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Preface

These notes are, almost, a verbatim reproduction of my lectureas thermal physics,
to the undergraduate students of the Chennai Mathematical Btitute, Chennai
during August-November, 2017. Prior to this | have taught thermmdynamics and
statistical mechanics in the University of Hyderabad, Hyderabad from 2006-2015,
the Rajeev Gandhi University for Knowledge Technology (RGUKT) Yideo
lectures) 2010, the School of Basic Sciences, Indian Institute of Technology
Bhubaneswa during January - April 2017 and Chennai Mathematical Institute,
in the years 2004 and 2005. While preparing this document, | havetemsively
drawn from the notes, assignment sheets, tutorial papers, argliestion papers
generated and distributed to the students of these courses.

Each chapter can be taught in some three to ve hours. The mateal in the
entire document can be covered comfortably in one semester -tyoto forty ve
hours or so, including one problem - solving session every other week

A major problem of teaching thermal physics is not about what to t&ch; it
is about what not to teach. Thermal Physicsencompasses, the entire thermody-
namics, and a good part of statistical mechanics. While making this atement,
| am fully aware that strictly thermodynamics does not need any maa or any
assumptions about atoms and molecules - that make up matter. Timeodynamics
does not require any help from statistical mechanics; nor does itgre help from
any other disciplines.

Thermodynamics is a stand-alone subject, self-contained with al@rent struc-
ture and inner consistency and with concepts that are well de nednd well-knit.

One can teach traditional thermodynamics following, for example # book
of Weinreicht or Caller? without involving statistical mechanics, stochastic-cum-
kinetic heat or atomic matter. But then in such an approach, a begiver shall most
likely, face huge di culties. De ning internal energy in terms of adiakatic work is
a bit odd, to say the least. So is describing heat as di erence betweadiabatic
and actual work; entropy would remain enigmatic when de ned in theontext of
converting an inexact di erential to an exact one; a beginner is likelyet more
puzzled than wise if thermodynamic is taught this wa;

1 Weinreich, Fundamental Thermodynamics, Addison-Wesley (1968)

2 H B Callen, Thermodynamics, John wiley (1960)

3 |t calls for a certain maturity, a deep knowledge, and a love f or historical and traditional approach,
to appreciate, and enjoy thermodynamics in its pure form.



Thermodynamics peppered with a bit of statistical mechanics, kinetheat and
atomic matter, is a di erent ball-game altogether. The subject woldbecome know-
able, and easily at that; the subject would become transparent dreven a bit more
interesting.

| would take the attitude that the notion of internal energy becones transparent
when it is taught invoking atoms, their properties and their interacions; entropy
is best described and its tendency to increase, is best understdmdinvoking its
statistical moorings. All said and done, is isn't that a macroscopic sfem chooses
that value of its macroscopic property, which is overwhelmingly mogirobable -
the one that has maximum entropy ?

Hence bringing in a little bit of statistical mechanics right at the begining of
teaching thermodynamics would be very helpful. But then we shouldebcareful to
keep it to a bare minimum, lest statistical mechanics should push th@odynamics
to its appendix-pages. | think | have maintained this balance in thedecture notes.

| have chosen to publish what | taught as lecture notes rather thaa book. A
book would demand a reasonably complete discussion of various issaied call for
some serious e orts toward tying-up of all loose ends. Such probie are not there
for lecture notes. You simply write up what you teach, and the wayou teach;
nothing more; and nothing less.

Leave it to the readers to complete the narrative you have initiateth the lecture
notes; and they can do it by consulting other books and articles. Tacilitate such
an enterprise | have listed several books and articles, at the enfdtlee rst chapter.
The list, | must admit, is, by no means, exhaustive. | have picked upof listing,
the books | have studied and the ones that caught my fancy.

A reasonably good number of worked examples, and a set of praetfroblems,
are included in separate sections. These are drawn mostly from ethbooks. Where
ever | remember, | have cited the sources.

The emphasis is on conceptual issues and on learning thermal phgdiy exam-
ples. | have made extensive use of toy-problems for illustrating imgant concepts.

| hope these lecture notes oimhermal Physicsmake one more useful addition
to your bookshelf. If you nd any mistakes, or nd any portions that lack clarity,
and if you have suggestions to improve the readability, please tell fné shall make
use of your comments and suggestions while preparing subsequedition(s) : |
am hoping that there would be a demand for, atleast, one more editid

Chennai Mathematical Institute, K. P. N.
Chennai, Tamilnadu, India
December, 2017

4 at k.p.n.murthy@gmail.com
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1. LECTURE 1

OPENING REMARKS

1.1 Nature of Heat

Thermodynamics deals with heat and work - two processes by whichsgstem
transacts energy with its surroundings or with another system. yBtouching we
can tell a hot body from a hotter body; we can tell a biting cold metaknob from
the warm comfort of a wooden dodron a winter morning. When a hot body comes
into contact with a cold body, we often observe, it is the hot body wibh cools down
and the cold body which warms up. Energy ows, naturally and spomneously,
from hot to cold and not and never the other way arountl Heat ’ is a process
by which energy ows. Once the two bodies become equally warm, thewv stops.
Thermal equilibrium obtains. Thus, an empirical notion of thermal eqilibrium
should have been known to man a long time ago.

1.2 Nature of Work

Coming to the notion of work, we observe that when an object moseagainst an
opposing force, work is done. When you pull water up, from a well, aigst gravity,
you do work. If you want to push a car against the opposing frictignyou must do

5 Incidentally, the door knob, the wooden door, and the cold surrounding atmosphere have been in
contact with each other for so long they should have come into thermal equilibrium. That means their
temperatures should be the same. But then when you touch the metal knob, you feel the sharp chill;
and not so when you touch the wooden door. Why ? | am leaving it t 0 you to gure out the answer.
at least we have not seen it yet!
What is heat ? | don't think we know it as yet, completely. We mi stook heat for a substance of
combustion and called it phlogiston in the seventeenth century; much later we mistook it for an
invisible uid and called it calorie . Now we recognize, with in the scope of thermodynamics, that
heat, like work, is a process by which energy is transacted. | like the analogy of J. S. Dugdale, Entropy
and its Physical Meaning, Taylor and Francis (1996)p.21 : Heat and work are like cheques and drafts
you use to transact (deposit or draw) money in your bank-acco unt. Money is like energy. It is absurd
to ask how much of cheques are there in your account; it is equdly absurd to ask how much of heat is
there in an object. What resides in your account is money; what resides in an object is energy. Only
at the time of transaction we need to specify whether the tran saction occurs by heat or by work.
However, in statistical mechanics, we continuously endeavour to draw the elusive microscopic pic-
ture of heat and try to discover where and how it is buried in th e phase space trajectories of some
102 or more particles; we can not compute these trajectories; not just because they are obscenely
large in number; but also because they are inherently unpredictable due to sensitive dependence on
initial conditions. It is in this arena of phase space where dynamical trajectories repel / attract each
other, we need to look for a meaning of heat. More on theses ineresting issues later if time permits.

~ o



2 1. LECTURE 1

work. When you stretch a rubber band against the opposing enfpa tension you
do work. When a fat man climbs up the stairs against gravity, he doesork; he
does more work than what a not-so-fat man does. Of course in &drfall, you do
no work - you are not opposing gravity - though you will get hurt, fosure, when
you hit the ground!

Sir Isaac Newton (1643 - 1727) told us how to compute work : thetdaroduct of
force and displacement. In thermodynamics we compute work emyilog pressure
and change of volume : Force divided by area is pressure; therefpressure times
volume-change is work. Pressure is something we became fanfilisith, long time
ago.
P dV = dW isthe work doné in an in nitesimal expansion bydV at constant
pressureP . Do not readd W as ~ change of work ', sinceV/ is not a property of
the system. To put it mathematically, d W is not an exact di erential. To remind
us of this | have decoratedl with a bar. d W should be taken as small work, done
in an in nitesimal change of volumedV . Volume V is a property of the system;
dV is an exact di erential.

1.2.1 Sign Convention for Work Done

The minus sign in the expressiod W = PdV , is there by convention. When
a system does work, its energy decreases; hence work done leysystem is taken
as negative. When you do work on a system its energy increasesnétework done
on a system is taken as positive. Physicists and chemists employ thaneention.
Engineers don't; they take work done by the system as positive. K this in mind
while reading books on thermodynamics written for engineers or bpgneers;e.g.
the beautiful little book of H. C. Van Nes4° based on his lectures to the engineering
students of Rensselaer polytechnic institute in the spring term of9868.

1.2.2 Other Kinds of Work

What we have considered above is the pressure - volume work, ral@vfor a
system of compressible uid. In general, any process by which eggiis transacted
between the system and its surroundings, other than heat, is callevork.

8 Galileo Galilei (1560-1642) knew of atmospheric pressure and knew that it can stand thirty four feet
of water. A few years later, his student Evangelista Torrice lli (1608 - 1647) correctly surmised that
mercury, fourteen times heavier, would rise in the tube only upto thirty inches. He demonstrated it
experimentally. Blaise Pascal (1623 - 1662) was quick to pont out that Torricelli's reasoning would
imply that the air pressure at the top of mountain should be le ss. This was veri ed experimentally
in the year 1648. Daniel Gabriel Fahreinheit (1686 - 1736) invented mercury thermometer and the
temperature scale named after him. Andres Celcius (1701 - 1744) invented the centigrade scale of
temperature. Robert Boyle (1627 -1691) conducted numerous experiments and showed that the prod-
uct of pressure and volume of a given amount of air remains corstant if the temperature is kept
constant. Boyle modelled air as a collection of tiny springs that resisted compression (which explains
air pressure); the springs expand and the air occupies fully the available volume.

® The formula d W = PdV holds good only for a quasi static reversible process. What is a quasi
static reversible process ? | shall answer this important question later.

10 H. C. van Ness, Understanding Thermodynamics, Dover (1969)



1.3 Equality of Temperature ) Thermal Equilibrium 3

Adjusting the tension in a metallic wire in a musical instrument like Veena
or violin for purpose of tuning, is something we often observe. Whegmu stretch
the string by an in nitesimal length of dI, reversibly, against the opposing linear
tension F , the work done equald= dl. When dl is positive, work is done on the
system; hence the expression for work is consistent with our sigongention.

The surface tension, , in a thin Im (like that in a soap bubble or in a mem-
brane) opposes any attempt to increase its area. If the surfatestretched by an
in nitesimal area dA , by a reversible process, the work done idA

Similarly we can talk of magnetic work done on a paramagnet or diamagn
given byB d M , whereB is the applied magnetic eld andM , the magnetization.

When you stretch a rubber band, you do work against an opposingrte which
is of entropic origin. We shall see more of thermodynamics of rubbelasticity
later, see Lecture Notes - 6.

In a dielectric material the work done is given by dP , whereE is the applied
electric eld, and P is the dipole moment.

1.3 Equality of Temperature ) Thermal Equilibrium

We saw of thermal equilibrium that is established when two systemseabrought
into thermal contact with each other. When in thermal equilibrium, @ergy does
not ow by heat. Is it possible to tell of thermal equilibrium without bringing
the two systems into thermal contact with each other ? The answas "yes". This
brings us to the most important concept in thermodynamics, namelemperature.

Measure the temperatures of the two systems. If they are tharse, we can say
the systems shall be in thermal equilibrium if we were to bring them intthermal
contact with each other. The emergence of an empirical notion adrmperature is a
giant step in the development of thermodynamics : Equality of tempature implies
thermal equilibrium?!. Though temperature is one of the early concepts to enter
into thermodynamics, it remains the most di cult to de ne and to comprehend.
A simple and correct de nition : temperature is what a thermometer measures !

We also talk of mechanical equilibrium signalled by equality of pressurenc
di usional equilibrium established by equality of chemical potential.

1 Thermal Equilibrium : Equivalence Relation Thermal equilibrium is a binary relation de ned on

a set of thermal objects. The object A is in thermal equilibrium with B . Let us express it symbolically
A R B. First we notice that this relation is reexive : A R A. In other words A is in thermal
equilibrium with itself. Then we notice that the relation is symmetric: A R B ) B R A. The
statement that A is in thermal equilibrium with B implies that B is in thermal equilibrium with A.
Then comes the third important empirical observation : the r elation is transitive. A R B andB R C
imply A R C. If A is thermal equilibrium with B, and B is in thermal equilibrium with C, then A
is in thermal equilibrium with C. If a binary relation is re exive, symmetric and transitive , we call
it an equivalence relation. We can segregate all thermal objects of a set into mutually exclusive and
exhaustive sub sets called equivalence classes. All elemeés of an equivalence class share a common
property. We name that shared property as temperature. Thus , each equivalence class is characterized
by a distinct empirical temperature.
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1.4 Extensive and Intensive Thermodynamic Properties

Temperature, pressure, and chemical potential are intensivegimodynamic prop-
erties. We also have extensive thermodynamic variables like energglume, en-
tropy etc. In general for a given system, we can write a thermodynamic prape
as a function of several other thermodynamic properties.

1.4.1 Fundamental Equation

For example, considering an isolated system, we can express thestinal energy

U as a function of entropyS, volume V and number of moleculeN : U
U(S;V;N ). Such relations, exclusively amongst the extensive properties of a
system, are calledundamental equationsThe adjective '‘fundamental’ is there for

a good reason : a fundamental relation contains complete inforniat about a
thermodynamic system.

1.4.2 Equations of State

We also have equations of state that expresses an intensive pnap@s a function
of extensive properties. The most familiar equation of state is thaor an ideal
gas, and it reads as

2 U
P(UV)= — —:
3V
In a more familiar form? it reads as
PV = NkgT;

where N is the number of molecules, anks = 1:38066 10 22 j k 1, the
Boltzmann constant or
PV = nRT;

where n denotes the number of moles aniR = 8:3145 j k ! mol 1, is the
universal gas constant. This is also known as ideal gas |&% A single equation of

2py =(2=3)U;U=3NkgT=2 ) PV = NkgT = nRT

13 Bernouilli and the Ideal Gas Law : I must tell you of a beautiful derivation of the ideal gas law
by Daniel Bernoulli (1700-1782). It goes as follows. Bernoulli speculated air to be made of spherical
molecules; they are like billiard balls; these billiard bal | molecules are all the time in motion, colliding
with each other and with the walls of the container. When a bil liard ball bounces o the wall, it
transmits a certain momentum. Bernoulli imagined it as pres sure. It makes sense.

First consider air contained in a cube of side one meter. There is a certain amount of pressure
felt by the wall. Now imagine the cube length to be doubled wit h out changing the speeds of the
molecule. In modern language this assumption is the same as keping the temperature constant. The
momentum transferred per collision remains the same. However since each billiard ball molecule has to
travel twice the distance between two successive collisiors with the wall, the force on the wall should
be smaller by a factor of two.

Also pressure is force per unit area. The area of the side of tke cube is four times more now. Hence
the pressure should be less by a further factor of four. Taking into account both these factors, we nd
the pressure should be eight times less. But then, the volume of cube is eight times more. Bernoulli
concluded that the product of pressure and volume must be a constant when there is no change in
the molecular speeds - a brilliant argument indeed, based onsimple scaling ideas.
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state does not contain all information about the system. We nee@eral equations
of state to complete the thermodynamic picture.

Let us sayx;y;z are extensive variables and ; are intensive variables of
a system. Letx  x(y;z; ; ): We say the propertyx is extensive if it is a rst
order homogeneous functiof of its extensive variables :

x(y; z;; )= x(yiz; 7 )

for any real number > 0. Let (xX;y; ;). Wesay isintensive if it is
zero-th order homogeneous function of its extensive variables :

(Gyis )= 6y )

What | am saying is simple. If you have two bottles of water each of iuume V
liters, entropy S units (joules/kelvin), energy U joules, temperatureT kelvin, and
density  kilogram per cubic meter, and if you empty the bottles on to a vessel,
then the vessel shall contair2V liters of water (Volume is extensive), havin®2S
units of entropy (entropy is extensive),2U joules of energy(energy is extensive) at
T kelvin (temperature is intensive) and density kilogram per cubic meter (density
is intensive). An extensive property adds up; an intensive propgr® doesn't.

