation

Let me illustrate Crooks’ identity on a back-of-the-envelope problem described
below.

We refer to the children-in-the-escalator analogy discussed earlier and depicted
in Fig. (8.2).

2

4

0

3

6

7

1

W W W
H H H

8

9

5

Fig. 8.2. A work step is followed by a heat step. Three consecutive pairs of work and heat steps are
shown. There are ten children placed at different rungs labelled by their energies. The work step consists
of the elevator moving up or down - the rungs move up or down carrying the children along with them.
The children in each rung remain stay put. The movement of occupied rungs are indicated by dashed
line connecting a rung before and after the work step. In the heat step, the elevator stands still. The
chldren move up or down the rungs. The distribution of children changes. The first heat step changes the
distribution from {n3 = 4, n4 = 2, n5 = 1, n6 = 3} to {n2 = 2, n3 = 1, n4 = 2, n5 = 3, n6 =
1, n7 = 1}. The work and heat steps are also marked as W and H at the bottom of the figure.

There are ten children, marked as filled circles in the figure, positioned at various
rungs of an escalator. The rungs are labelled by their energy levels. Only the
occupied rungs are shown in the figure.

Initial Distribution. To begin we have children occupying the rungs labelled
1, 2, 3, 4. The energy of the system is +23 units.
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First Work Step. The escalator goes up by two units. The rungs go up carrying
along with them the children; there occurs no change in the distribution of the
children. The rungs are re-labelled : i → i+2. This is a work step. At the end of
the first work step, the energy is 43 units; it has increased by 20 units.

First Heat Step. The work step is followed by a heat step in which the escalator
does not move but the children do. The heat step increases the energy of the
system from 43 to 46, an increase by 3 units. The probability for this to happen
is ω3, where we have taken ω = exp(−β).
Second Work Step. The second work step shifts the energy from 46 to 33 a
decrease by 13 units. The probability for the work step is unity.

Second Heat Step. The heat step that follows, reduces the energy further by
10 units. The probability of such a heat step unity. At the end of the second heat
step, the system has 23 units of energy.

Third Work Step. The work step that follows, the third one, increases the energy
from 23 to 63 units. The probability of the work step is unity.

Third Heat Step. The heat step that follows, increases it further to 72 units.
The increment is by 9 units and the probability such a heat step is ω9.

Verification of Crooks’ identity. We have,

P (F|X0) = ω3 × 1 × ω9 = ω12

P (R|XN) = 1 × ω10 × 1 = ω10

P (F|X0)

P (R|XN)
= ω2 (8.26)

The net energy transacted in the forward process, by heat is given by,

Q(F) = (46 − 43) + (23 − 33) + (72 − 63) = 2 units. (8.27)

Therefore exp(−βQ) = ω2, verifying Crooks’ identity.

8.4 End Remarks

In these lectures I have dealt with microscopic description of heat and work. Heat
originates from change of probabilities of micro states; work has its origin in change
of the energies of the micro states. We discussed at length of the mathematical
machinery, like cumulant expansion, central limit theorem etc. required for charac-
terizing work fluctuations. We found that from an ensemble of work values obtained
from non equilibrium switching experiments, we can extract equilibrium free ener-
gies. More importantly we found a way to estimate the probability for work done
in a switching experiment to be less than reversible work. We learned of reversible
Markov chains, for describing heat fluctuations. We found a dissipative segment of
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a Markov chain is overwhelmingly more probable than its reverse, a fact beautifully
quantified in Crooks’ identity.

The work and heat fluctuation theorems tell us the of the probability for a
macroscopic system to behave in a way opposite to the way dictated by the Second
law of thermodynamics. We found that the probability of the so-called Second law
violation is exponentially small for large systems.

In a sense the fluctuation theorems bring the curtains down on the dramatic
narrative started by James Clerk Maxwell58 half and one century ago, when he
invented a demon to violate the Second law of thermodynamics. Maxwell’s argu-
ment was simple : if entropy is of probabilistic origin, and this is what statistical
mechanics would like us believe, then the Second law is of statistical origin. If so,
the Second law can be violated with nonzero probability.

The fluctuation theorems of Jarzynski, and Crooks provide us with a quan-
titative measure of what a Maxwell’s demon59 can accomplish, in small systems
and/or over small time-intervals of observation

58 J C Maxwell, letter to P G Tait dated 11 December 1867, reproduced in G C Knot, Life and Scientific
Work of Peter Guthrie Tait, Cambridge University Press (1924)p.213

59 For information on Maxwell’s demon, see H S Leff, and A F Rex (Eds.) Maxwell’s Demon : En-
tropy, Information, and Computing, Adam Higler, Bristol (1990); ibid, Maxwell’s Demon, Princeton
University Press (1990); ibid, Maxwell’s Demon - 2 : Entropy, Classical and Quantum Information,
Computing, Institute of Physics (2003).





WORKED EXAMPLES

9.1 PV γ = Θ : Adiabatic process

Starting from the first law of thermodynamics, show that an adiabat60 of an ideal
gas is described by PV γ = Θ1, or equivalently, TV

γ−1 = Θ2, or P
1−γT γ = Θ3,

where Θi : i = 1, 2, 3 are constants and γ = CP/CV . For a mono atomic ideal
gas γ = 5/3.

Solution

Start with the first law of thermodynamics.

dU = d̄ Q+ d̄ W ; d̄ Q = 0 (adiabat) ⇒ dU = d̄ W

CV dT =−PdV (9.28)

Now start with the ideal gas law and proceed as follows.

PV = nRT ; PdV + V dP = nRdT

dT =
1

nR
(PdV + V dP )

CV dT =
CV

nR
(PdV + V dP ) (9.29)

From Eq. (9.28) and Eq. (9.29) we get, −PdV = (CV /nR) (PdV + V dP ) .
Replace nR by Cp − CV , and61, get,

−PdV =
CV

Cp − CV

(PdV + V dP ) ⇒ PdV =
1

γ − 1
(PdV + V dP )

−1 =
1

γ − 1

(
1 +

V dP

PdV

)

dP

P
=−γ

dV

V
PV γ =Θ1 (9.30)

where Θ1 is a constant.
The other two equations can be obtained by noting that PV = nRT .

60 a quasi static reversible adiabatic process is oftern referred to as an adiabat.
61 To show this, we start with enthalpy H(S, P ) = U + PV where P = −(∂U/∂V )S. ⇒ dH =

dU+d(PV ) = dU+d(nRT ) since PV = nRT ; CPdT = CV dT +nRdT ; CP −CV = nR
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• Substitute P = nRT/V in Eq. (9.30) and get TV γ−1 = Θ2

• Substitute V = nRT/P in Eq. (9.30) and get, P 1−γT γ = Θ3

9.2 Work done in an adiabatic process

Show that the work done in a (quasi static reversible adiabatic process in an ideal
gas depends only on the initial and final temperatures.