1.5 Then Came Sadi Carnot

Systematic development of thermodynamics as a distinct discipline afquiry
started when heat engines - that extract work from heat - came tm existence
during industrial revolution that started in the second half of eightenth century.
Lazare Nicolas Marguerite Count Carnot a French military engineemnvas wor-
ried that the French steam engines were invariably less e cient thathe English
ones. It hurt his pride. He called his student son Sadi Carnot and lesd him to
investigate.

The very fact that work could come out of heat in a steam engine, ce as a big
surprise to Nicolas Leonard Sadi Carnot (1796 - 1832). It is worwhich dissipates
into heat by friction, in nature : when you apply the breaks, the castops because
of friction; also because of friction, the break line heats up. Howay the heat
generated shall never assemble back and move the car. For Sadir®t, what the
heat engine does is something unusual and very unnatural.

¥ ingeneraliff (x;y;z )= "f(x)y;z ) we saythatf is n-th order homogeneous function of its
variables x, y, and, z.

a property which is the ratio of two extensive properties is a utomatically intensive. For example,
consider density of a substance; it is the ratio of the extensive properties , mass and volume, of
the substance. Density hence, is an intensive property. Molar speci ¢ heat is the ratio of (extensive)
energy (required to raise the temperature by one degree kehin) and number of moles (an extensive
quantity) of the substance; molar speci c heat is an intensi ve property. Think of other examples. We
have temperature, pressure, and chemical potential which are intrinsically intensive.

15
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1.5.1 Birth of Thermodynamics

Carnot!® imagined an heat engine to be a simple mill wheel. Water from a height
falls on the mill wheel and it rotates. Similarly whenq calories of heat falls from
temperature T, to a lower temperatureT, it produces movement. If it were to fall
to absolute zero, then the whole of heat would have been convett® work. But
since it fallstoT, > 0, only the fraction (T; T,)=(T; 0) of q calories gets
converted to work. Hence the e ciency of a heat engine can, at Bg be

q T2,

W T]_ .
Sadi Carnot concluded that just having a source of heat " is not sient to give
birth to the impelling power. It is necessary that there should be cojdwithout
it heat is useless. 'We need both - the hot boiler, the heat source atik cold

radiator, the heat sink - to extract work from heat. Carnot annanced his ndings
in the year 1824, and was born the subject of thermodynamics.

1.6 End Remarks

Nobody took notice of Carnot's work for over twenty years. The wst beautiful
law of theoretical physics - the Second Law of thermodynamics, dharrived and
there was no one to welcome it ! It was Benoit PauEmily Clapeyron (1799 -
1864) who gave a mathematical sca olding to Carnot's work and brought it to
the attention of Rudolf Julius Emanuel Clausius (1822 1888) and LdrKelvin re
William Thomson (1824 - 1907). Clausius felt that Carnot's nding was arrect
and intuition told him that it is of great fundamental signi cance. Initially he
called it Carnot's principle and later elevated to the status of a law - th second
law of thermodynamics.

Clausius however rejected Carnot's derivation; justi ably so; fqr Carnot's
derivation was based on caloric theory; and caloric theory has beeverthrown'®

16 Nicolaus leonard Sadi Carnot, Re exions sur la puissance motrice du feu er sur les machinespropres
a developer cette puissance Paris (1824); English translation : Sadi Carnot, Re ections on the motive
power of re and on machines tted to develop that power, in J Kestin (Editor) The Second Law of
Thermodynamics, Dowden, Hutchinson and Stroudsburg, PA (1976)p.16

It was Capeyron who gave the Carnot cycle, that we all are familiar with since our school days,

consisting of an isothermal expansion followed by an adiabatic expansion, isothermal compression

and an adiabatic compression.

18 Count Rumford, re Benjamin Thompson (1753 - 1814), Julius v on Mayer (1814 - 1878) and James
Prescott Joule (1818 - 1889) discovered that heat is equivakent to work; like work, heat is a way by
which thermodynamic systems transact energy amongst themselves or with their surroundings. The
change in internal energy of a system can be exactly accountel for, by the energy transacted by heat
and work :

17

du = dQ+ dWw:

This is known as the rst law of thermodynamics. Thermodynam ics has grown in a topsyturvy fashion.
The Second law came rst, when Sadi Carnot announced that a heat engine can not convert heat
completely to work, whereas work can be completed converted into heat. There is an asymmetry
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in the intervening years since the death of Sadi Carnot. When he wdecoming
familiar with Carnot's work, Clausius knew that heat, like work, was a pcess by
which energy is transacted. To derive Carnot's principle Clausius diseered in the
year 1865 a new thermodynamic property called entropy. | shallltejou of these
exciting developments in the next lecture. For a beautiful, and an inghtful ac-

count of the work of Sadi and Rudolf Clausius, see the bo'Skwritten by Michael

Guillen.

Before | proceed further, let me give you a list of books and articleghich you
will nd useful in your study of thermodynamics. | have listed sevaal books. Each
author has his own narrative to make, his very special idiosyncrasjeand his own
pet stories to tell. My learning of thermodynamics has been in uendeby several
of the books and articles listed here and it will re ect in my lectures. Bt then,
whenever | remember, | shall tell you what material | have pickedmand from
where.

| recommend you glance through the books and pick up one or twoahsuits
your way of learning, for further serious study. It should also beuite ne if you
simply listen to what | say in the class, think it over later, ask questios and hold
discussions amongst yourselves and with me during and outside classirs, read
the notes that | shall give you from time to time, and work out the poblems |
give in the class and in the assignment sheets.

1.7 Books

H C Van Ness , Understanding ThermodynamicsDover (1969). This is an
awesome book; easy to read and very insightful. In particular, | gayed reading
the rst chapter on the rst law of thermodynamics, the second a reversibility,
and the fth and sixth on the Second law. My only complaint is that VanNess
employs British Thermal Units. Another minor point : Van Ness takeswvork
done by the system as positive and that done on the system as niédqga Engi-
neers always do this. Physicists and chemists employ the oppositenantion.
For them the sign coincides with the sign of change of internal engrgaused
by the work process. If the transaction leaves the system with tigr energy,
work done is positive; if it results in lowering of energy, work done is gative.
H B Callen , Thermodynamics John Wiley (1960). Callen sets the standard
for how a text book should be. This book has in uenced generatioms teach-
ers and students alike, all over the world. The book avoids all the fdlls in

in nature. Twenty years later came the rst law of thermodyna mics which talks of conservation of
energy. Then came the third law which talks of equilibrium sy stem at absolute zero. It was discovered
by Walther Nernst (1864-1941) in the rst quarter of twentie th century. The zeroth law which talks
about thermal equilibrium, came much later and the christen ing was done by R H Fowler(1899 - 1944)
when he was discussing the 1935 text of Meghnad Saha (1893 - 186) and B N Srivastava. We shall
see, in detail, about these four laws of thermodynamics.

Michael Guillen, An Unpro table Experience : Rudolf Clausius and the Second Law of Thermodynam-
ics, in Five Equations that Changed the World, Hyperion (1995)p.165

19
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the historical development of thermodynamics by introducing a ptdational
formulation.

H B Callen , Thermodynamics and an Introduction to thermostatisticsSecond
Edition, Wiley, India (2005). Another classic from H B Callen. He has imb-
duced statistical mechanics without undermining the beauty and # coherent
structure of thermodynamics. In fact, the statistical mechang he presents,
enhances the beauty of thermodynamics.

The simple toy problem with a red die (the closed system) and two whitdice
(the heat reservoir), and restricting the sum to a xed number (onservation
of total energy) motivates beautifully the canonical ensemble foralism.

The pre-gas model introduced for explaining grand canonical endge of
fermions and bosons is simply superb. | also enjoyed the discussionsthe
subtle mechanism underlying Bose condensation. | can go on listingvesel
such gems scattered in Callen's narrative. The book is full of beautifinsights.
A relatively inexpensive, Wiley-student edition of the book is available ithe
Indian market. Buy your copy now !

Gabriel Weinreich , Fundamental ThermodynamicsAddison Wesley (1968).
Weinreich is eminently original; has a distinctive style. Perhaps you willetl
uneasy when you read this book for the rst time. But very soon, qu will
get used to Weireich's idiosyncracies; and you would love this book. i§tbook
is out of print. However a copy is available with Prof H S Mani, Chennai
Mathematical Institute, Chennai.

N D Hari Dass , Principles of Thermodynamics CRC Press, Taylor and Fran-
cis (2014). A beautiful book on thermodynamics; perhaps the ntagcent one
to arrive at the market place.

Hari Dass is a great story teller. He has the magic to convert prasahings into
exciting objects. If you are a beginner and plan to learn thermodwmics, | will
recommend this book to you. There is pedagogy; titbits of historycattered all
through; and, no dearth of rigour. You will learn thermodynamics a@rrectly.
To a teacher or an expert, | shall recommend this book whole-héedly. |
am sure he will nd something new, something interesting, and sontehg
surprising, in every chapter. He will get useful hints and substaiati material
which he can make use of while teaching the subject.

The only complaint | have is, the book gives a feeling of nality : the last
word on thermodynamics has been said. | think we are still struggling know
what heat is. Thermodynamics tells us that heat is a process by whiemergy is
transacted amongst macroscopic bodies. This helps; for, therg ghall not mis-
take heat for a substance that resides in a system or a propertftbe systent®.
But then this statement of heat as an instrument for energy trasfer, does not
say anything about what exactly it is. Perhaps heat is something hidgh, some-
where in the 10%* or so of trajectories; you can not compute these trajectories

20 Qur fore-fathers mistook heat for Phlogiston, residing in t he ames or a Caloric uid residing in
thermal objects.
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: not just because the numbers are obscenely large; but becatrssgr dynamics
is inherently unpredictable due to sensitive dependence on initial aditions.
It is perhaps here we have to look for a meaning of heat. | would like teear
of these in the words of Hari Dass, perhaps in the next edition of hiok !
Evelyn Guha , Basic Thermodynamics Narosa (2000). Guha makes an ex-
tremely simple and beautiful exposition of traditional thermodynarts. The
book contains an excellent set of worked-out examples and a largdiection of
well-chiselled problems. In particular | liked the chapter on the congeences
of the Second law. | was also delighted to see a simple and beautifupesi-
tion of the Caratteodary formulation based on the existence ofdaabatically
inaccessible states in the neighbourhood of every equilibrium therchamamic
state.

C B P Finn , Thermal Physics Nelson Thornes (2001). Beautiful; concise;
develops thermodynamics from rst principles. Finn brings out the legance
and the raw power of thermodynamics.

Max Planck , Treatise on ThermodynamicsThird revised edition, Dover; rst
published in the year 1897. Translated from the seventh Germanigdn (1922).
A carefully scripted master piece; emphasizes chemical equilibriumdd not
think any body can explain irreversibility as clearly as Max Planck doest you
think the third law of thermodynamics is irrelevant, then read the laschapter;
you will change your mind.

E Fermi , Thermodynamics Dover (1936). A great book from a great mas-
ter; concise; the rst four chapters (on thermodynamic systes) rst law, the
Second law, and entropy) are simply superb. | also enjoyed the parcovering
Clapeyron and van der Waal equations.

J S Dugdale , Entropy and its physical meaningTaylor and Francis (1998).
An amazing book. Dugdale de-mysti es entropy. This book is not jusabout
entropy alone, as the name would suggest. It teaches you therdymamics and
statistical mechanics. A book that cleverly avoids unnecessary oigr. The anal-
ogy Dudgale gives for explaining internal energy, and the chapten @ntropy
in irreversible changes are beautiful. | shall make abundant use @iig book in
my lectures.

David Goodstein , States of Matter Dover (2002). A delightful and enter-
taining text. You are reminded of Feynman's writing when you read tis book.
The discussion on dimensional analysis is excellent. This book is a musyaur
bookshelf.

F Rief , Fundamentals of statistical and thermal physic®McGraw-Hill (1965).
One of the best text books on statistical thermodynamics. Felix Rielevelops
thermal physics entirely in the vocabulary of statistical mechanicdAs a result
after reading this book, you will get an uneasy feeling that the subgt of
thermodynamics has been relegated to the status of an unintetieg appendix
to statistical mechanics.
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My recommendation : read this book for learning statistical - thermdynamics;
then read Callen, or Van Ness or Fermi for learning thermodynamic§hen you
will certainly fall in love with both statistical mechanics and thermodyamics
separately!

Joon Chang Lee , Thermal physics - Entropy and Free EnergiesNorld Sci-
enti ¢ (2002). Joon Chang Lee presents statistical thermodymaics in an un-
orthodox and distinctly original style. In particular | like the discussons on
Landau free energy. The presentation is so simple and so beautttét you do
not notice that the book is written in an awful English; almost at all plaes,
the language is awed. But then you hear very clearly what Joon Chngy Lee
wants to tell you; and what you hear is beautiful. You get a strangéeeling
that perhaps awed English communicates better than chaste, gmmatically
correct and poetic English !

James P Sethna , Entropy, Order Parameters, and Complexity Clarendon
Press, Oxford (2008) James Sethna covers an astonishingly widage of
modern applications; a book, useful not only to physicists, but alsm biolo-
gists, engineers, and sociologists. | nd exercises and footnotesy interesting,
often more interesting than the main text! The exercises can bero@rted into
exciting projects.

C Kittel , and H Kemer , Thermal physics W H Freeman (1980). A good
book; somewhat terse. | liked the parts dealing with entropy, and @tzmann
weight; contains a good collection of examples.

Daniel V Schieder , An Introduction to Thermal Physics Pearson (2000).
Schreder has excellent writing skills. The book reads well. Containdemty of
examples. Somewhat idiosyncratic.

M W Zamansky, andR H Dittman, Heat and Thermodynamics, an inter-
mediate textbookSixth edition, McGraw-Hill (1981). A good and dependable
book for a rst course in thermodynamics.

R Shanthini , Thermodynamics for the BeginnersScience Education Unit,
University of Peredeniya (2009). Student-friendly. Shanthini h& anticipated
several questions that would arise in the mind of an oriental studewhen he
or she learns thermodynamics for the rst time. The book has a gdaollection
of worked out examples. A bit heavy on heat engines.

Dilip Kondepudi andllya Prigogine , Modern Thermodynamics : From heat
engines to Dissipative Structureslohn Wiley (1998). Classical, statistical, and
non equilibrium thermodynamics are woven into a single fabric. This b&dells
us learning thermodynamics can be fun. Contains lots of interesting-bits on
history. Deserves a better cover design; the present one lookeap.
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1.8 Extra Reading : Books
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2. LECTURES 2 - 5

U AND S IN STATISTICAL MECHANICS AND THERMODYNAMICS

2.1 Opening Remarks

We have acquired some nodding acquaintance with terms like internahergy, U
and entropy, S in the previous lectures. We already know thaty and S are
extensive properties of a macroscopic system. It is time, we getkaow more of
these two important properties.

In thermodynamics the nature of internal energy and that of emopy are sort of
shrouded in a bit of a mystery. Of course | must say these quantiieare de ned,
in thermodynamics, unambiguously and rigorously; but they remainkstract. Let
us take internal energy. Thermodynamics does not help us visualites quantity :
What is it ? Is it kinetic ? Is it potential ? Where does it reside inside the raterial ?
and how ? The story is the same with entropy : What is the nature ofréropy ?
Can | understand this property of a macroscopic system like | ~ uedstand ' other
properties e.g. volume, pressure, density, temperaturegtc. ? why should entropy
always increase in a spontaneous process ? How do | form a mentatyve of
entropy ?

Hence, rst, | shall tell you of these quantities very briey, in the language
of statistical mechanics. Hopefully, this will help you get a feel for tarnal en-
ergy and entropy, and to some extend comprehend what they aamd why they
behave the way they do. Then | shall tell, how these properties ade ned in
thermodynamicg?.

2.2 Internal Energy : Statistical Mechanics

Matter is made up of atoms and molecules. When two molecules are &part they
move about independently; they do not interact with each other. \Wen they come
close, they start attracting each other. The attraction can com about for example
due to dipole-dipole interaction : when the centre of mass of the clbwf electrons
and that of the positively charged core nucleus of a neutral atordp not coincide,
then a dipole emerges. Two dipoles attract each other.