Solution

For an adiabat, PV γ = Θ. Initial state A = P1, V1, T1 = P1V1/(nR). Final
state B = P2, V2, T2 = P2V2/(nR).

W = −
∫ B

A

PdV = −Θ
∫ V2

V1

dV/V γ =Θ
V −γ+1

2 − V −γ+1
1

γ − 1

=
P2V

γ
2 V

−γ+1
2 − P1V

γ
1 V

−γ+1
1

γ − 1

=
P2V2 − P1V1

γ − 1

=
nR(T2 − T1)

γ − 1
(9.31)

9.3 Work done in an isothermal process : ideal and van der
Waal gas

Consider a quasi-static reversible process in which n moles of an ideal gas expands
isothermally from an initial volume of V1 to a final volume of V2.

(i) Derive an expression for work done
(ii) What is the energy transacted by heat
(iii) Derive an expression for the work done by the van der Waal gas

Solution

(i) Work done in an isothermal process :

d̄ W =−PdV ; P = nRT/V ;

=−nRTdV/V (9.32)

W =−nRT
∫ V2

V1

dV

V
= −nRT ln(V2/V1) (9.33)
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(ii) Energy transacted by heat :
For an isothermal process in an ideal gas dU = 0;
From first law : dU = d̄ Q+ d̄ W .
Therefore d̄ Q = −d̄ W = +nRT ln(V2/V1)

(iii) Work done in van der Waal gas : the van der Waal equation of state is

(
P + a

n2

V 2

)
(V − nb) = nRT (9.34)

a and b are van der Waal constants; R is universal gas constant. We can write
the above in a convenient form,

P = a
n2

V 2
+

nRT

V − nb
(9.35)

Work done is

W =−
∫ V2

V1

PdV = an2

∫ V2

V1

dV

V 2
− nRT

∫ V2

V1

dV

V − nb

= an2

(
1

V1

−
1

V2

)
− nRT ln

(
V2 − nb

V1 − nb

)
(9.36)

9.4 An adiabat is steeper than an isotherm

C B P Finn, Thermal Physics (Second edition) Nelson Thornes (1993)P.223 (3.10)

Show that an adiabat for an ideal gas is steeper by a factor γ than an isotherm
at a point on the P − V phase diagram.

Solution

Adiabat :

PV γ = Θ ⇒ P = Θ V −γ ⇒ ∂P

∂V
=−Θ γV −γ−1

=−(PV γ) γ V −γ−1

=−γP
V

(9.37)

Isotherm :

PV = Θ ⇒ P = ΘV −1 ⇒
∂P

∂V
=−ΘV −2

=−(P V ) V −2

=−P
V

(9.38)
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9.5 Adiabats don’t meet

Show that no two adiabats meet at a point.

Solution

Proof by reductio ad absurdum. Assume two adiabats meet at A on the pressure
- volume phase diagram as shown in Fig. (9.3).

Badiabat

isotherm

C

A adiabat

Fig. 9.3. Reductio ad absurdum : Two adiabats are assumed to meet at A; An isotherm intersects them
at B and C and forms a cycle A → B → C → A.

A → B and A → C are the two adiabats meeting at A. Let B → C
be an isotherm cutting both the adiabats. By this construction we have a cycle
A → B → C → A. Assume a machine starts at A. Let the working substance
be ideal gas, The machine goes to B adiabatically; the gas expands and does
work. It is then compressed isothermally as it goes from B → C. During this
process work is done on the system and equivalent heat is absorbed from a heat
reservoir at temperature T . In the least leg of the cycle the gas undergoes adiabatic
compression and the machine returns to its initial state. There is no change in the
entropy of the machine, since its thermodynamic state at the end is the same as
it was at the beginning. The heat source loses entropy since it supplies heat to
the machine during isothermal compression B → C. Note there is no transaction
of heat during the two adiabats, A → B and C → A and hence no change in
entropy. There is a net work done which equals the area enclosed by the three
curves. But then there is a decrease in entropy and is not permitted by the Second
law.
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Also according to Carnot’s principle, to get extract work, heat has to fall from
hot to cold. But in the cycle under consideration we have only the hot source; the
cold sink is not there. Hence no two adiabats meet.

9.6 CP − CV

See D Kondepudi, and Ilya Prigigine, Modern Thermodynamics : from heat engines to dissipative struc-

tures, John Wiley (1998)p.45

Starting from the first law of thermodynamics, show that,

CP − CV =

[
P +

(
∂U

∂V

)

T

](
∂V

∂T

)

P

.

In the above, CP is heat capacity at constant pressure; CV is heat capacity at
constant volume; For an ideal gas, show that the above reduces toCp−CV = nR.

Solution

Start with U ≡ U(T, V ).

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

= d̄ Q+ d̄ W (9.39)

d̄ Q=

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

− d̄ W

=

(
∂U

∂T

)

V

dT +

[
P +

(
∂U

∂V

)

T

]
dV (9.40)

If the system is heated at constant volume, no work is done. Hence d̄ Q = dU .
Therefore,

CV =
d̄ Q

∆T
=

(
∂U

∂V

)

T

(9.41)

If the system is heated at constant pressure, we proceed as follows.

d̄ Q= CV dT +

[
P +

(
∂U

∂V

)

T

]
dV (9.42)

CP =
d̄ Q

dT
= CV +

[
P +

(
∂U

∂V

)

T

](
∂V

∂T

)

P

(9.43)

CP − CV =

[
P +

(
∂U

∂V

)

T

] (
∂V

∂T

)

P

(9.44)

If you want to increase the temperature of the system keeping it at constant
pressure, you have to supply additional heat to compensate for the accompanying
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volume expansion. The right hand side of the above equation corresponds to this
additional heat.

What we have above is a very general statement. For an ideal gas, U depends
only one T ; it is independent of V . Hence

(
∂U

∂V

)

T

= 0.

Also for an ideal gas,

V =
nRT

P

Therefore, (
∂V

∂T

)

P

=
nR

P

It it follows then CP − CV = nR

9.7 Exact and inexact differentials

We have, ∆f = αdx + γ x/ydy. Show that ∆f is not an exact differential
by : (i) Method -1 : calculate the changes occurring in the quantity f along the
following two paths, (2, 2) → (3, 2) → (3, 3) and (2, 2) → (2, 3) → (3, 3),
and show they are different (ii) Method - 2 : Take the partial derivative of the pre
factors of dx with respect to y and that of dy with respect to x and show they
are different.

Divide all the terms in the given equation by x; let ∆g = ∆f/x. Show that
∆g is a perfect differential following the two methods listed above.

Solution

It is given that ∆f = φ(x, y)dx + ψ(x, y)dy, where φ ∗ x, y) = α and
ψ(x, y) = γx/y.