21 1o be precise, in thermodynamics, we shall de ne change in internal energy, U  and change in entropy,
S , and not absolute energy or absolute entropy.
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When you try to push the two molecules closer, they start repellingaeh other.
We know for example, the distance between the centres of two kaspheres can
not be smaller than the sum of their radii. We call it hard core repulsianBut
atoms are more like soft balls; electron clouds around each nucleas overlap to
some extend, when squeezed; their centres can come a bit clobantthe sum of
their radii, but not too close : the repulsion increases rather stelp

2.2.1 Lennard-Jones 6-12 Potential

A good model for describing such interactions described aboveiseen two atoms,
is given by Lennard-Jones potential, also known & 12 potential. It is given

by " "

12 6
V(r)=4 — — 2.1
(r) : : (21)
The potential is depicted in the Fig. (2.2.1), below.

The symbol r denotes the distance between two molecules. For plotting the
graph, we have taken =0:1and = 3:5.V(r = ) = 0: The depth of
the potential well is . The potential is minimum atr = r? =2 _ When the
atoms are separated by a distance of there is no force between them. The atoms
attract each other when their separated by distance more than’. If they come
closer thanr ?, they start repelling each other.

10
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Fig. 2.1. Lennard-Jones potential

Consider all possible distinct pairs of atoms which are su ciently clostéo each
other; each pair carries some tiny potential energy. Since thereeaa large number
of such pairs in a substance, the potential energy adds up to a sténtial value.

The atoms are also moving all the time in gases and liquids and '\gbratlng(mnd
their mean positions in a crystalline solid. There is kinetic energy _, p?=2m
associated with each atom of mass1 and momentum (p1; P2; P3)- These tiny
contribution to potential energy and kinetic energy from somé&02® or so of atoms,
add up to a substantial number which we call internal energy.
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2.3 Internal Energy : Thermodynamics

That the physicists and chemists of the yesteryears could at all ;@ up with
a property like internal energy, is amazing. They did not know of atns and
molecules that make up the object and the kinetic energy and inteshon energy
they carry. Hence there was no way they could know how and whedees the
internal energy arise and how and where does it reside inside an abje

Of course, they had their own compelling reasons to come up with thetion of
internal energy. The compulsion came from the work of Rumford, &er and Joule.
The trio had de-throned the caloric theory and had unambiguouslyseblished
that heat is equivalent to work. From careful experiments with a \&sel of water
(isolated by adiabatic walls), paddle wheel (to stir the water), anddiling weights
(to measure the work done), see gure below, Joule had obtaineldet mechanical
equivalence of heat 1 calorie= 4 :18 joules.

If we want to take this mechanical equivalence of heat to its logicahd, then
we must de ne heat, completely in terms of work. How do we do this ? &\know
that in an adiabatic proces$ no energy is transacted by heat. Consider a system
going from one thermodynamic state to the another. If it does thiadiabatically a
certain amount of work is done. If it does this by an arbitrary procss then also, a
certain amount of work gets done. The di erence between thesed work values
is heat. Thus heat is adiabatic work done minus actual work done . We
have done the job. We have expressed heat completely in terms afrkv Stated
di erently we have adiabatic work equals actual work plus heat. Ta&two points on
the thermodynamic phase diagram. Take the system from one potatthe other by
an arbitrary process. Measure the work done (in units of joule) grtoying falling
weights. Let it be W ;. Measure the heat exchanged (in units of calories) by noting
the temperature change and employing the standard calorimetricethods. Express
the heat exchanged in units of joule, employing the calorie to joule meersion
factor. Call it Q1.

Now consider another path between the same two points and calcidahe work,
W, and heat,Q,. In generalQ; 6 Q, and W, 6 W,; But their sum was found
to be invariably the same Q.+ W; = Q,+ W,. What ever may be the path, the
heat and work measured add up to the same quantity, provided trearting point
and the end point of all the paths are the same. Heat plus work is fod to be
independent of the path. Hence the sum can be expressed as a direce between
the values of a thermodynamic property at these two points. Thishbservation
provides a neat justi cation for calling the adiabatic work done in a pocess, as
change in some property of the system. We name this property agamal energy
of the system and denote it by the symboU .

Accordingly, take an arbitrary point on a thermodynamic phase diagm. Call
it O. De ne a function/property U and assign to it an arbitrary value at the

22 3 process that happens in a system which is isolated from the sirroundings by a non conducting wall.

Stu kept inside a thermos ask is a good example of an isolate d system.
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Fig. 2.2. Engraving of James Joule's apparatus for measuring the mechanical equivalence of heat, in
which potential energy from the falling weight on the right i s converted into heat through stirring of
water on the left. Source Harper's New Monthly Magazine, No. 231, August, 1869.

chosen reference poinD. Then consider a pointA on the phase diagram and an
adiabatic process that takes the system fror® to A. Measuré® the work done.
De ne

U(A)= U(0)+ W, (2.2)

In the aboveW(()/?)A is the work done in the process that takes the system fro@
to A adiabatically. Carry out this exercise for all the points on the therradynamic
phase plane.

Let us say there exists a poinB on the phase diagram which is not acces-
sible adiabatically from O. In that case it is assured the system could go in the
reverse,i.e. from B to O, adiabatically. Then, employing falling weights, make a
measurement of the work done in an adiabatic process fradnto O. We can write

U(0)= U(B)+ W, or
U(B)= U©O) W ,: (2.3)

Thus, you can de neU at all points on the phase diagram.

Consider now two pointsA and B such that you can go fromA to B adiabat-

ically. Let WA(\A!\)B denote the work done. Consider an arbitrary thermodynamic

2 Work done is measured as follows. Link the process to a falling weight. Determine by what height the
weight falls during the process. That gives you the work done. Joule actually carried out experiments
with falling weights and measured the work equivalence of heat quite accurately.
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process that takes the system fror\ to B. Let W, g be the work done. We
haveW'i'?)B War g = Q

In terms of the functionU we haveU (B) U(A)= W + Q. The function
or the property denoted by the symbolJ is given the name Internal Energy. The
reason for calling it energy is obvious : we have learned in in our schdals that
energy is ability to do work.

What is the nature of this property we call internal energy ? What igts ori-
gin ? How and where does it reside in the interior of the object ? We hauo
wait for Boltzmann to arrive, formulate statistical mechanics and aswer all these
questions. Until then we shall de ne internal energy in terms of adbatic work.

Every time we observe a change in the (internal) energy of a systemd on each
of these occasions we are able to account for the change in terhbeat and work,
then we can say that energy is conserv&d The idea is to explicitly recognize that
the system and its surroundings are separated by a boundary. &gy enters or
exits through the boundary. When it enters by work, we say the w& is positive;
when it enters by heat we say the heat is positive. In the same fashiwhen energy
exits the system by work we say the work is negative; when it exits ¢hsystem by
heat we say the heat is negative. There are only two ways - heat amark - by
which such a transaction can take place and we have the law of cawvsdéion of
energy expressed in thermodynamics as

U =W + Q: (2.4)

| must reiterate that the quantity U in the above is the change in a property of
the system, when you go from an equilibrium thermodynamic stat& to another
equilibrium thermodynamic state B. It does not depend on the path taken. It
depends only on the initial and the nal states. We can not say of ik about the
two quantities W and Q sitting on the right hand side of the above equation.

If the two points A and B are in nitesimally close to each other in the ther-
modynamic phase plane, thenU can be expressed as an exact di erentiaU .
Again, we can not say of this about the other two quantities sitting o the right
hand side of equation (2.4). For an in nitesimal process we write thest law of
thermodynamics as

du = dQ+ dW: (2.5)

Heat can not be expressed as an exact di erential. Heat is not a erty of the sys-
tem. Hence we have put a bar od and we have denoted the small amount of heat
asd Q. Do not readd Q as change of). It is absurd. Q is not a thermodynamic
state variable. These observations hold equally good for work aslwe

24 | would strongly recommend : read the rst chapter of the litt le book of Van Ness, Understanding
Thermodynamics, Dover (1969) where he talks about a mother, a son, thirty seven sugar cubes, and
a room with two windows one named W and the other Q.
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We have already seen that thougll W is not an exact di erential the quantity

d W=P is an exact di erential®® calleddV . We haved W = P dV, in an
in nitesimal (quasi-static) reversible process. We can calculate ¢hwork done as
z B
War g = P dV, (26)
A

The integral is carried out along a pre-speci ed quasi static reveible path taking
the system from a thermodynamics staté to a thermodynamic stateB , on the
PV phase plane. 1=P is the integrating factor that gives you an exact di er-
ential dV from an in-exact di erential d W . The expressiord W = PdV holds
good only for a (quasi static) reversible processes. If the pragses not reversible,
then the expression given for work does not hold good.

Thus, in thermodynamics, internal energy is a state function de ed for equilib-
rium states of a system; the di erence in internal energy betwedwo equilibrium
states is given by the adiabatic work done while going from one of th&ates to
the other.

2.4 Entropy : Statistical Mechanics

Consider a macroscopic system which can exist in more than one misctates.

A coin has two sides labeled "Heads" H and "Tails" - T. We say these are
the two (micro) states of the coin :fH; T g.

Consider a system of two independent fair coins; there are four mocstates :
fHH; HT; TH; TT g.

A system ofN independent fair coins ha2N micro states. Each micro state
is a string of N elements; each element id or T.

A die has six micro states - the six sides of a cube notched with 2; )
dots.

A point particle is speci ed by three position coordinates and three omentum
coordinates. At any time it is represented by a point in six dimensionglhase
space. We imagine the six dimensional phase space to be made up of $ix
dimensional cubes. We can take the cube to have a minimum uncertgir?®
volume ofh3. Then we count the number of cubes in the phase space region
accessible to the single-particle system. This gives the total thember of micro
states of a single patrticle.

25 A natural question arises : Is it possible to express d Q also in terms of some exact di erential and
some integrating factor ? Rudolf Emmanuel Clausius answered this question in the a rmative and in
doing so he invented a new thermodynamic property called usually denoted by the symbol S. | shall
tell you of this later. Suceistosay d Q=T = dS

% \We have the uncertainty relation x p x ' h, where h denotes the Planck's constant : h =
6:626176 j s.
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Consider a system oN ideal gas molecules con ned to a volumé and having
energyE . A string of 6N number - 3N for specifying the positions and3N
for momenta, represents a micro state. The entire system is sped by a single

point in the 6N dimensional phase space. We can count the number of cubes,

each cube being of volumdé3N | required to Il up the phase space volume
accessible to the system. This count gives the number of micro statof the
system. Let us denote this count byb(E; V;N ) and proceed to calculate this
quantity as follows.

First we notice that for spatial coordinates, we have
Z Z Z z Z z

dg: dg., dgs dgsy 2 dogsy 1 dgasy = VN (2.7)

where the integral over the three positions of each molecule extismover the volume
V of the container.
The energy is given by
XN p?
E = —: (2.8)

.. 2m

i=1
Since the system is isolated, the energy is a constant. The trajecy gf the system
is con ned to the surface of a3N dimensional sphere of radius 2mE . For
purpose of counting the micro states, we shall consider the volunoé the 3N
dimensional sphere. This brings us to to the issue of determining tiwelume of

hyper spheres and to this we turn our attention below.

2.4.1 Volume of an N -Dimensional Sphere

The volume of an N - dimensional sphere of radiusR is formally given by the integral,
zZ, 1 z, 1 X
Vn (R) = dx 1 dx N R? x2 (2.9)

1 ! i=1

Change the coordinate system from

fxi :1i=1;Ng to fyi=x;=R : i=1;Ng:

dxi = Rdy;i 8i =1;N;

X X
R? 1 yi = 1 yi
i=1 i=1
We have,
|
z + 1 z +1 X‘I ’
Vn (R)= RV dy1 dyn 1 yZ (2.10)
1 1 i=1
= Vy(R=1) RM: (2.11)

where Vy (R =1) is the volume of an N - dimensional sphere of radius unity.
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To nd the volume of N -dimensional sphere of radiusR, we proceed as follows.

|

Z,, Z,, b '
Vn (R =1) RN = dx 1 dx N R2 xZ (2.12)
1 1 i=1

Di erentiate both sides of the above expression with respect to R and get,

Z ., Z,, X
NVy (R=1) RM = dx 1 dx N R? x? 2R: (2.13)

1 1 i=1

Now, multiply both sides by exp( R?2)dR and integrate over R from 0 to 1 .
Left Hand Side:

Zl
LHS = NV (R =1) dR exp( R?HRM *: (2.14)
0
Let x = R?2; then dx =2 RdR . This gives
1 dx
dR = 57 (2.15)
We get,
Zl
N N g
LHS = W (R =1) > X 2 exp(  x)dx;
_ _ N N
=W(R=1 3 5
N
= S+l W(R=1: (2.16)
Right Hand Side :
I
Zl Z+1 Z+1 X ’
RHS = dR exp( R?) dx 1 dx v R? x? 2R;
0 1 1 i1
t = R?; dt =2 RdR;
|
Z, Z, Z ., X '
RHS = dt exp( t) dx 1 dx N t X7
0 1 1 =1
Z+1 Z+1
= dx 1 dxn exp (X2 + x3+ X%)
1 1
Zl N
= dx exp( x?) = M2 (2.17)
1
Thus we get
N= 2
= = _ 218
Vi (R =1) e (2.18)
N= 2 N

2
What we require is the volume of a thin shell, con ned between spheres of radiusR and R R . We
show below that for large N this quantity is the same as the volume of the sphere.
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242 An N (1 ) Dimensional Sphere Lives on its Outer Shell

In the limit of N ' 1 | the volume of a thin outer shell tends to the volume of
the whole sphere. This intriguing behaviour is a consequence of thewer law.

Ww(R) W(® R)_RY (R R )V
Vi (R) - RN !

R N
=1 1 —  =lfor NIl :(220)

Consider the case wittR =1 and R = 0:1. The percentage of the total volume
contained in the outermost shell of aN dimensional sphere foN ranging from
1 to 100 is given in the table below.

Table 2.1. Percentage of volume of anN dimensional sphere contained in a thin outer shell between
R=0:90and 1

N YW R=D VN (R=0:9) N VN(R=1) Vy(R=0:9
Vy (R = 1) Vn (R =1)
1 10.000% 8 57.000%
2 19.000% 9 61.000%
3 27.000% 10 65.000%
4 34.000% 20 88.000%
5 41.000% 40 99.000%
6 47.000% 60 99.000%
7 52.000% 80 99.980%
100 99.997%

2.4.3 Counting of Micro States
The volume of a3N dimensional sphere of radiug 2mE is thus, given by

(2 mE )3N=2

(2.21)
3N 41
2t

o I

Van (R = 2mE) =

The number of micro states oN molecules of an ideal gas con ned to a volume
V and with energy less than or equal t& is formally given by

VN (2 mE )3N=2
hsN M+1

b(E;V;N )= (2.22)

Entropy is de ned as proportional to the logarithm of the number & micro
states accessible to the system.
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For a coin with two micro states,S / In2.

For a die with six micro states,S/ In6.

If we have a system ofN independent fair coins, there ar@N micro states.
We haveS/ N In2.

Entropy of N non interacting particle of energyE con ned to a volumeV is
given by

S/ In b(E;V;N)
/ NInV +(3N=2)In(E=N )+ (3 N=2)In(4 m= [3h?])+3 N=2:

In deriving the above, | have used the fact that (n + 1) = n!, and | have
employed the rst Stirling formula?’ : N!= NN exp( N), for large factorials.
Thus, when the volume of the container increases, entropy incess because the
system gets access to more number of micro states; the abovenida tells you how
does it increase S / In V. When energy increases, entropy increases, because
the system gets access to more number of micro states; the degence isin E.

2.5 Entropic Presure

Consider the following experiment : A gas is con ned to a vertical cyloter open at
the top and tted with a movable piston. When you try to push the pigon down,
the gas resists and records its displeasure by trying to push the fois up. You can
feel the pressure.

Now pull the piston up. There is no resistance. The gas happily expads and
lIs up the extra volume made available to it. The gas is all the time making orts
to increase its entropy. If what you do, decreases its entropy éhgas opposes it by
exerting pressure. If what you do, increases its entropy, the gaccepts it; poses
no opposition to it. Thus we see that the pressure in this example is ehtropic
origin?.

Thus, given an opportunity, the system would like to increase its erapy. In
other words, in any spontaneous process, entropy increasesved certain con-
straints, the system would take those numerical values for its maxscopic proper-
ties that maximize its entropy.

27 First Stirling Formula : We have, jN1= N (f 1) 3 2 1. Therefore, In N! [=

In 1+In 2+In 3+ +n N = Ezl In( k) 1N In xdx =(xIn x X)T =NIhN N 1]
NIinN N =) N! NV¥exp( N)

2 \We are familiar with pressure of mechanical origin. Consider a spring with plates tted on either
side. Catch hold of the plates and push them toward each other, thereby, compressing the spring.
The spring resists and exerts pressure to throw your hands out. Try to pull the plates apart thereby
increasing the spring length. The spring resists again, exats a pressure and pulls your hands inwards.
In this experiment the pressure is of mechanical origin.
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For now, this picture of statistical mechanical entropy is adequat®. An impor-
tant point is that entropy is a (logarithmic) measure of the number dmicro states
of a macroscopic system. The system is all the time taking e orts tmcrease the
number of micro states. A macroscopic system has a natural tesnty to go to
states of higher entropy.

2.6 Entropy : Thermodynamics

Start with the rst law of thermodynamics and write heat as adiabatc work®
minus actual work :d Q = dU  d W: For a quasi static reversible process, we
have

dw = PdvV = P d(nRT=P )
NRT nR
= P dP + — dT
P2 P
NnRT
= 5 dpP nR dT (2.23)

Also for an ideal gas, internal energy) depends only on temperature; hence we
havedU = C, dT, whereCy is the heat capacity at constant volume. Therefore
we have,

nRT
dQ=(Cy + nR) dT dP
=f(T;P)dT + g(T;P) dP (2.24)
In the above,
nRT
f(T;P)= Cy+nR and ¢g(T;P)= 5 (2.25)
Let us check ifd Q is an exact di erential or inexact di erential. We have
f R
9 =0 and gg: m (2.26)
@P @T P
Thus we nd of @
g 29 2.27)
@P @T

2% |n the description of entropy, | have not explicitly employe d the word probability, for de ning entropy.
Nor have | invoked the notion of probability toward de ningi nternal energy. We shall see later, entropy
de ned completely in term of probabilities of the micro stat es of a macroscopic system; and what we
call as internal energy in thermodynamics corresponds to average energy, in statistical mechanics

%0 we have named adiabatic work asdU : the change in internal energy.
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From this we conclude thatd Q is not an exact di erential and hence,Q is not a
(state) function of the (state) variablesP and T. Q is not a property of the ideal

gas system.

What | am saying is extremely simple. If | have a (state) function of (state)

variablesP and T, then | can write,

(P;T)
d = 9olP + golT
@P @T

If = (P;T), then

@ e _@ @
@T @P @P @T

The above can be written as

¢ _ @
@T@P @P@T

The order of di erentiation is immaterial for a state function.

2.6.1 Clausius Invents Entropy

Clausius started with the equation,

NnRT

dQ=(Cy + nR) dT dP

Divide all the terms in the above equation byl and get

d Cyv + nR R
RS Myr e
T T P

f(T;P)dT + g(T;P) dP

In the above,
Cy + nR
f(T,)P)= ———
-
(T:P)= nR
g ’ - P

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Let us check ifd Q=T is an exact di erential or inexact di erential. We have

g:Oand Qg:
@P @T

0

(2.37)
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Thus d Q=T is an exact di erential. Let dS = d Q=T , then S is state variable;
it is a property of the system. Clausius named the new thermodynamvariable
as entropy. Clausius writed" " | have intentionally formed the word entropy so as
to be as similar as possible to the word energy since the twogmigudes that are
given their names are so closely related in their physicagsi cance that a certain
likeness in their names has seemed appropriate

Having invented a new thermodynamic variable entropy, Clausius as$s that
the entropy has a tendency to always increase in any spontanequecesses. At
best it remains constant in a reversible process. It never decreas

First Law : The energy of the universe is a constant
Second Law : The entropy of the universe always increases, untilrédaches a
maximum and shall remain the same subsequently.

2.6.2 Heat ows from hot to cold

The second law assertion thatS 0 in all processes helps us comprehend
several phenomenon that occurs in nature. For example considecertain amount
of heat moving from a heat reservoir-1 at temperatur@; to a heat reservoir-2 at

temperature T,. The reservoir-1 loses entropy dS; = q=T;. The reservoir-2
gains entropy :dS, = g=T,. The total change in entropy is thus
dS = dS; + dS, = ! ! (2.38)
= 1 2=4q T, T, .
T T
=q -2 (2.39)
T, T2

Clausius assertion thatdS 0 implies that T; T, : Heat always moves from
hot to cold.

2.7 Carnot engine and the Second Law

Consider now an enginéM that draws a certain amount of heat from the heat
reservoir at temperatureT,; and delivers workW , see gure below.

This is permitted as far as the rst law of thermodynamics is concesd. We
demand that W = q;. The entropy of the reservoir decreases by;=T;. The

31 Clausius presented this work in Zsricher naturforschende Gesellschaft on April 24, 1865; see R Clau-
sius, On dierent forms of the fundamental equations of the mechanical theory of heat and their
convenience for applications, in J Kestin (Editor), The Second Law of Thermodynamics Dowden-
Hutchinson-Ross, Stroudsburg, PA (1976)pp.162-193
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9,

Fig. 2.3. An hypothetical engine that draws a certain amount of heat fr om a heat reservoir at temper-
ature T; and converts the whole of it into work.

machine after delivering the work returns to its initial state to stat all over again.
Since entropy is a state function, there is no change in entropy dfi¢ machine.
Therefore the net change in entropy in the process@#S = dqg;=T;. The second
law tells that dS 0. Hence the process of converting heat completely into work
is not permitted by the second law.

Now introduce a sink at lower temperaturel,, see gure below. The machine
dumps a certain amount of heatg, into the sink. The sink gains an entropy of
g2=T,. Then we should have the following constraints:

g1 02= W from the rstlaw of thermodynamics (2.40)

ds :q_2 q_l

T T 0 from the second law of thermodynamics (2.41)
2 1

Consider an ideal engine for whicklS = 0 . Therefore

-
T1 T O[] Ty

Now start with the rst-law- equation,

Wop %y -4 L (2.43)
01 01 T

The above is the familiar equation for the e ciency of a Carnot engineof which
we have seen earlier while discussing Carnot and his work.

Thus Clausius did what he said he would do. He had a hunch that Carrist
formula for the e ciency of an ideal heat engine, in terms of the sage and sink
temperatures, was correct and of fundamental import, even dugh he did not
approve of the way Carnot arrived at the formula based on Caloricgat. But then,
the caloric heat has since, given way to kinetic heat, thanks to Rund, Mayer,
and Joule. Clausius wanted to justify Carnot's principle in the light of knetic
heat. In the process he invented a new thermodynamic propertgaleed Entropy.

W=aoq 02)
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By demanding that entropy always increases except in ideal proses?, he derived

Carnot's formula.
T
g 1
W,
:
J
2

T

Fig. 2.4. Carnot Engine

Thus the Second law of thermodynamics can be stated d$ 0 for any
process; equality obtains for a reversible proces$S refers to change in entropy
of the system plus that of the surroundings. We also know that Sexed law of
thermodynamics is rooted in heat engine that produces work froneht. It would
be interesting to see the Second law stated completely in terms ofahengines,
see below.

Clausius statement of the Second law :

No process is possible whosmly nal result is the transfer of heat from a colder
to a hotter body.

Kelvin-Planck statement of the Second law :

No process is possible whosmly nal result is the absorption of heat from a
reservoir and conversion of the whole of heat into work.

In both the statements above, the phrase ° the only nal result is extremely
profound. This phrase is there for a purpose : The familiar refrigator transfers
heat from cold to hot; but then this is not the " only nal result ' ; the refrigerator
is plugged to a power point; an external source does work on thdrigerator; this
is what enables the refrigerator to do what it does,

%2 quasi-static and reversible
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In a reversible isothermal process, the gas absorbs heat andwests the whole
of it into work. But then this is not the " only nal result ' ; the gas also expands
during the process.

The Second law can be stated in several di erent wajs From one statement,
we should be able derive all other statements. | leave it to you proubat the
Clausius statement of the Second law is equivalent to the Kelvin-Plakstatement.

The invention of entropy and the assertion that it always increases called
the Second law of thermodynamics is going to have far-reaching seguences.
It is going to change completely the way we are going to look at macoupic
phenomena. Entropy and the Second law are going to haunt us !

Thus, in thermodynamics the de ning equation for entropy is

dS = —: 2.44

T (2.44)

It is energy (joule) divided by temperature (kelvin). Entropy is meaured in units
of joule per kelvin.

2.8 Tying up loose ends

2.8.1 Boltzmann Constant

| said that in statistical mechanics, entropy is de ned as proportinal to logarithm
of the number of micro states of a macroscopic system. Why do weed logarithm ?

The number of micro states of a composite system is the producttbe number
of micro states of the individual systems. A single coin has two micrdases. A
system of two coins ha®2 2 = 4 micro states. In thermodynamics we have
already de ned entropy as extensive. Entropy of the individual sstems add up
when we combine them to form a composite system. Logarithm of agatuct is the
sum of logarithms :In(ab) =In a +In b.

In statistical mechanics entropy is a mere number. In thermodymaics, entropy
is measured in units of joules/kelvin. But we know, now, that joule ath kelvin are
just two units of measuring energy. The conversion factor thatéips us to go from
joule to kelvin is called the Boltzmann constant. It is denoted by theysnbol kg .
We havekg =1:3807 10 2% jk . To express statistical mechanical entropy
in units of joule per kelvin, we take the proportionality constant akg . Thus we
have,

33 a beautiful statement of the Second law obtains when Omar Khayyam (1048 - 1131) surrenders to

the irreversibility of life with the words

The Moving Finger writes; and, having writ,
Moves on: nor all your Piety nor Wit
Shall lure it back to cancel half a Line,
Nor all your Tears wash out a Word of it.
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S=kgln b (2.45)

The above is called the Boltzmann entropy.

2.8.2 Classical Entropy is not Extensive

For an isolated system ofN ideal gas molecules with energf and con ned to a
volume, we found that the number of micro states is given by

3 E 3 4 m 3
S(E;V;N )= Nkg InV + —In — + —1In + — : (2.46)
2 N 2 3h? 2

The rst thing we notice is that the above expression for entropy isiot extensive

S(E; V; N )6 S (E;V;N ): (2.47)

2.8.3 Boltzmann Counting

To restore the extensive property of entropy, Boltzmann introdced an ad-hoc

notion of indistinguishable particles. He proposed thaN ! permutations of the

particles, should all be counted as one micro state since they amdistinguishable
With Boltzmann counting, we have,

ey . 1 VN (@2mE )=z
(E:VIN)= ooy T (2.48)

The expression for reads as,

Vv 3 E 3
S(E;V;N)= Nkg In — + —-In — + —In
N 2 N 2

4m
3h?

+ > (2.49)
> @2

The expression for entropy given above is extensive; it called Sacketrode equa-
tion.

Historically Boltzmann counting was proposed to resolve Gibbs parax, which
was a consequence of the non-extensive entropy. Gibbs formaththe paradox in
terms of entropy of mixing of like and unlike gases.

2.8.4 Entropy of Mixing, Gibbs Paradox and its Resolution

The number of micro states ofN non interacting gas molecules con ned to a
volumeV is given by, (V)= VN, where we have retained ony the dependence
on V. We have ignored all other terms since they are irrelevant for thestussion
below. The entropy is given byS = N In( V) where we have set without loss of
generalitykg = 1.
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Consider a box divided by a partition into two portions by a shutter. rtion
1 hasN ; molecules in volumeV; and portion 2 hasN , molecules in volumeV, .
Entropy of the two systems areS; = N;In(Vy) and S, = N, In(V;). The two
systems are in equilibrium.

Now remove the shutter and allow the gas to mix and equilibrate. We mo
have N ; + N, molecules occupying a volume of, + V, . The entropy isS =
(N1+ N5)In(Vy+ V,). Let us calculate the change in entropy when the shutter
is removed. Itis givenbyS =S (S;+ S;): We get,

Vi+ V; Vi+ V,
S =Ni;ynh — + Nz;In —— (2.50)
Vi V,
We ndthat S > 0. S is called entropy of mixing. Consider now a situation
whenN 1=V; = N,=V, = : The entropy of mixing can be written as,
Vi+V Vi+V
S =Viln ——2% + V,ln -2 (2.51)
Vi Va

The entropy of mixing is positive. There is some thing wrong. We expecS to
be zero, because there is no distinction between the system withdarithout the
shutter.

Let us say we remove the shutter, wait for sometime and insert thghutter.
We get back to the initial state. We have reversibility. Hence entrop of mixing
should be zero. This is called Gibbs paradox. Boltzmann introducedeémotion of
indistinguishability of particles to correct for over counting of the nicro states :
Divide b(V) by N !. Thus we have b= wvN=NI The entropy of mixing is then,
given by,

Vi+ V,
S = ( N;+ N 2) n — N ; |n( V1=N 1) N » |n( V,=N 20252)
N;+ N>
N;+ N>
= N1In(N:=Vy)+ NLIn(N,=V,) (Ni+ Ny)In ———=(2.53)
Vi+ V,
Now let us consider the situation wherN ;=V; = N,=V, = . WegetS =

NiIn( )+ NoIn( ) (Ni+ Njy)In( ) =0 asrequired. Entropy of mixing is
zero. Boltzmann resolves Gibbs paradox.

Boltzmann counting can be described, at best, as a patch work. radon't
demolish a well-built wall simply because it has developed a small crackid wise
to cover the crack by pasting a paper over it. Boltzmann did just tht.

A good formalism is not dismissed because of a small w You look for an
immediate quick- x. Boltzmann counting provides one such quick- x

34 Desperate and often elaborate patch work are not new to physicists. They have always indulged
‘papering’ when cracks appear in their understanding of science. A spectacular example is the entity
aether proposed to justify the wave nature of light; Maxwell 's work showed light is a wave. Waves
require medium for propagation. Hence the medium aether, with exotic properties, was proposed to
carry light.
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In fact non extensive entropy in classical derivation is a pointer to deeper
malady. We shall discover soon, the fault is not with statistical meamnics but
with classical formalism employed to describe ideal gas. For the ocect resolution
of the Gibbs' paradox we have to wait for the arrival of quantum mehanics and
for the arrival of bosons and fermions.

2.8.5 Equivalence of Boltzmann and Clausius entropies

Let me end this lecture after making a few remarks on Boltzmann eufpy and
Clausius entropy. On the face of it they seem to be very di erent. ldusius entropy
is deeply rooted in thermal phenomenon : entropy is heat divided bginperature.
Boltzmann entropy is based on counting of the micro states of a $gm, thermal
or otherwise. Let me quickly show you that these two entropies ao®nsistent with
each other for thermal systems.

Consider the Sackur-Tetrode equation, that expresses Boltzma entropy in
terms of E, V, and N . Let us concentrate on the dependence & on V which
can be written as

S=NkgInV + (E;N);

where is a function ofE and N only. We have

S Nk
@s = 8. (2.54)
@V E;N \
The left hand side of the above equatioh equalsP=T: Therefore,
NK g P
= —) PV = NkgT:
Vv T
We have derived the ideal gas law.
More importantly, we have,
NK g PdVv dQ
ds = dv = —— = — (2.55)
Vv T T

Thus, starting from Boltzmann entropy, we have derived the thanodynamic en-
tropy of Clausius. In the derivation of the above, | have made usd the ideal gas
law PV = Nk g T and the fact that for an ideal gas, in an isothermal process
dQ+ dW =0 which impliesd Q = PdV . The above equation indicates that
Boltzmann entropy and Clausius entropy are indeed consistent witach other.

3 for the present, assume this result. | shall derive it in the n ext lecture where | shall deal with partial
derivatives of the fundamental equation U  U(S;V;N )orS S(U;V;N ).
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ENTROPY, IRREVERSIBILITY, AND
THE SECOND LAW

3.1 Preliminaries

We have been using the terms like quasi-static process, reversibl®gess, and
irreversible process rather freely so far. For example

while talking about work, | said that the formulad W = P dV is valid only
if the process is (quasi-static andjeversible .
| have repeatedly emphasized that
only systems inequilibrium can be represented by points on the thermo-
dynamic phase diagram; and
only a (quasi-static and)reversible process can be depicted by a curve
in the phase diagram.
The expressiondS = d Q=T gives the increase in entropy only when the
system absorbsl Q of energy by heateversibly . Henced Q in this expression
is often called reversible heat.