(i) Change in f along the two paths
(a) path-1 : (2, 2 → (3, 2) → (3, 3) is given by,

δ(Path− 1) =

∫ 3

2

dx φ(x, y = 2) +

∫ 3

2

dyψ(x = 3, y)

= α

∫ 3

2

dx+ 3γ

∫ 3

2

dy/y

= α+ 3γ ln(3/2) (9.45)

(b) path-2 :
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δ(Path− 2) =

∫ 3

2

dy ψ(x = 2, y) +

∫ 3

2

dyφ(x, y = 3)

= 2γ

∫ 3

2

dy/y + α

∫ 3

2

dx

= α+ 2γ ln(3/2) (9.46)

Therefore δf(path− 1) 6= δ(path− 2). This is sufficient (though not nec-
essary) to show that ∆f is not an exact differential.

(ii) We find
(
∂φ

∂y

)

x

= 0;

(
∂ψ

∂x

)

y

= α/y (9.47)

Thus,
(
∂φ

∂y

)

x

6=
(
∂ψ

∂x

)

y

(9.48)

Therefore ∆f is not a perfect differential. This condition is necessary and
sufficient to show that ∆f is not a perfect differential.

(iii) Diving both sides of the given equation by x we get

∆g =
∆f

x
= α

1

x
dx+ γ

1

y
dy (9.49)

We have φ(x, y)∂U
=
α/x and ψ(x, y) = γ/y.

The change in g along path-1 is given by,

δ(Path− 1) =

∫ 3

2

dx φ(x, y = 2) +

∫ 3

2

dyψ(x = 3, y)

= α

∫ 3

2

dx/x+ γ

∫ 3

2

dy/y

= α ln(3/2) + γ ln(3/2) (9.50)

The change in g along path-2 is given by,

δ(Path− 2) =

∫ 3

2

dy ψ(x = 2, y) +

∫ 3

2

dyφ(x, y = 3)

= γ

∫ 3

2

dy/y + α

∫ 3

2

dx/x

= α ln(3/2) + γ ln(3/2) (9.51)

We find that δ(path− 1) = δ(path− 2). This condition is necessary for δg
to be a perfect differential, but not sufficient.
We find (

∂φ

∂y

)

x

=

(
∂ψ

∂x

)

y

= 0 (9.52)

The above is a necessary and sufficient condition for∆g to an exact differential
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9.8 Iso-entropic process

A particular system obeys the fundamental equation,

U = A
N3

V 2
exp

(
S

NkB

)
,

where A (joule metre2) is a constant. Initially the system is at T = 317.48 kelvin,
and P = 2×105 pascals. The system expands reversibly until the pressure drops
to a value of 105 pascals, by a process in which the entropy does not change. What
is the final temperature ?
HINT: Derive expressions for temperature T and pressure P by taking partial derivatives of U with

respect to S and V respectively. Find a relation between P and T for a quasi static reversible process

in which the entropy and number of particles N remain the same.

Solution

T (S, V ) =

(
∂U

∂S

)

V,N

=
1

V 2

AN2 exp(S/NR)

R
=

1

V 2
φ1(S) (9.53)

P (S, V ) =−
(
∂U

∂V

)

S,N

=
2

V 3
AN3 exp(S/NR) =

1

V 3
φ2(S) (9.54)

T 1/2

P 1/3
= φ3(S) (9.55)

It is given that entropy does not change during the process of expansion. Therefore,

T 1/2

P 1/3
= Θ (9.56)

where Θ is a constant. Therefore,

T
1/2
1

P
1/3
1

=
T

1/2
2

P
1/3
2

⇒
(
T1

T2

)1/2

=

(
P1

P2

)1/3

(9.57)

It is given : T1 = 317.47 kelvin; P1 = 2 × 105 pascals; and P2 = 105 pascals.
Therefore T2 = 2−2/3 × 317.48 = 200 kelvin

9.9 Joule’s ideal gas engine

The cycle A → B → C → D → A of an ideal gas engine proposed by Joule
is depicted on a P − V phase diagram below. There are four segments - quasi
static and reversible. The segments A → B (volume increases) and C → D
(volume decreases) are isobaric; the segments B → C (expansion) and D → A
(compression) are adiabats.
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(i) Find the energy transacted by heat and work in each of the four segments of
the cycle

(ii) Find the entropy change in each of the four segments of the cycle.
(iii) Show that the efficiency of the engine is given by η = 1 − (P1/P2)

α, where
α = (γ − 1)/γ and γ = CP/CV = 5/3 for mono atomic ideal gas.

B

V

adiabat

V1 V2 V3 V4

P

A

D C

P2

P1

Fig. 9.4. A reversible cycle of Joule’s engine

Solution

(i) Segment A → B

d̄W =−P2dV (9.58)

W (A → B) =−P2

∫ V3

V1

dV = −P2(V3 − V1) (9.59)

W (A → B) is negative. Work is done by the system.

d̄ Q= CPdT = (5/2)P2dV (9.60)

Q(A → B) = CP

∫ B

A

dT = (5/2)P2(V3 − V1) (9.61)

Q(A → B) is positive; heat is absorbed by the system. Segment B → C

W (B → C) =−P2V3 − P1V4

γ − 1
; Q(B → C) = 0 (9.62)

W (B → C) is negative; work is done by the system
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Segment C → D

W (C → D) =−P1

∫ V2

V4

dV = P1(V4 − V2) (9.63)

W (C → D) is positive : work is done on the system

Q(C → D) =−5P1(V4 − V2)

2
(9.64)

Q(C → D) is negative; heat is liberated by the system.
Segment D → A

W (D → A) =
P2V1 − P1V2

γ − 1
: Q(D → A) = 0 (9.65)

W (D → A) is positive; work is done on the system.
(ii) Calculation of entropy

S(B) = S(A) +

∫

A→B

d̄ Q

T
= S(A) +

5nR

2

∫ V3

V1

dV

V

= S(A) +
5nR

2
ln(V3/V1) (9.66)

S(C) = S(B) (9.67)

S(D) = S(C) +
5nR

2
ln(V2/V4) (9.68)

Adiabat : PV γ = Θ ⇒ P 1/γV = Θ

Adiabat B → C : P
1/γ
2 V3 = P

1/γ
1 V4

Adiabat D → A : P
1/γ
1 V2 = P

1/γ
2 V1

V3

V1

=
V4

V2

; P
1/γ
2 (V3 − V1) = P

1/γ
1 (V4 − V2)
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(iii) Efficiency of a Joule’s engine

η =
W

Q1

= 1 −
Q2

Q1

= 1 −
Q(C → B

Q(A → B

= 1 − P1(V4 − V2)

P2(V3 − V1)

= 1 − P1P
1/γ
2

P2P − 11/γ

= 1 −
(
P1

P2

)1−(1/γ)

(9.69)

9.10 Cyclic Process : Rectangle in S − V Plane

See N Newman, J Ruhl, S Staggs, and, S Thorset, Princeton Problems in Physics with Solutions, Uni-

versities Press (2000)p.24 and p.153

n mols of an ideal gas engine goes through a (quasi-static) reversible cyclic process
depicted in Entropy - Volume phase plane, depicted below.

B A

C D

S

S

S

V

2

1

V1 V2

Fig. 9.5. A reversible cycle in S − V phase plane

CV denotes the heat capacity at constant volume. It is independent of temper-
ature. Show that the efficiency of the engine is given by

η = 1 −
(
V1

V2

)nR/CV

.
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where R is the universal gas constant.

Solution

Let us first derive an expression for temperature as a function of entropy and
volume : T ≡ T (S, V ), see below.

dU = TdS − PdV

TdS = dU + PdV

= CV dT + nRT
dV

V

dS = CV

dT

T
+ nR

dV

V
; (9.70)

∫
dS = CV

∫
dT

T
+ nR

∫
dV

V
S = CV lnT + nR lnV + a constant

ln T =
S

CV

− nR

CV

lnV + a constant (9.71)

T = α exp(S/CV )V
−nR/CV (9.72)

where α is a constant.
There are four segments : 1. A → B 2. B → C 3. C → D and 4. D → A.

Work is done only during the segments C → D and A → B.
Consider segment C → D.

W (C → D) =−
∫ V2

V1

P dV

=−nR
∫ V2

V1

T
dV

V

=−αnR
∫ V2

V1

dV V −(nR/CV )−1 exp(S2/CV )

= +αCV exp(S2/CV )
[
V −nR/CV

]V2

V1

=+ αCV exp(S2/CV )
[
V

−nR/CV

2 − V
−nR/CV

1

]
(9.73)

Similarly we can calculate W (A → B). Thus we have

W (C → D) =− αCV exp(S2/CV )
[
V

−nR/CV

1 − V
−nR/CV

2

]
(9.74)

W (A → B) = + αCV exp(S1/CV )
[
V

−nR/CV

1 − V
−nR/CV

2

]
(9.75)

The total work done is given by W = W (C → D) +W (A→ B).
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W = − αCV

[
V

−nR/CV

1 − V
−nR/CV

2

]
×

[
exp(S2/CV ) − exp(S1/CV )

]
(9.76)

Note : W is negative; the engine delivers work.
The transaction of heat occurs during the segments B → C and D → A.

During the process B → C, entropy increases. Hence heat is absorbed. Let us
denote the quantity of heat absorbed by the symbol q1. We have,

q1 =

∫ S2

S1

T dS

= α V
−nR/CV

1

∫ S2

S1

exp(S/CV ) dS

= αCV V
−nR/CV

1

[
exp(S2/CV ) − exp(S1/CV )

]
(9.77)

The efficiency of the engine is formally given by,

η =
|W |
q1

= 1 −
(
V1

V2

)nR/CV

(9.78)

9.11 Isothermal expansion and Helmholtz Free Energy

One hundred moles of a gas at 300 k expand isothermally from a volume of 1 m3

to a volume of 2 m3. What is the change in Helmholtz free energy, F (T, V,N),
if the gas obeys equation of state of

(a) an ideal gas PV = nRT ;
(b) a van der Waal’s gas : (P + an2/V 2)(V −nb) = nRT . a = 0.4261 pa m6

(mol)−2; b = 37.406 × 10−6 m3 (mol)−1.

Solution

First we show that the work done in a reversible process equals the change in free
energy.

dU = d̄ Q+ d̄ W (9.79)

d̄ W = dU − d̄ Q= dU − TdS (9.80)

= d(U − TS) since dT = 0 for an isotherm (9.81)

= dF (9.82)

Alternately,
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F = U − TS (9.83)

dF = dU − TdS − SdT (9.84)

= −PdV − SdT (9.85)

P = −
(
∂F

∂V

)

T

(9.86)

d̄ W = −PdV (9.87)

=

(
∂F

∂V

)

T

dV (9.88)

= dF (9.89)

Ideal Gas : W =−
∫ V2

V1

PdV = −nRT
∫ V2

V1

dV

V
= −nRT ln(V2/V1)

Hence, F (T, V2, n) − F (T, V1, n) = W =−nRT ln(V2/V1)

=−100 × 8.314 × 300 × ln 2

=−1.729 × 105 j

van der Waal Gas

W = −
∫ V2

V1

PdV =−nRT
∫ V2

V1

dV

V − nb
+ an2

∫ V2

V1

dV

V 2

=−nRT ln

(
V2 − nb

V1 − nb

)
− an2

(
1

V2

−
1

V1

)

Hence we have

F (T, V2, n) − F (T, V1, n) = W = −1.721 × 105 j.

9.12 Internal energy is an extensive property

The internal energy U of a single component thermodynamic system expressed as
a function of entropy S, volume V , and number of particles N is of the form
U(S, V,N) = a S4/3V α where a and α are constants.

(i) What is the value of α ?
(ii) What is the temperature of the system ?
(iii) What is the pressure of the system ?
(iv) The pressure of the system obeys a relation given by P = ωU/V , where ω is

a constant. Find the value of ω.
(v) if the energy of the system is held constant, the pressure and volume are related

by PV γ = constant. Find γ.
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Solution

(i)

U(S, V ) = a S4/3 V α

U , S, and V are extensive properties of a thermodynamic system. U is an
extensive function of S and V . In other words U is a first order homogeneous
function of S and V .

U(λS, λV ) = λ U(S, V )

We have,

a λα+ (4/3) S4/3 V α = λ S4/3 V α

λα+ (4/3) = λ ⇒ α +
4

3
= 1 ⇒ α = −1

3

(ii) The temperature of the system is given by,

U(S, V ) = aS4/3V −1/3 ; T (S, V ) =

(
∂U

∂S

)

V

=
4a

3

(
S

V

)1/3

(iii) The pressure of the system is given by,

P (S, V ) = −
(
∂U

∂V

)

S

=
a

3

(
S

V

)4/3

(iv) We have,

U =
aS4/3

V 1/3
; aS4/3 = UV 1/3

Substitute the above in the expression for P , see below

P =
aS4/3

3V 4/3
=
UV 1/3

3V 4/3
=

1

3

U

V

Therefore ω = 1/3.
(v) We have

U =
aS4/3

V 1/3
; P =

aS4/3

3V 4/3
;
U

P
= 3V

PV = constant if U is held constant

Therefore γ = 1.
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9.13 Adiabatic leaking
adapted from C B P Finn, Thermal Physics, Nelson Thornes (Second edition) (1993)p.224 3.13

A thermally insulated chamber contains 1000 moles of mono-atomic ideal gas62

at 10 atm. pressure. Its temperature is 300 K. The gas leaks out slowly through
a valve into the atmosphere. The leaking process is adiabatic63, quasi static, and
reversible.

(i) How many moles of gas shall be left in the chamber eventually?
(ii) What shall be the temperature of the gas left in the chamber ?