3.1.1 Clausius Inequality

If the process is not reversible thedS > d Q=T . This is called Clausius inequal-
ity. This should be understood as follows. The entropy change in arrewversible
process is more than what you would have otherwise calculated emphg the
expressiond Q=T . Thus, for any general process, we can writ@S d Q=T,
wherein equality obtains when the process is (quasi - static and)vegsible.
Consider a system that undergoes a cyclic process. Sifges property of the
system and since the system returns to its initial state after a clg dS = 0 . This
is true irrespective of whether the cycle is reversible or has one oora segments
that are irreversible. If fhe dierent segments that constitute he cyclic process
are all reversible, then dT—Q =0 |:_IHowever if the cyclic process contains one or
more irreversible segments, then, d?Q < 0: This is also known as Clausius
inequality. Thus in general we have,
I
dQ
- 0; (3.1)
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where equality obtains if the cyclic process is quasi static and resdile.

It is time we get to know what exactly does one mean by a quasi statieversible
process. We shall do this by considering two examples. A quasi staprocess, as
its very name® suggests, is a process which can be viewed as if it were static - a
process which is extremely slow.

3.2 Example - 1 : Adiabatic Expansion-Reversible and
Irreversible

Consider a cylindrical vessel open at the top, tted with a movable igton, and
lled with some n = 80 :186 moles of a mono atomic ideal gas. Let the cylinder
be isolated by non-conducting walls so that no heat enters or exithe cylinder.
Let the volume of the gas b&/, =1 m3 and pressureP, =2  10° pa., when
the piston is in some position. Let us now move the piston up until theolume
increases toVe =2V, =2 md. Let us say we take some units of time to carry
out this process. Formally we have,

Ve Va
V()= Va+ — 2 ¢ 0 t (3.2)

The initial equilibrium state of the system can be represented by apa A (Pa;Va)
in the Pressure-Volume phase diagram, see Fig. (3.1)a = PaVa=nR = 300
K.

3.2.1 Switching Process

If is nite, the process can not be represented by a curve on the pdeadiagram,
The system disappears fromh when we start pulling the piston. When the volume
reachesVe =2V, =2 m?3, we stop. Then, if we wait su ciently long, the system
would come to an equilibrium state and appear at some point on the linegllel
to the P-axis at V = 2V, = 2m°. Where exactly it will be on this line will
depend on the value of . Let us say, the system appears at a poir€, dictated
by a particular value of . Since the system disappears & and re-appears aC
at a later time we call it a switching process and call the switching time. Thus,
in the irreversible adiabatic process, the system switches frof to C, see Fig.
(3.1). The short arrow directed fromA to C indicates that the switching is from
an equilibrium state A to an equilibrium state C, the process is irreversible, and
hence you can not draw a continuous curve starting &k and ending atC. The
process is also adiabatic.

3% quasi means "having some resemblance usually by possessionf certain attributes”, derived from
Quam (as) + si (if). For example a phonon is a quasi particle : y ou can treat phonon as if it is a
particle. It behaves almost like a particle though strictly it is not a particle.
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A

N

Vv

Fig. 3.1. Pressure - Volume phase diagram of an ideal gas. The system diappears at A and late appears
at C. At the points A, C and B the system is in equilbrium. The pr ocessC ! B andB ! A are quasi
static and revesible processes.

3.2.2 Quasi-static Reversible Process

Contrast this with an ideal quasi-static reversible adiabatic proceswhich obtains
in the limit 'l . This process can be represented by a cur®vV =
describing an adiabatic process, see gure in which the poings and B are con-
nected by a reversible adiabatic curve. is a constant. = Cp=Cy, the ratio of
the specic heats at constant pressure and constant volume. iFa mono-atomic
ideal gas =5 =3.

A quasi static reversible process is an idealization. We can imagine itfaiows.
The system is atA. Move the piston up a wee bit. The system disappears from
A and equilibrates very quickly and re-appears at a point extremely de toA.
Now move the piston a little bit more. Again the system disappears, aijbrates
taking a very small amount of time, and appears at a point very clos€ontinue
this until the volume becomesVg = 2 VAo = 2 m 3. We get a dense set of
points betweenA and B . Slower you carry out the process, denser shall be the set
of points. The line that passes through such a dense set of pointsgm A to B
represents a quasi-static reversible process, see Fig. (3.1). Righw, do not worry
about the direction of arrows marked in the gure. | shall talk abotithese arrows
later.

The pressure and temperature can be easily calculated employing tformula
PV = .WegetPg =6:3 10%*pa:andTg =189k .
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3.2.3 Entropy and Irreversible Processes

What is the change in entropy of the system and the surroundingsshen you go
irreversibly and adiabatically fromA to C ?

Since the process is adiabatic, there is no transaction of heat betm the system
and the surroundings. Therefored Q=T = 0. Clausius inequality tells us that
dS > 0. To calculatedS we proceed as follows.

We take the system fromC to B by a convenient reversible process. The ar-
rowed line connectingC to B denotes this quasi static reversible process. Since
Vg = V¢, we consider a constant-volume reversible process. The changein
tropy of the system when you go reversibly fron€ to B can be calculated as,

Z 1o dT 3nR Z 189 dT -
S (B! C)=Cy — = — — = 2797k (3.3)
e T 2 0 T
The system lose79:7 units of entropy. Since the process is reversible, the sur-
roundings gain an entropy 0f279:7 units. Now return the system fromB to A
along the arrowed adiabatic curve shown in the gure. Since the ggsn returns
to the start of the cycle, the change in entropy is zero. This meartsat

S (A! C) 279:.7=0:

There is no change in the entropy of the surroundings during thepcessA !  C,
since the system is thermally isolated. There is no change in entropf/ tbe sur-
roundings during the proces8 ! A since it is adiabatic and reversible. The
entropy of the surroundings increases b79:7 units during the constant-volume
process fromC ! B.

The cyclic proces;A ! C! B! A, consists of

an irreversible segmenfA ! C (adiabatic expansion)
a reversible segmen€ ! B (constant - volume cooling) and
a reversible segmenB ! A (adiabatic compression).

The system starts atA and ends atA in the cyclic process; Entropy is a state
variable. The change in entropy of the system in the cyclic processtlserefore
zero.

The change in entropy of the surroundings i$279 :7 units. The net entropy
change is positive and this is because of the presence of an irratgssegment
A I C in the cyclic processA ! C ! B ! A. The whole scenario is
consistent with the Second law of thermodynamics.

Also we nd that for the system,

I 40
— = 2797 (3.4)

H
The system obeys Clausius inequality : d?Q <0
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Let me make a simple observation before we leave this example. | saidew
the gas expands irreversibly and adiabatically, frolW, to Vi = 2 V,, there is no
way we can say what shall be its pressure or temperature upon étdation. This
IS not quite correct. Let me explain.

We assumed a particular nite switching time and said the system wouldmerge
at C, for purpose of subsequent calculations. The Second law of thexlynamics
tells us that the point C should be vertically aboveB and never below. For, if it
were belowB , then we need to heat the system to bring it reversibly, t& and
then complete the cycle by an adiabatic and reversible compressiBn! A. This
would result in increase of entropy of the system and decrease aofrepy of the
surroundings; this would clearly violate the Second law of thermodgmics, and
we shall see this when we do the book keeping of entropy changesha system
and the surroundings in the cyclic process.

We shall consider one more example to drive home the meaning of a sjustatic
reversible process.

3.3 Example - 2 : Cooling and Heating of a Metal Coin

| have picked up this problem from Dudgal&. | have a metal coin in an equilibrium
state A, at 400 k. Let the heat capacity of the coin be denoted by, = 1000 |
k 1. Cy is independent of temperature. The volume of the coin does not aige
during cooling and heating processes. The coin is cooled to an equilibmistate
B at 100 k following the procedure described below.

We organizeN + 1 heat baths® The k-th heat bath is at temperature Ty,
given by,

400 100
T =400 —  k (3.5)
N
We see thatTy = 400 k and Ty = 100 k. The coin constitutes the system and
all the heat baths together constitute the environment.

3.3.1 Cooling Process

The coin is rst plunged into bath-1 and kept inside until it comes to trermal
equilibrium at T, . This process is repeated with bath-2 and then with bath-3 ...
etc. Eventually when it comes out of bath-N, itis atT = Ty =100 k.

%7 J D Dudgale, Entropy and its Physical Meaning, Taylor and Francis (1998)pp.58-59

% a heat bath is one which transacts energy by heat with a system with out su ering any change in its
own temperature. In other words the heat bath has in nite hea t capacity. Keep a hot cup of co ee
in a room. The co ee cools. Its temperature decreases. Howeer, the temperature of the room does
not increase. The room takes the heat from the cup of co ee but this does not result in increase of its
temperature.
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3.3.2 Change in Entropy of the coin

The coin goes from an equilibrium staté\ to an equilibrium state B . Entropy is
a state function. Therefore the change in entropy of the systeme., the coin, is
(S )s= S(B) S(A); andis given by,

Z 100 dT
(S )s= Cy — = Cylnd= 1:386Cy jk * (3.6)
a0 T
Alternately,
X LT gt X T
(S )s=Cyv —=Cy In
ket o1 T k=1 Tk 1
!
Yo7
= Cy In
k=t Tk 1
"
= Cy In N
To
"
= Cv In _°
T
= Cylndjk * (3.7)

3.3.3 Change in Entropy of the Environment

When the coin enters thek-th bath, it is at temperature Ty ; ; when it comes out
of bath-k it is at temperature Ty . It loses heat to the bath. The bath getsQ
of heat,

(400 100)
Q = Cy N—: (3.8)
The entropy of bathk changes by
300=N (300=N)
(S )xk= Cy = Cy —
Tk 400 (300=N )k
3=N
=g, BN (3.9)
4 (3=N)k
Therefore the change in the entropy of the environment is given by
X X 3=N
(S)e= (S =C —r—r (3.10)

4 (3=N)k

k=1 k=1
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3.3.4 Value of ( S )g inthe Limtof N 'l
We have

S ) =c, _BN) 311
(S )e = Cy 4 3=N)K (3.11)
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Fig. 3.2. The system i.e. the Coin, is cooled from 400 k to 100 k : Change in entropy of the system
plus the environment denoted by the symbol S , is plotted as a function of number of heat baths N .
Inthe limit N '1 ,we ndthat S ! 0. We say thatinthelimt N !1 | the process becomes
(quasi-static and) reversible.

Inthe limit N '1 |, the sum overk can be written as integral oveix = Kk dx
wheredx =3 =N . We get,
Z, Z

dx 4d
= Cy 7y =+ CylIn4 (3.12)

S)==cC
(S )e Vo7 x )

Therefore, S =( S )s+( S )g =0:

3.3.5 Change in Entropy of the system plus the environment

The change in entropy of the system plus the environment is formallyiven by,

S =(S )s+(S )e:



40 3. LECTURES 6 - 8

We can calculate S for various values ofN ranging from1 to 50. The results on
S versusN are depicted in the gure below. We nd that whenN ! 1 the
total change in entropy goes to zeraN !1 represents (quasi-static) reversible
limit.

Why do we say that in the limit N !'1 |, the processA ! B is reversible
and for any nite value of N , it is irreversible ?

To answer this question, let us reverse the pro cess and go fr@n! A, see
below.

3.3.6 Heating

Let us now reverse the process : heat the coin frob®0 to 400 k by successively
plunging the coin in heat bathsN 1, N 2, , 1 and eventually in the bath-0
at 400 k.

Thus we have a cyclic process : coin is cooled freid0 to 100 k and then heated
from 100 to 400 k. The coin returns to its initial state; hence change in entropy
of the coin in the cyclic process is zero. Each of the baths frainto N 1, gain
a certain amount of entropy while the coin gets cooled and lose thensa amount
of entropy when the coin gets heated. However batl- participates only in the
cooling process; it gains an entropy d€y  300=(100N ). Bath-0 participates
only in the heating process; it loses entropy by an amour@,  300=(400N ).
Therefore the change in entropy of the environment in the cyclic pcess is

3 1 9C
(S )cyclic = Cy N_ 1 Z = NV

(3.13)

3.3.7 Irreversible Process

For any nite N the processA ! B is irreversible, because when we we reverse
the process, and take the system froB to A, the environment does not return
to its original state; its entropy increases by an amour®C, =N

3.3.8 Reversible Process

The processA ! B is reversible in the limit of N ! 1 | because when we
reverse the process, and take the system froth! A, the environment returns
to original state : there is no change in the entropy of the environemt. Note this
obtains only whenN !'1

Reversible processes are an idealization. Strictly you can not acl@evreversible
process in the laboratory. However, you can make a process aselto a reversible
process as required, by rendering it slower and slower.

Thus a reversible process has to be necessarily extremely slogs, quasi static,
meaning almost static.
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3.4 End Remarks

The general approach followed is clear. By invoking adiabatic proces we de-
ned a thermodynamic property called internal energyU . However we employed
internal energy in the context of processes which are not adialat This allowed
us to talk of change of internal energy by work as well as heat. Wetgthe rst
law of thermodynamicsdU = dQ + d W . In the same fashion, by invoking
reversible processes we de ned a thermodynamic property calleatrepy, S. We
can talk of change in entropy of a system when its other propertiehange by
thermodynamic processes. We found that if we consider the chang entropy of
the system plus the change in entropy of the surroundings with wiidhe system
interacts, then this quantity is always zero in reversible processda other words,
if the system entropy increases(decreases) in a reversible pss;ehen the entropy
of the surroundings decreases(increases) exactly by the sameoant, so that the
total change in entropy is always zero. Let me emphasize that thisatement is
true only if the process is reversible.

Having established how entropy behaves in reversible processes started em-
ploying entropy in the context of irreversible processes and obtad the Second
law of thermodynamics. The Second law asserts that the total chge in entropy
in an irreversible process is always positive. Thus, in general we hal® 0,
wherein equality obtains when the process is reversible.
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PARTIAL DERIVATIVES IN THERMODYNAMICS

4.1 U(S;V;N ) and its partial derivatives

Let us turn our attention to some formal stu . We start with inter nal energyU .
We shall expressJ as a function of entropyS and volumeV . We shall assume
N to be a constant. Formally we have

@u as+ @Y
@S V;N @V S;N

We have the First Law of thermodynamics

du = dv (4.1)

du = T dS P dV:

Equating the coe cients of dS and dV in the above two expressions fodU , we
identify,

U U
@ s @

T = —_— ; —_— .
@S @V gy

(4.2)

4.2 S(U;V;N ) and its partial derivatives

In statistical mechanics or statistical thermodynamics we take @&mpy as a basic
entity and express it as a function of energy and volume for a xedumber of
molecules :S S(U;V ). We can change entropy by changing energy, and,
volume. Formally we have

@S du + QS
@U V;N @V U;N

We need to identify the partial derivatives in the above expression iterms of the
intensive propertiesT and P . To this end we proceed as follows. We have,

ds = dv (4.3)

du = TdS PaVv (4.4)

From the above we get,
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TdS = dU + PdV (4.5)
1 P
dS = —dU + —dV (4.6)
T T
Equating the coe cients of dU, and dV , we get
S 1 S P
@es _1 @ _P @

4.2.1 Properties of Partial Derivative

Thus we nd the following important property of partial derivatives. If x, y and
z, are three variables each dependent on the other two, then

X 1
@x _ 1 (4.8)
@y, @y
@x ,
Another important property of partial derivatives is :
U S \%
@ @ @ = 1 (4.9)

@S @V @U ¢
We see this by noticing that the left hand side of the above equatiorar be
identi ed as
P 1

T — — = 1 4.10
(T) T 5 (4.10)
where we have made use of the rst property of the partial deriveve
@V 1 1
= = = 4.11
@u s @Uu ( P) @)
@V ¢
In terms of x; y; and z, this property reads as,
@x @y @z _ (4.12)

@z @Zx @(y

4.2.2 Chemical Potential

We can include explicitly the dependence oN and write the fundamental equa-
tion U U(S;V;N ). The partial derivative of U with respect to N is called
the chemical potential, and is usually denoted by the symbol. We have,

@UuU

== 4.13
@N < (4.13)

In the entropic picture, we have,

es _ . (4.14)
@N Uv T
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4.3 Closed System and Helmholtz Free Energy

Let us consider a closed system - a system which is in thermal contagth the
surroundings. It exchanges energy but is closed to exchange ddttar. The sys-
tem is in thermal equilibrium with its surroundings® whence the system and its
surroundings are at the same temperature. Thus temperature asnatural variable
for describing the system.