1 atm = 0.981 × 106 Pa ; γ = CP/CV = 5/3

Solution

The gas in the chamber leaks out because of the pressure difference. The pressure
in the chamber decreases as the gas leaks out. The leaking continues until the
chamber is at the same pressure as the atmosphere. Since the chamber is thermally
insulated there is no transaction of energy by heat between the chamber and the

surroundings. We have,

Initial pressure Pi 10 atm
Final pressure Pf 1 atm

Initial amount of gas ni 1000 moles
Final amount of gas nf ?
Initial temperature Ti 300 K
Final temperature Tf ?

• Apply ideal gas law to the nf moles of gas left in the chamber. We have

P 1−γ
i T γ

i = P 1−γ
f T γ

f

From the above we get,

Tf

Ti

=

(
Pf

Pi

)(γ−1)/γ

⇒ Tf = 119.4K

•

PiV = niRTi ; PfV = nfRTf ;
Pf

Pi

=
nf

ni

Tf

Ti

nf

ni

=

(
Tf

Ti

)−1 Pf

Pi

nf

ni

=

(
Pf

Pi

)1/γ

nf = 1000 × 10−3/5 = 251.2moles
62 PV = nRT
63 PV γ = Θ.
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9.14 Processes in P − V phase diagram : Energy
transacted by heat and work
See C B P Finn, Thermal Physics, Nelson Thornes (1993)p.222; Problem: 3.4

Consider the (quasi-static) reversible processes depicted in the Pressure-Volume
phase diagram below.

A D

BC

P

V

Fig. 9.6. A Quasi-static reversible process in P − V phase plane

• When the system goes through the path A → C → B it absorbs an
energy of 80 joule by heat and does work of 30 joules.

• When it goes along the path A → D → B, the work done by the system
is 10 joules.
What is the energy transacted by heat ? Does it absorb or throw away heat
?

• The system travels from B to A along the curly path shown in the figure.
During this process, 20 joules of work is done on the system.
What is the energy transacted by heat ?

• If U(A) = 0, and U(D) = 40 joules, What is the energy transacted by
heat during the process A → D ? What is the energy transacted by heat
during D → B

Solution

It is given that in the path A → C → B, the energy transacted by heat
Q, and work W are given by Q = 80 j; W = −30 j. Therefore
U(B)−U(A) = Q+W = 50 j. For the pathA → D → B,W = − 10 j,

and Q =

[
U(B)− U(A)

]
−W = 50 − (−10) = 60 j.

For the curly path B → C, W = 20 j and Q = U(A) − U(B) −W =
(−50 − 20) = −70 j. Energy exits by heat during the process B → C.
Consider the path A → D → B. Work is done only in the segment A → D.
Notice that volume does not change in segment D → B, hence no work is
done.
It is given that during the process A → D → B, the work done by the system
is 10 j. Therefore, W (A → D) = −10 j;
Q(A → D) = U(D) − U(A)−W = 50 j;
Q(D → B) = Q(A → D → B) −Q(A → D) = 60 − 50 = 10
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9.15 P − T , V − T , and P − V phase diagrams

One mole of an ideal gas is in thermal equilibrium at temperature 100 k, and
pressure 1.0× 105 pa. Call it the initial state and denote it by A. It goes to a
final state D, at 400 k and 8× 105 pa, by two different reversible processes :

Process-1 : There are two steps. In the first step the system goes from A
to B whence the volume remains constant and the temperature increases
to 400 k. In the second step the system goes from B to the final state D
isothermally.
Process-2 : There are two steps. In the first step, the system goes from A
to C whence the pressure remains the same and the temperature increases
to 400 k. In the second step the system goes from C to the final state D
isothermally.

CV = 3nR/2; CP = 5nR/2; R = 8.314 j K−1 (mole)−1. n number of moles = 1.

(a) Sketch both the processes in a single graph sheet with P on the y axis and
T on the x axis.

(b) Sketch both the processes in a single graph sheet with P on the x axis and
V on the Y axis.

(c) Calculate the energy transacted by heat and work at each step of the two
processes.

(d) Calculate the change in entropy and show that it is independent of the path

Solution

Pressure versus Temperature Plot : In the path A → B, V is a constant;
P is a linear function of T passing through origin and with a slope nR/V .
The P versus T plot is given below, see Fig. (9.7) Left. Volume versus

Temperature Plot : In the path A → C, P is constant. Hence V a linear
function of T with a slope nR/P and passing through the origin. Volume
versus temperature plot is shown in the figure below, see Fg. (9.7) Right.

A C

B

DP

T

A

D

B

CV

T

Fig. 9.7. Left : P versus T ; Right : V versus T ; Process -1 : A → B → D. Process - 2 : A → C → D
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Pressure versus Volume Plot The Pressure versus Volume plot is shown in
the figure below.

D

A C

B

P

V

Fig. 9.8. Process -1 : A → B → D. Process - 2 : A → C → D

Work and Heat during the given two processes
Process - 1 : A → B → D
Segment A → B
Energy transacted by heat is given by,

Q(A → B) = CV

∫ TB

TA

dT = (3nR/2) × (400 − 100) = 3741.30 j

Volume does not change during this segment. Hence no work is done.
W (A → B) = 0.
Segment B → D
The process is isothermal compression. For an ideal gas, this means dU = 0;
since according to the first law of thermodynamics

U(D) − U(B) = Q(B → D) +W (B → D),

we have Q(B → D) = −W (B → D). To calculate W (B → D) we
proceed as follows.

W (B → D) = −
∫ D

B

PdV = −nRTB

∫ D

B

dV

V
= nRTB

∫ PD

PB

dP

P

= nRTB ln(PD/PB)

We have PD = 8 × 105 pa. We need to calculate PB.
For an ideal gas PAVA = TA and PBVB = TB.

Since VA = VB, we have PB/TB = PA/TA.
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This gives PB = PA × TB/TA ⇒ PB = 4 × 105 pa.

Therefore,

W (B → D) = nRTB ln(8/4) = 1 × 8.314 × 400 × ln 2 = +2305.13 j

Q(B → D) = −W (B → D) =−2305.13 j

Therefore for the Process - 1, we have,

Q(A→ B → D) = Q(A → B) +Q(B → D) = 3741.30 − 2305.13j

= +1436.17 j

W (A → B → D) = W (A→ B) +W (B → D) = 0.0 + 2305.13

= +2305.13 j

∆U = U(B) − U(A) = 1436.17 + 2305.13 = +3741.30 j

Process - 2 : A → C → D

Segment A → C

Q(A → C) = CP (TC = TA) = (5nR/2)300 = +6235.50 l

W (A → C) = −
∫ VC

VA

PdV = −PA(VC − VA) = −nR(TC − TA)

= −2494.20 j

Segment C → D

The process is isothermal. This implies Q = −W .

W (C → D) = −
∫ D

C

P dV = −nRT
∫ VD

VC

dV

V
=+nRT

∫ PD

PC

dP

P

=+nRT ln 8

= +6915.39 j

Q(C → D) =−6915.39 j

Therefore for the Process - 2, we have,

Q(A → C → D) =Q(A→ C) +Q(C → D)

= +6235.50 − 6915.39 = −670.89 j

W (A → C → D) =W (A → C) +W (C → D)

=−2494.20 + 6915.39 = +4421.19 j

∆U = U(D) − U(A)

=−670.89 + 4421.19 = +3741.30 j
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Calculation of Entropy

We take S(A) = 0, with out loss of generality.

S(B) = CV

∫ 400

100

dT

T
= (3/2)nR ln 4 = 17.29 j k−1

S(C) = CP

∫ 400

100

dT

T
= (5/2)nR ln 4 = 28.81 j k−1

Process - 1 : A → B → D

The segment B → D is isothermal. Therefore d̄ Q = −d̄ W = PdV .
We get dS = d̄ Q/T = PdV/T = nRdV/V = −nRdP/P .
PD = 8 × 104 pa.; PB = 4 × 105 pa.

S(D) = S(B) − nR

∫ PD

PB

dP

P
= 17.29 − nR ln 2 = 17.29 − 5.76

= 11.53 j k−1

Process - 2 : A → C → D

The segment A → D is isothermal. Therefore d̄ Q = −d̄ W = PdV . We
get PD = 8 × 104 pa.; PC = PA = 1.0 × 105 pa.

S(D) = S(C) − nR

∫ PD

PC

dP

P

= 17.29 − 3nR ln 2 = 28.82 − 17.29 = 11.53 j k−1

9.16 Right Triangle : cyclic process in P − V

One hundred moles of an ideal gas goes through a quasi-static reversible cyclic
process C → A → B → C depicted on the Pressure-Volume phase plane
given below.
Let P (C) = P (B) = p = 105 pa; P (A) = 2p; V (A) = V (C) = v = 3
m3; and V (B) = 2v. LetD be a point on the cycle, at which the temperature
is maximum. Let S(C) = 0.
(i) Find D and T (D).
(ii) Depict the cycle in Temperature-Entropy phase plane.

Solution

Since PV = nRT , we have T (A) = T (B) = 2pv/(nR) = 721.674 k;
T (C) = pv/(nr) = 360.247 k
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A

C B
V

P

p

v 2v

2p

v = 3 m p = 10
53

; pa

Fig. 9.9. A Quasi-Static Reversible Cycle in P − V phase plane

Segment C → A
As the systems moves from C to A reversibly, volume remains constant at v
and the pressure increases from p to 2p. Let x be a parameter that varies from
0 to 1. When the system is at C, x = 0; when the system is at A, x = 1. We
have P (x) = xp+ p; T (x) = vp(1 + x)/(nR);, and

S(x) = S(C) + CV

∫ x

0

dx

1 + x
== CV ln(1 + x).

We can express T a a function of S, by eliminating x; we get,

S = CV ln

(
nRT

pv

)
or T =

pv

nR
exp(S/CV ).

Segment A → B
As the system goes from A to B, volume increases from v to 2v and pressure
decreases from 2p to p. Let y be a parameter that varies from 0 to 1. When
the system is at A, the value of y is 0; and when the system is at B, y = 1.
We have,

V (y) = v(1 + y); P (y) = p(2 − y); T (y) =
pv(1 + y)(2− y)

nR

We find that
dT

dy
=
pv

nR
(1 − 2y). The derivative vanishes at y = 1/2. Hence

T is extrema at y = 1/2. We have,
d2T

dy2
= −

2pv

nR
< 0. At y = 1/2,

the temperature is maximum. y = 1/2 corresponds to the mid point of the
segment AB. We have T (y = 1/2) = 9pv/[4nR].
Calculation of entropy

S(y) = S(C) + CV

∫ p(2−y)

p

dP

P
+ CP

∫ v(1+y)

v

dV

V
(9.90)

= CV ln(2 − y) + CP ln(1 + y)
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Segment B → C
When the system goes from B → C, volume decreases from 2v to v; pressure
remains constant at p. Let 0 ≤ z ≤ 1 be a parameter. We have,

V (z) = v(2 − z)

T (z) =
pv(2 − z)

nR

S(z) = S(C) − CP

∫ z

1

dz

2 − z
= CP ln(2 − z)

The Cycle in the T − S phase plane is shown below.
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Fig. 9.10. The cycle represented in P − V phase plane in figure (9.16), plotted in T − S phase plane

9.17 S(P ) from Gibbs Free Energy

Gibbs free energy of a gas is given by G = RT ln(P/P0) − ATP , where
R is the universal gas constant; A and P0 constants. Derive an expression for
entropy as a function of pressure



122 9. Worked Examples

Solution

Gibbs free energy is obtained by Legendre transform :
S → T, V → P, and U(S, V,N) → G(T, P,N)

G = U − TS + PV ;

(
∂U

∂S

)

V,N

= T ;

(
∂U

∂V

)

S,N

= −P

Therefore

S = −
(
∂G

∂T

)

P

= AP −R ln(P/P0).

9.18 Isothermal compression of water

One kilogram of water is compressed isothermally from at 20◦ Celsius from
one atmosphere to 20 atmosphere pressure. What is the energy transacted by
heat and by work ?
isotherm compressibility64 of water κT = 0.5 × 10−4 atm−1 1 atm = 1.01325 × 105 pa.

Coefficient of thermal expansion65 for water is γ = 2.0 × 10−4 per ◦Celsius. Assume there is no

change in volume of water upon application of pressure.

Solution

Energy transacted by work

V ≡ V (T, P ); dV =

(
∂V

∂T

)

P

dT +

(
∂V

∂P

)

T

dP

Compression is isothermal and reversible. Therefore dT = 0 in the above.
State 1 : P=P1=1 atm. ; T=20 ◦C; State 2 : P=P2=20 atm ; T=20 ◦C;

dV =

(
∂V

∂P

)

T

dP ; d̄ W = −P dV (9.91)

W = −
∫ 2

1

PdV

= −
∫ 2

1

P
∂V

∂P
dP

= κTV

∫ 2

1

P dP

− κT V (P 2
2 − P 2

1 )/2

= 0.9975 joules (9.92)

64 Isothermal compressibility κT = −(1/V )(∂V/∂P )T .
65 Coefficient of thermal expansion γ = (1/V )(∂V/∂P )P .
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Energy transacted by heat

S ≡ S(T, P ); dS =

(
∂S

∂T

)

P

dT +

(
∂S

∂P

)

T

dP (9.93)

Compression is isothermal and reversible. Therefore dT = 0 in the above.

dS =

(
∂S

∂P

)

T

dP ; d̄ Q=+T dS (9.94)

Q=

∫ 2

1

TdS (9.95)

=

∫ 2

1

T

(
∂S

∂P

)

T

dP (9.96)

− S

P

T

V −
(
∂S

∂P

)

T

=

(
∂V

∂T

)

P

Q = −T
∫ 2

1

(
∂V

∂T

)

P

dP =−γTV
∫ 2

1

dP

=−γTV (P2 − P1) = −112.82 joules





PROBLEMS

10.1 Problems Set - 1

(1) For a cylinder,∆V = 2πRHdR+πR2dH, where R denotes the radius and
H the hight. Show that ∆V is a perfect differential. Express V as a function
of R and H .