Consider thermodynamics processes occurring at constant teempture. We
have, from the rst law of thermodynamics,

du=dQ+dWw (4.15)
= TdS + dW (4.16)
du TdS=dwW (4.17)

Since the temperature remains constant, we can write the abovs,a
dlU TS)= dWwW:

For a process that takes the system reversibly from an equilibriuntage 1 to an
equilibrium state 2, at constant temperatureT , we can write,

(U, TS,) (U TSi)= W (4.18)

whereW is the work done during the isothermal reversible proceds! 2. This
suggests that we can treaty TS as a thermodynamic property of the system.
We call it Helmholtz free energy and employ it for studying closed sysns.

It is readily seen that the principle of minimum energy and maximum enapy
can be combined into a single principle of minimum free energy. Spon&usly a
system would go to a state with minimum free energy. We also see thabrk done
on the system is minimum for a reversible process.

4.3.1 Free Energy and the Second Law

We can state the second law of thermodynamics as
W F; (4.19)

where the equality obtains for a reversible process.

%% we have earlier seen that equality of temperature is a universal indicator of thermal equilibrium
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4.4 Legendre Transform : General

Thus free energy provides an alternate formulation of thermodwmics suitable
for describing closed system. In what follows we shall see of geheaternate
formulations of thermodynamics based on Legendre transform.

To start with we shall consider passage from internal energy piat suitable
for studying isolated systems to free energy picture, suitable folosed systems, as
a transform :

S! T and U! F:

The basic idea is to view the curvdJ (S), as an envelop of a set of tangents;
each tangent is speci ed by its slope and the intercept. The slope ismperature,
T and the intercept is Free energyf . Thus we go fromU versusS picture to F
versusT picture.

Considerf , a quantity that varies whenx is varied.

We can prepare a table of values of and the corresponding values df. Also,
we can trace it as a curve in thex  f coordinate plane withf on the y-axis.

Let us now look for an alternate way of expressing the contents thfe table or of
the graph.

Take a point (x;y = f (x)) on the graph.

Draw a line tangent to the curve at this point. Let the slope of this tagent
be denoted bym . Note that m depends ofx. We can prepare a table withm
and the corresponding. We can draw a curve to represent the table. Will this
description provide a unique correspondence fa(x) ? We see it does not. All
curves that are parallel to the curvef (x) shall have the same representation.
A way to distinguish one curve from the other in the family of parallel arves
is to specify the interceptC for each tangent, see gure below.

We see from the gure,

f C
Fx) c_ o (4.20)
X
In other words,
C=f(x) m X (4.21)
o
m= — (4.22)
dx

We see thatC (m) provides an alternate description of (x).
We have Legendre-transformed ! m andf ! C.
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f(x)-C

_ f(x) C
slope = ———

Fig. 4.1. Principle of Legendre Transform : Intercept C is expressed as a function of slope

4.4.1 Legendre Transform : S! T and U(S;V;N)! F(T;V;N)

Take f asU and x asS. We see that the slopen corresponds to temperature,
T . Denote the intercept byF and we have the Legendre transformS ! T and
u'! F.

@Uu

F(T;V;N)=U TS; T= — (4.23)
@S VN

We carry out the Legendre transform as follow.

Start with U~ U(S;V;N ).

Derive an expression for the partial derivative ofJ with respect to S. This
partial derivative is a function of S;V and N .

Equate it to T and invert it to expressS  S(T;V;N ).

ReplaceS by this function in the expression U(S;V;N ) TS.

You will get an expression involving onlyT, V, and N . This is the desired
expression for the free energly (T;V:N ).

The problem below shall illustrate the operations involved.

4.5 Free Energy : lllustrative Example

Let the fundamental equation of substance be given by

U(S;V;N)= ——— (4.24)
\%
where is a constant.
In the rst step we derive an expression for temperature as a fation of S, V
and N . We have
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In the second step,
V,andN.

In the third step we

F

@u 2S
T(S;V;N )= @—S = v
V;N

we invert the above expression and dggtas a function of T,

(4.25)

S(T;V;N )= TZ—V (4.26)

carry out the Legendre transform :

= U(S(T;V;N );V;N) TS(T;V;N) (4.27)

= NIH(TVAH=E 5 TV (4.28)
Vv 2

N 2 T3 429

Y, 4 (4.29)

The independent variables o areT,V andN .
By taking the partial derivatives of F with respectto T, V, and N we obtain
expressions for entropy, pressure and chemical potential resgively. We have

F(T;V;N)=U TS
dF = dU TdS SdT
= TdS PdV + dN TdS SdT
= Pdv  SdT + dN (4.30)
Thus we get,
F N 2 1
P = @F = —+ T2 (4.31)
@V 1y V2 4
F 1
s= @r _ 14y (4.32)
@T VN 2
F N
=+ @F = — (4.33)
@N TV \
4.6 Enthalpy

Let us now consider processes taking place at constant preséur&\Ve start with
the rst law of thermodynamics.

40 Chemists are usually interested in such processes; the cherical reactions they study occur at constant

atmospheric pressure.
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dU=dQ+dw

-dQ Pdv
dU + PdV = dQ
d(U + PV)= dQ
(U2 + PV2) (Ui+ PVy)= Q (4.34)

Let us denote the quantityU + PV by the symbolH and call it enthalpy.

Thus the change inH when the system undergoes a reversible process, equals
energy transacted by heat, or what the chemists call dseat of reaction

Enthalpy increases when the chemical reaction is endothermig. when energy
enters the system by heat. Enthalpy is negative if the process isaikermic, whence
energy exits the system by heat.

4.6.1 Legendre Transform : v ! P and U(S;V;N)! H(S;P;N )

It is easily checked that enthalpy is a Legendre transform :

VI P; US;)V;N)!I H(S;P;N) (4.35)
@u
H(S;P;N)= U+ PV; P = — : (4.36)
@V S;N
4.6.2 Enthalpy : lllustrative Example
Consider the fundamental equation,
U(S;V;N )= —Vv (4.37)

An expression for pressure in terms @&; V; N can be derived, see below.

@u N2+ S2
P(S;ViN)=  —— = —g (4.38)
@V sy A
Now take P as an independent variable and expreds as a function ofP :
s
N2+ S2

Enthalpy is formally given by
H(S;P;N )= U(S;V;N )+ PV (S;P;N ):

Eliminating V from the above we get
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H(S;P;N)=2PY (4.40)
N2+ S2
=2P (4.41)
) P
=2 12" P (N2+ S?2) (4.42)

By taking the partial derivatives of enthalpy with respect toS, P and N , we can
derive expressions, see below, for, V and . We have,

H(S;P.N)= U+ PV (4.43)
dH = dU + PdV + VdP (4.44)
=TdS PdV + dN + PdV + VdP (4.45)
= TdS + VdP + dN (4.46)
We see immediately that,
p —
H S=N P
= @, e JGN) (4.47)
@S o LH(SNY?
@H _, N2+ S2
V= — = ¥ 5 4.48
@P o S (4.48)
H P
- et “p (4.49)
@N gp 1+(S=N)2

4.7 Gibbs Free Energy

Gibbs free energy is denoted by the symb@d. It obtained by carrying out Legendre
transform of two variables,S andV . S is transformed toT, V is transformed to
P and U gets transformed toG. Gibbs free energy is a function of ; P; and N .

4.7.1 Legendre Transform : s! T,v ! P,and U(S;V;N)! G(T;P;N)

We have,
U U
G(T;:P;:N)=U TS+ PV; T= ey , P = oL (4.50)
@S yn @V sn
4.7.2 Legendre Transform :  s! T and H(S;P;N ) ! G(T;P;N)

Alternately, we can obtain Gibbs free energy as a Legendre traosi of enthalpy.
We haveH H (S;P;N ), and we transformS! T

@H

G(T;,P;N)=H TS; T= — :
@S P;N

(4.51)
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4.7.3 Gibbs Free Energy : An lllustrative Example

Gibbs Free Energy : lllustrative Example We have

H(S;P;N)=2 1=2P P%N 2+ S2) (4.52)
@H =T=2 1:21978 P (4.53)
@S pn N2+ S2 '

Now consider T as an independent variable and expresS as a function of
T; P, amd N . We get,

NT
S= br—p (459
G(T:P;:N )= H ES(T;P;N );P;N) TS(T;P;N) (4.55)
= N ﬁ (4.56)

By taking partial derivatives of G with respect to the variablesT, P, and N , we
can derive expressions fog, V, and . We have,

G=U TS+ PV (4.57)
dG = SdT + VdP + dN (4.58)
We see immediately,
G NT
@T pyp 4P T?
G 2N
V =+ @— = p: (460)
@P 1. 4 P T?
G pP—
=+ @— = 4P T? (4.61)
@N TP

4.8 Euler theorem for Homogeneous Functions

Let f (Xq1;X2; Xy ) be ann-th order homogeneous function of 1; X 5; XN -
We can express this formally as,

f(Xx 1;X 2 X n) = "P(XgpXo, o Xn): (4.62)
Di erentiate both sides of the equation with respect to . We get,

X @f axi _

o @xi) @

X0
3 Xi %: n " (X1 Xg; XN ) (4.64)

n " M (X1 X2 XN ) (4.63)




52 4. LECTURES 9 -13

The above is valid for any value of . let =1 ; we get, the theorem for homoge-
neous functions discovered by Eul&r and is given by,
X @f
nf (X1;X2; TXN) = Xij —: (4.65)
- O

Let us apply Euler's theorem to functions in thermodynamics. The thrmo-
dynamic functions are rst order homogeneous. We call rst ordehomogeneous
functions as extensive. For example the internal energy is rst order homoge-
neous function ofS, V, and N , which are also extensive. Helmholtz free energy
F is rst order homogeneous function of extensive variableg and N and in-
tensive variableT ; enthalpy is rst order homogeneous infS and N , and zeroth
order homogeneous i . Gibbs' free energy is a rst order homogeneous function
of N ; it depends also on intensive propertie$ and P ; and so on. Therefore in
thermodynamics we haven = 1.

4.8.1 Euler Relation and Internal Energy

Let us explicitly derive the Euler relation for the internal energyJ , which is a rst
order homogeneous function of entrop$, volumeV , and number of particlesN .
We express this formally as

U(S;V; N )= U (S;V;N): (4.66)

Let us di erentiate both sides of the above equation with respectot , We get,

@uU @(S)+ @u @(V)+ @U @N )

U(S;V;N )= {4.67)
as) @ av) @ @nN) @

@Uu @Uu ., _@u

= S+ Vv N (4.68)
as) av ) @nN )
The above is valid for any number . Let us set =1 . We get,
U U U
U(S;V:N )= @— S+ @— V + @— N (4.69)
@S V;N @V S;N @N SV
=TS PV + N (4.70)

The Euler equation above is one of the most beautiful equations inglhmodynam-
ics. It tells us, how the seven thermodynamic properties four of wdh are extensive
and rest three intensive, are related.

41 Leonhard Euler (1707-1783) is one of the most eminent mathematicians. He is also widely considered
to be the most proli c mathematician of all time.
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| told you in an earlier lecture, that what resides in a thermodynamicystem is
energy. The energy comes into the system or exits from the syste@ither by heat
or by work. There is no way to tell the energy that has come into theystem by
work from the energy that has come from heat. Euler tells that yomay not be
able to distinguish between "Heat" and "Work", but you can de nitely do a book
keeping and say how much of the internal energy has come from head how
much fromP  V work and/or N work.

4.8.2 Euler Relation for Helmholtz Free Energy

Helmholtz free energyF is a function of T, V and N . Of the three variablesV
and N are extensive properties. Hence, Euler theorem reads as

F F
F = @ V + @ N= PV+ N (4.71)

@/ T;N @N TV

4.8.3 Euler Relation for Enthalpy

Enthalpy H is a function of S, P, and N . Of these S and N are extensive
properties. Hence Euler theorem reads as,

@H @H

H= — S+ —
@S P;N @N S;P

N =TS+ N (4.72)

4.8.4 Euler Relation for Gibbs Free Energy

Gibbs free energyG is a function of T, P, and N . There is only one dependent
variable which is extensive, namel\N . Hence Euler theorem reads as,

@G
G= — N = N (4.73)
@N TP
4.9 Gibbs-Duhem Relation
Start with the Euler relation, for the internal energy,
Uu=TS PV + N: (4.74)
Take the derivatives on both sides and get,
du = TdS PdV + dN + sdT VdP + Nd: (4.75)

The rst law of thermodynamics tells us that

du = TdS PdV + dN:
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Hence we nd, SdT VdP + Nd =0:; which can be written as,
S V
d = — dT + — dP: (4.76)
N N

Let s = S=N denote entropy per particle andv = V=N denote the volume
per particle. s and v are now intensive properties. We can now write the above
equation as,

d = sdT + vdP: 4.77)

The above is called Gibbs-Duheff relation. It tells us the three intensive proper-
ties T, P, and are not all independent. If you know any two, the third can be
obtained from them.

Gibbs - Duhem relation can be derived starting from Helmholtz free ergy,
enthalpy, or the Gibbs free energy . | leave this as a exercise fouyo

42 Josiah Willard Gibbs (1839 1903), an American physicist and one of the founding fathers of statistical
mechanics; Pierre Maurice Marie Duhem (1861-1916), a Frend physicist, mathematician, historian
and philosopher of science.
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MAXWELL RELATIONS

5.1 Basic Idea

Let us take a look at Maxwell relations involving partial derivatives ofintensive
variables taken with respect to extensive variables.

We have internal energyJ expressed as a function@,andV :U  U(S;V).
Let us take partial derivative ofU with respectS rst and with respect to V next.
We get, in general, a function ofS and V . Now let us take the partial derivative
of U with respect toV rst and then with respect to S next. We should get the
same result.

Maxwell relations are based on this observation that the order witlwhich we
take the partial derivatives does not matter. Either way we shouldjet the same
result :

@ aev . @ @u (5.1)
@/ @s, s @S @V , |
We can write the above in a more suggestive way,
U U
@ = @ (5.2)
@V@S @S@V

5.1.1 Internal Energy and First Maxwell Relation

We identify that the partial derivative of U (S;V ) with respecttoS is temperature
T(S;V ). The negative of partial derivative of U (S;V ) with respect to V is
pressureP (S;V ). Then we write,
@T @P
@V s @s

The above is called the rst Maxwell relation.

(5.3)

5.1.2 Helmholtz Free Energy and Second Maxwell Relation

We can do the same thing with Helmholtz free energ¥; (T;V ). We have
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@ @r - @ G@F o GF _ OF
@v @T ., - @T @V ; @veT e@Ta@V

We identify that the partial derivative of F with respectto T is S; the partial
derivative of F with respecttoV is P . Then we get the second Maxwell relation,

(5.4)

S P
@V + @T
5.1.3 Enthalpy and Third Maxwell Relation
Consider now enthalpyH which is a function ofS and P . We get,
H H H H H
@ @ . @ @ @GH _ @ (5.6)

@ @S, . @S @P s , O @P@S @s@r

We identify that the partial derivative of H with respect to S is T; the partial
derivative of H with respect toP is V. Then we get the third Maxwell relation,

Y, T
@S » @P s
5.1.4 Gibbs Free Energy and Fourth Maxwell Relation
Starting with Gibbs free energyG(T; P ), we get,
G G G G
@ @ . @ @ @ @ (5.8)

@ @T, . @T @P, , | @rP@T @T@r

We identify that the partial derivative of G with respectto T is S; the partial
derivative of G with respect toP is V. Then we get the fourth Maxwell relation,

@P @T »

5.2 Mnemonic for Maxwell Relations

Maxwell relations are easy to derive. However it would be extremelyseful to re-
call them directly, whenever we need them. There is a simple mnemonievice
described in the book by Finfi® that helps us write the Maxwell relation directly.
Finn invites us to join the Society for P revention of T eachingV ectors, written as

43 C B P Finn, Thermal Physics, Second Edition, Chapman and Hall (1993)pp.121-122
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S Start at any of the above four letters.

Go round clock-wise or anti-clock wise to the third alphabet . Mark

it as outer arc.

vV This gives the partial derivative of the rst letter with res pect to the
second letter keeping the third letter constant.