(2) Let
∆f = (2xy − y2) dx+ (2xy − x2)dy.

(a) Consider the following two paths :
(i) (1, 1) → (2, 1) → (2, 2) and (ii) (1, 1) → (1, 2) → (2, 2).
Calculate the changes in the quantity along these two paths.

(b) Calculate partial derivatives of the pre factors of dx and dy and find if df
is an exact or inexact differential.

(3) Consider a system of n moles of ideal gas.

∆q = CV dT + PdV

is the energy transacted by heat in a quasi static reversible process. CV is the
heat capacity at constant volume. For an ideal gas PV = nRT . Express the
energy transacted by heat as follows :

∆q = φ(T, P ) dT + ξ(T, P ) dP.

Derive expressions for the functions φ(T, P ) and ξ(T, P ). Show that ∆q is
not a perfect differential. Now consider the quantity ∆q/T . Call it ∆S and
show it is a perfect differential.

(4) Consider the thermodynamic phase plane with T on the X axis and P on
the Y axis. One mole of a mono atomic ideal gas is at an equilibrium state66

represented by the point A = (270 k, 1 atm.). It is taken quasi statically and
reversibly from state A to state B = (370 k, 2 atm.) as described below.
(i) Process− 1 : A → C → B, where C = (370 k, 1 atm). During

the process A → C pressure remains constant and during the process
C → B, temperature remains constant. Calculated the energy transacted
by heat and work for each segment of the process and for the whole process
A → C → B. Calculate also the change in internal energy and entropy
during the process.

66 only equilibrium states can be represented by points in the thermodynamic phase diagram.
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(ii) Process− 2 : A → D → B, where D = (270 k, 2 atm.). The
process A → D is isothermal. The process D → B is isobaric. Calculate
the energy transacted by heat and work in each segment and the whole of
the process A → D → B. Calculate the change in internal energy and
entropy.

(5) Show that for a mono atomic ideal gas PV γ = Θ for an adiabatic process.
Here Θ is a constant. What is γ ? Derive similar equations of state involving
1. P and T and 2. V and T .

(6) Consider quasi static and reversible expansion of a mono atomic ideal gas from
V1 = 1 litre to V2 = 2 litres. Initial pressure of the gas is P1 = 2 atm. and
temperature T1 = 300 k. If the expansion is adiabatic calculate the energy
transacted by work. Let the adiabatic expansion take the system from

A = (P1 = 2 atm., V1 = 1 litre, T1 = 300 k) toB = (P2, V2 = 2 litre, T2).

LetWA
A→B denote the work done. Consider now an isothermal expansion from

A to C : C = (P3, V3 = V2 = 2 litre, T3 = T1 = 300 k).

Calculate the energy transacted by heat and work.
Consider a quasi static reversible process that takes the system from C to B.
Calculate the energy transacted by heat and work during the process C → B.
Thus we have two processes I : A → B : adiabatic and process II : A → C →
B where the segment A → C is isothermal. Show that difference in the work
done in processes I and II equals heat transacted in process II - a statement of
the first law of thermodynamics.

(7) Consider Carnot engine on the thermodynamic phase plane with volume on
theX axis and pressure on the Y axis. Derive and expression for the efficiency
of the Carnot engine : the energy transacted by work divided the energy taken
from the source by heat.
Depict the Carnot engine on temperature-entropy phase diagram and derive
an expression for the efficiency.

(8) At 0◦C ice melts with a latent heat of fusion of 334.92 kilo joules per kilogram.
Calculate the entropy change if one kilogram of ice melts completely into water
at 0◦ C.

10.2 Problems Set - 2

(10) For an ideal gas PV = nRT , where n is the number of moles and R measured

in units of j k−1 mole−1, is the universal gas constant. Work done in a quasi

static reversible process involving infinitesimal change in volume at constant

pressure is d̄ W = −PdV . The bar on d for work, is to remind us that work

is not a property of the system. d̄ W is a small quantity but not an infinites-

imal; it is not an exact differential; W is not a property of the system; it a
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property of the process. It depends on the path. You have to integrate −PdV
along the path describing the process to get the work done. The path has to be

necessarily quasi static and reversible.

Calculate the energy transacted by work by an ideal gas in the following quasi
static reversible processes
(i) Isothermal : from V1 to V2.
(ii) Isothermal : from P1 to P2.
(iii) Isobaric (presure is kept constant at P ) : from V1 to V2.
(iv) Isobaric (at constant pressure P) : from T1 to T2.
(v) Adiabatic : from V1 to V2.

(11) A particular gas obeys the equation of state given by,

(
P +

an2

V

)
(V − nb) = nRT.

In the above n is the number of moles of the gas; a and b are constants.
R = 8.314 j k−1 mole−1 is the universal gas constant. The gas expands by
a quasi static, reversible isothermal process from an initial state (P1, V1) to a
final state
(P2 < P1, V2 > V1). Find an expression for the energy transacted by work.
Tell whether work is done on the system or by the system.

(12) Calculate the change in entropy when 1 kg. of nitrogen is taken from a pressure
from 1 bar at temperature 300 k to a pressure 3 bars and temperature 500 k.
For nitrogen CP = 1041, 6 j k−1 kg−1.
Assume nitrogen behaves like an ideal gas.
1 bar = 100 k Pa; 1 pa = 1 N m−2.
R=8.314 j k−1 mole−1;
nitrogen weighs 28 g mole−1.

(13) A fundamental equation67 of a single component substance is given by 68,

U =

(
v0θ

R2

)
S2

NV
,

where v0, θ, and, R are constants.
(i) First check if U is an extensive.
(ii) Find the three equations of state69 :

T ≡ T (S, V,N), P ≡ P (S, V,N), and µ = µ(S, V,N).

67 A fundamental equation is one which expresses an extensive property as a (first order homogeneous)
function of other extensive properties.

68 Taken from H B Callen, Thermodynamics and an Introduction to Thermostatistics (Student Edition)
Wiley India (2002)p.39; Problems 2.2-1, - 2.2-3

69 An equation of state expresses an intensive property as a (zero-th homogeneous) function of its
extensive properties.
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(iii) Show that T, P, and each is a zeroth order homogeneous function of
S, V,N .