Proceed one letter further along the same direction and stop.

T Reverse the direction and go to the third alphabet along an in ner

circle.

Fig. 5.1. Mnemonic base for Maxwell relations

Get the partial derivative of the rst letter with respectto  the second letter keeping the third letter

constant, along the inner circle.
Maxwell relation obtains upon equating the partial derivat ive of the outer circle to the partial

derivative of the inner circle
When both P and S occurs in a partial derivative, put a negative sign. The negative sign on the

top left corner should remind us of this.

5.2.1 Mnemonic for First Maxwell Relation from u(s;v)

@ eu _ e e
@V @S @S @V

@T _ @P
@V ¢ @S
Fig. 5.2. Mnemonic for the rst Maxewell relation
5.2.2 Mnemonic for Second Maxwell Relation from F(T;V)
@ @F _ @ @F - S

@v @T @T @V

@s _ @ o

@/T @-v T

Fig. 5.3. Mnemonic for the second Maxwell relation
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5.2.3 Mnemonic for Third Maxwell Relation from H(S:P)

- @ eH _ @ eH
@S @P @P @S
P V @V @T

_ @s, @P

Fig. 5.4. Mnemonic for the third Maxwell relation

5.2.4 Mnemonic for Fourth Maxwell Relation from G(T;P)

@ @s _ @ ac
@P @T @T @P
@s _ v
@P @T »

Fig. 5.5. Mnemonic for the fourth Maxwell relation

5.3 Isothermal Compression

Take a piece of metal. Squash it reversibly from an initial pressuf®; to a nal
pressureP, > P ; at constant temperature. The metal shall give away a certain
amount sayq of heat. Aim is to calculateq.

To this end, we start with expressing entropy as a function of tengrature and
pressure ;S  S(T;P). we have,

S S
gis= @5 g1+ @5 4 (5.10)
@T ; @P -
dg= TdS (5.11)
S S
-1 @5 gri7r @5 p (5.12)
@T » P

In the above, the rst term on the right hand side is zero since the rmpcess is
isothermal :dT = 0 : Therefore,
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@S
dg=T — dP (5.13)
@P ;
Employing the rst Maxwell relation, the above can be written as,
Vv
dg= T OV p (5.14)
@T
The coe cient of thermal volume expansion at constant pressures de ned as
1 @V
SV @T ,
Therefore,d q = T V dP , and henceq = TV (P, Py). This

expression foq is true only if the change in volume is negligible during compression
and the initial and nal pressures areP; and P, respectively.

In we want to take into account the change o during the compression process,

Z,,
q-= T dP V (P) dP
P1
whereV V (P) is the dependence of the volume on pressure during the com-
pression process.

When you squash a piece of metal it gets heated. In the quasi stateversible
process considered the temperature is maintained constant; leenthe energy is
instantaneously liberated to the surrounding as heat. Since thestgm loses energy,
g is negative.

5.4 Adiabatic Compression

Start with T T(S;P). T can change either by change d& at constant P
and/or change ofP at constant entropy. For an adiabatic process the change of
S at constant P is zero, since there is no heat transaction with the surroundings.
Hence,

@T
dTr = — dP (5.15)
@P ¢
Use the following identity of the partial derivatives,
T P S
@ @ @ = 1 (5.16)

@ s @S, @T,

Take the second term. Employing a property of the partial derivaves, and the
fourth Maxwell relation,
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@pP 1 B 1 B 1 (5.17)
@s . @S - ev. v .
@P + @T 5
Maxwell relation gives,
S Vv
es _ ev _ (5.18)
@P + @T p
We also have
S
T @— = Cp (5.19)
@T »
We get,
T 1 C
@t ey (5.20)
@P o Vv T

Thus in an adiabatic squashing of a metal piece the rise in tempera&rs given
by,

dT = dP (5.21)

5.5 Rubber Band and Entropic Tension

When you stretch a rubber band, it develops a linear tensioR which opposes
the stretching process; work done id W = + F dl for a quasi static reversible
stretching; dl is the in nitesimal increase in length. Work is done on the rubber
band and hence the expression for work is consistent with the sigonwention.

In an earlier lecture, see Lectures - I, while discussing about workhad men-
tioned that rubber elasticity has its origin in entropy. Let me elaborge on this
now. A rubber band is made of a large number of strands. Each stichis a chain
of molecules. These chains are intertwined. Each chain is full of twssénd turns
and is in a coiled state. Take any single strand. It is obvious that theumber of
con gurations in which the chain can organize itself is larger when thstrand is
coiled than when it is straight. Thus the entropy of a coiled strand is wre than
that of a straight strand. When you stretch a rubber band the stands un-twine
and straighten up. Entropy decreases. The rubber band tries il back and in-
crease its entropy. This inherent tendency to increase its entrppnanifests itself
as a linear tension.

Let us look at the stretching of a rubber band thermodynamically. \& ignore
the very small change in volume that accompanies stretching. Thiseans we
can ignore PdV work compared to+ F dl work. We can write the rst law of
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thermodynamics asdU = d Q + F dl. Thus we have & ;V; T system instead of
P;V;T with F replacingP in all the thermodynamic relations. In particular
the Maxwell relations are modied : ReplaceP by F ; andV by |. We have
the modi ed mnemonic base for the rubber-thermodynamics, sebd boxed item
below.

From the mnemonic we can write down the second

S Maxwell relation (originating from Helmholtz free energy)
as,
F I
S
T @ @T |

S
Since S decreases with increase of @—I < 0: From the Maxwell relation

.
we see that this is equivalent to

g > 0:
@T |
Consider the following properties of partial derivatives,
@I B 1
@l ¢
g @ @ = 1 (5.24)
QT | @l ¢ @
We nd,
¢ _ @ o 529
QT ¢ @T | @

The rst term on the right hand side is positive, we have shown this jst now. The
second term is also positive - upon increase of tension the length bétrubber
band increases. Therefore,

@I

@T ¢
The equation above tells you that when you stretch a rubber band wvill cool
down; or when when a stretched rubber band shrinks it will warm up.
Keep a rubber band across and touching your forehead; then eith it; the
rubber band throws out heat and you can feel it.
Hang an appropriate weight to the end of a rubber band; slightly heahe
rubber band; it will shrink and the weight shall be pulled up.

< 0O
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5.6 First Energy Equation

We start with the rst law of thermodynamics dU = TdS PdV . Letus consider
U U(T;V)andS S(T;V). we get,

U U
du = @— dT + @— dv (5.26)
@T @V
S S
ds = @ dT + g dv (5.27)
@T @V
The rst law of thermodynamics can now be written as
U U
@— dT + @— dv
@T \ @V
S S
=T @s dT + T @s dv.  Pdv  (5.28)
@T @V ¢
Equate the coe cients of dT and get the familiar expression,
U S
@T @T
Equating the coe cient of dV we get,
U S
@— =T Q P (5.30)
@V @V ¢

Re write the rst term on the right hand side of the above equation mploying
the second Maxwell relation

and get,
- S U P
ev _ T @F P (5.31)
V @V T @T \Y
P\>/ The above is called the rst energy equation. An important
T point is that the right hand side of the rst energy equation

can be calculated from the equation of state.

5.6.1 First Energy Equation and Ideal Gas
We have for an ideal ga®® = Nk g T=V . Therefore
@P _ Nkg P

e, v T
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Substituting the above in the rst energy equation, we get,

v
@V .

The internal energy does not depend on volume. It depends only tamperature.

=0:

5.6.2 First Energy Equation and van der Waal Gas

u
Let us alculate @—V for van der Waal gas for which,
T

aN 2

P+ s

(V Nb)= NkgT (5.32)

We can write the equation of state for van der Waal gas as,

NkgT aN 2
P = v Nb VE (5.33)

= Nk
@p _ Nke (5.34)
@T, V Nb
U NkgT
@u | 5 P (5.35)
@V  V Nb
aN 2
= (5.36)

We nd that internal energy depends on volume. This is a general salt. For any
non-ideal gas, internal energy shall depend on both temperaauand volume.

5.6.3 First energy equation in terms of and t

First energy equation in terms of and 1 The rst energy equation can be
expressed in terms of experimentally measurable properties of tegstem like
isothermal compressibility denoted by the symbol + and coe cient of thermal
expansion denoted by the symbol, as follows. indexthermal expansion We have

@u - T @P

= =T = P (5.37)
@V - @T

We can write
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epr 1
er,” @ ¥
(G
@ @D @/ = 1 (5.39)
QP @V ¢ QT »
(5.40)

In terms of isothermal compressibility as + and coe cient of thermal expansion
, we can write the above equation as,

@T 1
= (V )= 1 (5.41)
@P \VJ Vv T
P
er _ (5.42)
@T \ T
The rst energy equation can now be written as,
U T
euv _T o, (5.43)
@V r 1

5.7 Second Energy Equation

The aim is to rst expressU as a function of T and P ; then we shall evaluate the
partial derivatives of U with respecttoT and P .
To this end we write

U
du =

Similarly, we have,

()]
I

dS =

and

<
I

dv

U(T;P)
ey
@T ;

S(T;P)
@S

@T 5

V(T;P)
ev
@T &

dT +

dT +

@Uu
@P

@S
@P

ev
@P -

(5.44)
(5.45)

(5.46)
(5.47)

(5.48)
(5.49)
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Begin with the rst law of thermodynamics for reversible process
du = TdS PdVv (5.50)

In the above substitute fordU , dS anddV respectively from the equations above,
and get,

@V iy @Y poT @ it @ s
@T » @P @T @P ;
@V

@V
P dT P — dP (5.52)
@P .

@T
Equating the coe cients of dT we get,

@u _ _ @s @V

— =T — P — (5.53)
@T » @T » @T »
(5.54)
This can be written as
U S
@— =T 9 PV (5.55)
@T » @T »
Equating the coe cients of dP we get,
U S Vv
eu _. @s , @ 5.56)
@P @P @P
(5.57)

Now employing the fourth Maxwell relation in the above, we get the send energy
equation,

ev _ @V [, @ (5.58)
@P + @T 5 @P +

(5.59)

In terms of isothermal compressibility t and coe cient thermal expansion ,
the second energy equation can be written as,

v

== T V +V P (5.60)
@P ;

5.8 TdS Equations

The so-calledT dS equations are obtained by considerin§ as a function of (i) T
andV, (i) T and P, and (ii) P and V.
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5.8.1 First TdS equation: S S(T;V)

B @S @S
TdS =T o dT + T v dv (5.61)

\Y T

(5.62)

Employing the second Maxwell relation in the above, we get the rsTdS
equation :

Tas=T @ 4r+1 @ W (5.63)
@T @

\Y \%

We can write the above in terms of experimentally measurable propies of the
system as follows We have

@P @T @V

— — — = 1 (5.64)
@T @V p @P
@P 1
— — Vv = 1 5.65
ot., v (V0D (5.65)
P
er _ (5.66)
@T \V T
S
T @ = Cy (5.67)
@T
We thus have the rst TdS equation,
TdS = CydT + —TdV (5.68)
T
5.8.2 Second TdS equation: S S(T;P)
S S
TdS =T @— dT + T @ dpP (5.69)
@T » @P
S Vv
=T @— dar T @— dP; (5.70)
@T » @T »

where we have made use of the fourth Maxwell relation. We can alsaiter the
secondT dS equation as,

TdS=CpdT TV dP (5.71)



5.8 TdS Equations

5.8.3 Third TdS equation: S S(P;V)

ds = @s dP + s dv
@P @V p
We have the following identities
@S @S @T Cv @T
er, @17, @, T @P,
@S @S @T Cp @T
@v, @, @, T @V,
Thus we get the third TdS equation,
TdS = Cy %VdP+Cp %-;Pdv;

which can also be written as,

_ T Cp
TdS=Cy— dP + V—dV

67

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)
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Joule Cooling and Joule-Kelvin Throttling
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/. LECTURES 21 - 25

VAN DER WAALS EQUATION OF STATE AND ELEMENTS OF
PHASE TRANSITION

71PV = NkgT) (P+ aN2=V2(V Nb)= NkgT

The equation of state for an ideal gas iBV = Nk g T. It provides a reasonably
good description of the behaviour of air near room temperatureReal gases are
not ideal. An equation of state for a non-ideal gas was proposed Bphannes
Diderik van der Walls (1837 - 1923). in the yeal873. van der Waals retained the
basic structure of the ideal gas law and made empirical correctiots P and V ,
based on heuristic arguments.

7.1.1 A Molecule is of Finite Size

The rst correction comes from realizing that a molecule is not a geaatrical
point with zero volume. A molecule occupies a nite, though tiny, spae We have
already seen of Lennard-Jones potential, see Eq. (2.1) and Fig.22), which
tells us that when two molecules come very close to each other, thegpel each
other rather strongly. The repulsion increases steeply with de@se of the inter-
molecular distance. E ectively each molecule has a tiny private spaegich it owns
exclusively; it does not permit any other molecule to come into its priva space.
The excluded volume for a molecule can be taken bs= (4 =3) 3, where is
the 'size' parameter appearing in the Lennard-Jones potential,s&q. (2.1). There
are N molecules. If the volume of the container i¥ then the volume available
for the N molecules to move freely around ¥  Nb. The value ofb shall di er
from one substance to another. For some chosen materials, ta@se given in Table
(7.1).

van der Walls argued that this is the volume we have to use in the ideahg law
and not the volume of the container. With this correction, the equidgon of state
reads asP (V' Nb) = NkjgT. We notice that

NkgT S NkgT
V  Nb V

: (7.1)

The above implies that the pressure after correction to the volumis more than
the pressure before correction. Repulsion at short range leads dn increase of
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pressure, as indeed one would expect. Each molecule pushes ounéghbours
and as a consequence, overall there is an increase in pressure.

While the strong, short-range repulsion leads to increase of press, the weak,
long range attraction leads decrease of pressure, see below.

7.1.2 Molecules Attract Each Other

A molecule in the interior, is attracted by all the molecules surroundmit; hence it
does not experience on the average any net force. Of course it ivdlsubjected to a
tiny uctuating force whose average over time is zero. Such a statical cancellation
does not obtain for a molecule near the wall of the container. It is flad by the

molecules present in the interior; there are no molecules in the opfesside to
cancel, statistically, the force. As a result a molecule near a wall did container
experiences a net pull inwards. This diminishes the e ect of impact othe wall;

the pressure thus, becomes less. The reduction in pressure ahelseon two factors.

1. The number of molecules that pull and
2. the number of molecules that get pulled.

Hence we cansaP ! P  a(N=V )2 wherea is a proportionality constant.
The value ofa shall di er from material to material. For some chosen substances
the value ofa is given in Table (7.1).

7.2 van der Waals Equation of State

Incorporating the corrections to pressure and volume, we get,

NkgT  aN 2
P = (7.2)
V Nb V2

The above can be written in a more familiar form,

aN 2
V2

P+ (V Nb)= NkgT (7.3)

7.21 V., P., and T, for a van der Waals Gas

Let v = V=N denote the speci c volume of a molecule. We can write the van der
Waals equation of state as

P + i (V b): kBT (74)

We can re-write the above as a cubic equation wm, see below.
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Material a (pam®) | b (m® mol 1)
Helium 0.00346 2371 10 °
Neon 0.0212 1.710 10 °
Hydrogen 0.00245 2.661 10 °
Carbon-di-Oxide | 0.396 4269 10 °
Water Vapour 0.5471 3.052 10 °

Table 7.1. The constants a and b of van der Waals equation of state

ke T a ab
° + v —=0 (7.5)

P P

V3 b+ 2

\Y

In general the above cubic equation has three roots, which we dém by the
symbolsvy; v,; and vz. We write the equation of state as

(v vi)(v  vo)(v v3)=0 (7.6)

The three rootsv,; v,; and vz depend onP, T, a, and b. Consider a situation

wherev,; = v, = vz = V.. Also when the three roots ofv are the same, let

P = P.andT = T.. We can determinev., P., and T, as described below.
Formally we have,

(v ve)i=0 (7.7)
vi o By vE+@B V) v (v)=0 (7.8)

Compare Eg. (7.8) with Eq. (7.5) and equate the coe cients of equgowers ofv.
We get,

3v.= b+ kE;T; 3v?2 = E; and v3 = @: (7.9)
P ¢ P
We can getv., P, and T, solving the above three equations. These are,
1 a 8 a
VC:3 b, PC: E@, kBTC: EB (710)

We can obtain the same results by taking the rst and second deritiges of P
with respect tov and setting them to zerd*.