(iv) Express µ as a function of T, V, N .
(v) Sketch P versus V for a fixed T and N . This is called isotherm. Sketch

isotherms for T1 and T2 > T1.
(14) The fundamental equation of a substance is given by,

U =

(
θ

R

)
S2

N
−
(
Rθ

v20

)
V 2

N
.

Show that,

µ = −U
N
.

Express µ as a function of T and P .
(Taken from the reference given in footnote (68) Problems 2.2-4, 2.2-5)

(15) The fundamental equation of a substance is given by,
(
v0θ

R

)
S2

V
exp

(
S

NR

)
.

Find the three equations of state.
(Taken from the reference given in footnote (68) Problem 2.2-6

10.3 Problems Set - 3

(19) N D Hari Dass, The Principles of Thermodynamics, Taylor and Francis
(2014)p.16
The volumetric coefficient of thermal expansion is defined as

γ =
1

V

(
∂V

∂T

)

P

.

THe isothermal compressibility defined as

kT = −
1

V

(
∂V

∂P

)

T

.

Show that the energy transacted by work, when temperature and pressure
change, can be determined in terms of γ and κT and is given by

d̄ W = PV (kT dP − γ dT ).

In a constant volume (isochoric) process, show that
(
∂P

∂T

)

V

=
γ

kT
.

Verify this for an ideal gas.
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(20) You can increase the efficiency of a Carnot engine by raising the source temper-
ature, T1 or by lowering the sink temperature, T2. Assume it costs the same to
change the temperature of the source or the sink, by the same amount. Which
of the two options is cost effective for improving the efficiency of the Carnot
engine.

(21) H B Callen, Thermodynamics, Wiley (1960)p.71
A Carnot engine draws energy by heat from a source of boiling water delivers
one joule or work and rejects energy by heat to ice cubes, melting them in the
process. How much of energy it withdraws from the source by heat ? How many
grams of ice it melts in the sink ? 80 calories of energy is required to melt one
gram of ice.

10.4 Problems Set - 4

(22) to be supplied
(23) to be supplied
(24) Consider an isolated system of N identical, indistinguishable70 and non-

interacting point particles, in two dimensions. Each particle is of mass m.
The particles are confined to an area A..

Let Ω̂(E,A,N) denote the number of micro states of the (macroscopic) sys-
tem with energy less than or equal to E.
(i) Show that

Ω̂(E,A,N) =
1

h2N

AN

N !

(2πmE)N

Γ (N + 1)

(ii) Express S as a function of E, A, and N .
(iii) Derive expressions for the partial derivatives of S with respect to E, A and

N and interpret these quantities.
(iv) Derive equipartition theorem.

(25) Consider an isolated system ofN identical, indistinguishable, see footnote (70)
and non-interacting point particles, in one dimensions. Each particle is of mass
m.

The particles are confined to a length L.
Let Ω̂(E,L,N) denote the number of micro states of the (macroscopic) sys-
tem with energy less than or equal to E.
(i) Show that

Ω̂(E,L,N) =
1

hN

N

N !

(2πmE)N/2

Γ
(
N
2
+ 1

)

(ii) Express S as a function of E, L, and N .
(iii) Derive expressions for the partial derivatives of S with respect to E, L and

N and interpret these quantities.

70 as specified by Boltzmann, i.e. employ Boltzmann counting of micro states.
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(iv) Derive equipartition theorem.
(26) The internal energy of a mono atomic van de Waal gas is given by

U(T, V, n) =
3nRT

2
− an

V
.

In the above, n is the number of moles; ”a” is a constant; R is the universal
gas constant. The gas is allowed to expand adiabatically into a vacuum71 from
a volume of V1 to a volume of V2 ( > V1). Let T1 be the initial temperature
of the gas. What is its final temperature ?
If a mono atomic ideal gas expands adiabatically into vacuum from a volume
V1 and temperature T1 to a volume V2, what will be the final temperature ?

10.5 Problems Set - 5

(27) Evelyn Guha, Basic Thermodynamics, Narosa (2000)p.77

An ideal gas is taken through a cyclic process, which is represented on a P −
V plane, by a rectangle. Let P1 and P2 be the lower and higher pressures
respectively. Let V1 and V2 be the lower and higher volumes respectively. (i)
Calculate the work done per cycle. (ii) Indicate which parts of the cycle involve
heat flow into the gas. (iii) Show that the efficiency of the engine is given by,

η =
γ − 1

γP2

P2 − P1

+
V1

V2 − V1

,

where γ = CP/CV - the ratio of heat capacity at constant pressure to that
at constant volume.

(28) An ideal gas goes through a quasi static reversible cyclic process
A → B → C → A as shown below, on a pressure-volume phase plane.

A B

C

P
V

71 when a gas expands into a vacuum, no work is done. Note : Work is done only when there is movement
against an opposing force. When a gas expands into a vacuum, there is no force that opposes the
expansion. Hence no work is done.



10.5 Problems Set - 5 131

The segment C → A is a reversible adiabat. Let V (A) = v1;V (B) =
V (C) = V2;P (C) = P1;P (A) = P (B) = P2. γ = CP/CV - the ratio of
heat capacity at constant pressure to that at constant volume. (i) Show that

the efficiency of the engine is η = 1− 1

γ

[
1 − (P1/P2)

1 − (V1/V2)

]
(ii) Let S(A) = 0;

find S(B) and S(C)
(29) Evelyn Guha, Basic Thermodynamics, Narosa (2000)p.59 worked example 3

One mole of an ideal gas is taken through a quasi static reversible cycle which
when plotted on a Pressure-Volume phase plane is a circle traversed clock-wise,
A → B → C → D → A, see figure below.

1

B

V

P

A
C

D

2

3

4

41 2 3

The area of a square in the figure is ∆V ×∆P = [10−3 (m3)]× [105 (pa)].
Show that (i)] net work done in one cycle is 314 j (ii) U(C) − U(A) = 600
j; (iii) heat absorbed by the gas during the process A → B → C - upper
hemisphere traversed clock-wise, is 100 j.

(30) G(T, P ) = R T ln(P/P0) − A T P, is the Gibbs free energy of a system,
whereR,A and P0 are constants. Derive an expression for entropy as a function
of pressure.

(31) Start with fundamental relation expressing entropy as a function of energy,
volume and the number of particles : S ≡ S(U,V,N).
(i) Express the partial derivatives

(
∂S

∂U

)

V,N

,

(
∂S

∂V

)

U,N

, and

(
∂S

∂N

)

U,V

,
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in terms of T , P , and µ.

(ii) Show that

(
∂S

∂U

)

V,N

×
(
∂U

∂V

)

S,N

×
(
∂V

∂S

)

U,N

= −1.

(iii) Show that (
∂

∂V

(
µ

T

))

U,N

+

(
∂

∂N

(
P

T

))

U,N

= 0.

(iv) For an ideal gas show that

(
∂

∂V

(
µ

T

))

U,N

= −kB
V
.
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