4 P., Ve, and T are those values ofP , v and T respectively, at which both rst and second derivatives
of P with respect to v vanish. To calculate the critical pressure, volume and temp eratures we proceed
as follows.

p- keT ~a dp _ keT , 2a d°P _ 2keT  6a
T v b v2' dv (v b2 v3 dvz (v b3 v4
dp _ d’P

Setting =0 and solving the resulting algebraic equations givesv¢, P. and Te.

dv - dv?
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Let us measurev in units of v, P in units of P,, and T in units of T..
Accordingly we setb = v=v,, B = P=P. and P = T=T.. In terms of the scaled
variablesb, ® and P, the van der Waals equation of state reads as,

_8_* 3 7.11
T 3v (1=3) ® (7.11)
® o+ % ) % = ? (7.12)

Notice that in the above equation of state, the material-dependemproperties a
and b do not appear. The pressureersusvolume of a van der waals gas is plotted
in Fig. (7.1) for T = 1:2;1:0 and 0:8.

Fig. 7.1. ™ versusV for three values of P.

At high temperatures ('b > 1) the van der Waals gas behaves somewhat, like
an ideal gas. When you con ne a given quantity of the gas to smallend smaller
volumes, the pressure increases smoothly; at very small volumése pressure
increases rather steeply with decrease of volume and goes to inynith the limit
ofb! 1=3(orv! borV ! Nb). For an ideal gas, the limiting divergent
behaviour obtains whernv or V. ! 0.

7.2.2 Isotherm at Low T for a van der Waals Gas

At low temperatures ('b < 1) the phase diagram exhibits some seemingly peculiar
behaviour. Keeping the temperature at a constant low value, if weompress the
gas, its pressure increases initially; upon further compression,ettpressure falls
down and then starts increasing and eventually goes to in nity rapig as b !
1=3. The important point is that there exists regions of temperaturepressure and
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volume, in which if you compress the gas its pressure drops insteddnzreasing.
How do we understand this behaviour ?

7.2.3 G at Low Temperatures for a van der Waals Gas

To this end, let us investigate the behaviour of Gibbs free energy kiw tempera-
tures. Fora xed T and P, the equilibrium value ofV a uid system is determined
by minimizing the Gibbs free energy.

Gibbs free energyG is a function of T; P; and, N . It is obtained by Legendre
transformofS! T,V ! P andU ! G and the de ning equations are,

@u @uU
G(T;P;N)= U(S;V;N) TS+ PV; T= — P = —_—
@S VN @V S;N
We have,
dG =+ V dP SdT + dN (7.13)

Let us investigate the behaviour ofG at constant temperature and at a constant
quantity of material. Accordingly, in the equation above, we sedT = 0 and
dN = 0. Therefore,

dG = V dP (7.14)
ec _, er (7.15)
@V T;N @V T;N

We can write Eq. (7.15), in terms of scaled variables. Not&® @('b; ). We
have,
! !
@ =V @ (7.16)
@ ., @ .,

The Right Hand Side of the above equation can be obtained from thewv der
Waals equation of state, see Eq. (7.11). We have,

8P 3
m = o 1 o (7.17)
|
a 8P) 3 6

b
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@ _ @h3w s

@ . Gb 1)2 w2
68P)BL 1+1) ,

(Bb  1)2 2
_ 8P gP , 6 (7.19)
3 1 (Bb 1)2 W '
80P 8P gP 1 6
(P b) = S @b D+ o ()  (7.20)

For a xed temperature, the equation above gives Gibbs free emgras a function
of volume, upto an additive constant. The van der Walls equation gigepressure as
a function of volume for a xed temperature. Combining these two & can express
the Gibbs free energy as function of pressure. We have pIott@ against B at
P=0:8in gure (7.2) below.

-3.9

& -4.2 ¢

-0.05 0 0.05 0.1 0.15
P

Fig. 7.2. Gibbs free energy (scaled)versuspressure (scaled) for isotherm at® =0 :8.The points marked
1 7 correspond to the states indicated in the isotherm below in Fig.(7.3).

From Fig. (7.2) we observe that the thermodynamic states corneending to the
points on the loop2! 3! 4! 5! 6 should be unstable since for every such
state there exists a state with lower Gibbs free energy. Note, &ile) equilibrium
states are characterized by minimum Gibbs free energy.

The isotherm underlying Fig. (7.2) is shown in Fig. (7.3).

How do we locate the points2 and 6 so that | can draw an horizontal line
connecting these two points which incidentally passes through? The states on
this line have all the same free energy since this line is isobaric and isatimal.
Let me remind you that G is a function of T, P and N . Also this constant free
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Fig. 7.3. Isotherm at P =0:8: Pressure (scaled)versus volume (scaled), see Eq. (7.11)

energy is less than the free energy on the points lying on the unstatsegment
2! 3! 41 51 6.

7.2.4 Maxwell Construction

To locate the horizontal line passing througt®, 4, and 6 we proceed as follows.
Look at Fig. (7.2). First we observe the integral otl® over the loopC : 2!
3! 41 51 6iszero.

I

dd=0 : c=21 31 41 51 6 (7.21)

To evaluate the above integral we recognize that® = bd™® at constant P and
N . Thus the integral overd® equals integral overad B, which is best seen in the
isotherm plotted with % on the y-axis and® on the x axis. Figure (7.4) depicts
such a curve with the points 1 to 7 marked on it.

We have
Z Z, Z, Z. Z,
bd® =  bd®+ wd®P+  wdP+  wdP =0 (7.22)
C 2 3 4 5
Z, Z, Z, Z,
= fad fod A fod A bd® =0 (7.23)
2 4 5 5

Inn the above, the integrals in the rst bracket on the RHS, give tle area of the
loop2! 3! 41 2 The integrals in the second bracket correspond to the
areaintheloop4! 5! 6! 4

Now look at Fig. (7.3). The above statement of equal areas meansat the
points 2, 4 and 6 fall on the horizontal line which is positioned in such a way that
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6 1 *
4 - 2 5
(=

2 [ -
- .

0r 6 |

| | | |
-0.4 -0.2 0 0.2 0.4 0.6
P

Fig. 7.4. Isotherm at P =0:8: Volume (scaled) versus Pressure (scaled), at? =0 :8 see Eq. (7.11)

the area contained in the closed loog! 3! 4! 2 isthe same as the area
contained in the closed loogt! 5! 6! 4. The horizontal line can be located
either graphically or numerically. Drawing a straight line to ensure edlity of
enclosed areas, as described above, is called the Maxwell consimac

7.2.5 Vapour - Liquid Phase Transition

Look at the gure (7.3); at point 1, the uid system is in a homogeneous vapour
state; when you con ne the system to smaller and smaller volume, if&ressure
increases smoothly; the system manages to retain its homogerseoapour state,
until it reaches the point 2. The pressure at2 is the maximum the system can
withstand if it wants to remain in a homogeneous vapour state. Upofurther con-
nement, the states on the van der Waals curve are metastable. metastable state
IS an unstable state. The system can not remain in a homogeneouga®ar phase in
the meta stable state. By a mechanism called nucleation, liquid dropteare formed
locally at several points in vapour system The system remains in mstable state
until it reaches the point 3. Note that in this segment2 ! 3, the slope of the
pressure - volume curve is negative; this ensures that isotherntampressibility is
positive.

Beyond the point 3 and in the segment3 ! 4! 5 the system is unstable.
The slope of the pressureersustemperature curve is positive; isothermal com-
pressibility is negative which is un-physical. Hence in this region the dgm can
not remain in a homogeneous phase (liquid or gas); it will spontanedudreaks
into two phases by a a mechanism called spinodal decomposition. Bayd and
in the segment5 ! 6 the system is again metastable. Beyon@, the system
is in a homogeneous liquid phase. On the Maxwell line, the vapour and lidu
coexist. We have already seen that at all the states on the entire dwell line
21 3%1 41 591 6, the Gibbs free energy is smaller at points on the
Maxwell line compared to that at the corresponding states on theam der Waals
curve. As we move on the Maxwell line, from poin2 toward the point 6, more and
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more of vapour gets converted into liquid. At6 the phase transition from vapour
state to liquid state is complete.

Upon further con nement, the pressure of the liquid increases dngoes to in-
nity when % ! 1=3 (same asV ! Nb). The volume drops abruptly from
B(2) to B(6) at constant pressure. The transition from vapour to liquid phase is
discontinuous. Hence it is called discontinuous or rst order phaseansition.

7.26 T V Phase Diagram of a van der Waals Gas

From the isotherm at P = 0 :8 depicted in Fig. (7.3) we nd the points 2 and 6
are the end points of the Maxwell line. As we increase the temperady the two
points move toward each other; the length of the Maxwell line becaa smaller
and smaller. In the limit of P! 1 the two points merge and we call it a critical
point for which P=b=mM=1.Letus plot the value ofb of the points 2 and

6 for various values ofP from say 0:8 to 1. These points are plotted on a graph
with P on the y-axis andb on the axis. The temperature - volume phase diagram
is schematically shown in Fig. (7.5).

T

SINGLE PHASE

Tq...

liquid TWO PHASE vapour

\Vc V

Fig. 7.5. Schematic of a Temperature-Volume Phase Diagram

The interior of the dome is the two phase region and the exterior is ¢hsingle
phase region. The curve that separates the single phase and tiv®phase regions
has two wings, one on the right - the vapour side and the other onehleft - the
liquid side. If the system enters the dome straight down through #hapex whose
coordinates are Y.; T¢), the phase transition is continuous - second order phase
transition. If the system enters the dome at any other point wherV 6 V., the
phase transition is rst order.

Now consider the segment fron3° to 5° on the Maxwell line depicted in Fig.
(7.3). These two points are the vertical projections of the point8 and 5 from the
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van der Walls curve. The states on the segment of the van der Wadilse between

3 and 5 are unstablé®. As the temperature increases fror® = 0:8 to 1, the
points 3° and 5° come closer and closer to each other and in the linil ! 1 they
merge at the critical point. Let us plot the value oft of the points 3° and 5° for
various values ofP from say 0:8 to 1. These points are plotted on a graph with
P on the y-axis andb on the axis. These data generate a dome inside the dome
de ning the two-phase region, as depicted Fig (7.6. The region insidiee smaller
dome is un stable.

The system in a meta stable state the region outside the inner domathnside
the outer dome. In the metastable region, the phenomenon of neation is the
mechanism that is responsible for the emergence of new phase.

Inside the inner dome, the system is unstable and breaks up locallycasponta-
neously into two phases by a mechanism called Spinodal decompositidhe inner
unstable region and the outer meta stable region is separated byettspinodal
curve, indicated in Fig. (7.6).

T

Td... N binodal line

/ Spinodal line
vapour

liquid

Metastable
b|eISeIaN

Vc V

Fig. 7.6. Schematic Temperature-Volume Phase Diagram

7.2.7 P T Phase Diagram for a van der Waals Gas

Maxwell construction tells us that for each isotherm below the crit&l temperature,
there exists a well de ned pressure at which the vapour-liquid phastransition
takes place. Let us name it as vapour pressure curve. The liquid agds coexist
on this curve. The vapour - pressure curve terminates at the ciial point. Figure
(7.7) depicts the schematic of the pressure temperature phasagtam for the van
der Waals uid.

It is indeed astonishing that simple corrections to pressure and vohe in the
ideal gas law, which led to the van der Waals equation state, could dape the es-

4 the thermal expansion coe cient is negative since the slope of the van der Waals curve is positive in
the region between the points 3 and 5.
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Critical Point

Liquid Vapour Pressure Zurve

N

Vapour

Fig. 7.7. A Schematic of the Pressure-Temperature Phase Diagram

sential contents of vapour-liquid phase transition. The transitions discontinuous
- the properties of the system change abruptly. The vapour pragre curve termi-
nates at a critical point. The phase transition at the critical point acontinuous.

We have looked at only the vapour pressure curve on the pressueenperature
phase diagram of a simple uid system. There are several other ingsting features
in the phase diagram of a simple substance. We have the melting line tis@parates
solid and liquid phases; the sublimation line at low temperatures and @sure,
which separate the solid and gaseous phases; the tri-critical poiat which the
three coexistence curves meet. The solid, liquid and the gaseousig#s coexist at
the tri-critical point. The slope of the coexistence curve holds a \at information
about how certain physical properties change upon phase traoghation and this
Is enshrined in the Clausius - Clapeyron equation. We shall see of thgbrie y, in
what follows.

7.3 Phase Transition - An Elementary Introduction

We expect a substance to be in solid phase at low temperatures angtpressures.
It will be in a gaseous state at high temperatures and low pressurdsgure (7.8)
depicts the phase diagram of a normal substance.

An astonishing thing about phase transition is that a sharp line sepates two
phases. The solid and Gas are separated by the sublimation line; thaid and
uid phases are separated by the melting line; the liquid and the gas pkes are
separated by the vapour pressure line which terminates at a criticpoint. Beyond
the critical point there is no distinction between liquid and vapour stees. We
call it a uid phase - which include both liquid state and gaseous statelhe two
adjacent phases coexist on the line separating them. We call it a egistence line.
The three co-existence curves meet at the triple point.
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P

Melting line Critical Point

~

SOLID LIQUID

Triple Point Vapour Press

GAS

Sublimation line
\)

Fig. 7.8. Schematic of Pressure-Temperature Phase behaviour of a Nomal Substance

That di erent phases are separated by a sharp line implies even an imtesi-
mally small change in pressure or temperature across the coexmste line drives
the system from one phase to the other. The molecules of the staree that un-
dergo phases transition organize themselves di erently in the twohpses. These
two kinds of organization require di erent energies. The di erencén the energies
is called latent heat. Hence you have to supply or remove the lateneat to bring
about phase transition.

The vapour pressure line terminates at the e critical point. To the ést of our
experimental knowledge the melting line does not terminate. It go@ and onad
in nitum .The distinction between the liquid phase and the gaseous phase a=ses
as you move toward the critical point. The di erence disappears athe critical
point. We have second order phase transition at the critical poinfThe transition
is continuous and there is no latent heat. Unlike the rst order trasition which
occurs abruptly unannounced, the second order phase transitigives adequate
warning signals when it arrives. The uctuations grow larger and largr as you
approach the phase transition temperature from either directian-i.e. from liquid
to gas or from gas to liquid.

7.3.1 Clausius - Clapeyron Equation

Consider two points on either side of the melting line but very close to.itA
molecule residing in the solid phase has no compelling reason to migratditjuid
phase andvice versa However on the melting line, a molecule can live on both
phases with equal comfort. With equal ease it can migrate from theolid phase
to liquid phase orvice versalf ; and , are the chemical potential of the two
phases, then ((T;P)= ,(T;P) forapoint T;P on the melting line. Consider
a neighbouring point on the melting line. Let its coordinatesb&+ T;P + P

We have,
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(T+ TP +P )= T+ T;P + P ) (7.24)
ey T 21 p @1
@T » @P +

_ @ » @ »

2(T1P)+ T a o + P @ . (725)

T @ @. _p Q- @. (7.26)
@T » @T » @P - @P +

T ( Sq1 + Sz): P (V2 Vl) (727)

dP _ sz S (7.28)
dT v, vy '

In the above, we have made use of Gibbs-Duhem relatférfor going from Eq.
(7.26) to (7.27).

Equation (7.28) tells us that the slope of the co-existence line is det@ned by
the entropies and volumes of the two phases. We can write Eq. (7)28 a more
convenient form as follows. We hav8 = Ns andV = Nv .AlsoS, S; = L=T,

whereL denotes the latent heat. LetV = V, V;. We have then,
dP L
_— = (7.29)
dT TV

The above is called the Clausius-Clapeyron equation. Consider théematic phase
diagram shown in Fig. (7.8). Let subscriptl refer to solid phase an® to liquid.
It is quite obvious that S, > S ; : A solid is ordered and liquid is disordered.
The melting line has a positive slope. This meang, > V 1. A given amount
of substance occupies more space when in liquid phase than when iidgghase.
When a solid melts it expands.

7.3.2 Anomalous Expansion of Water

Now consider the phase diagram for water, shown below. The meltihgs a neg-
ative slope. Since entropy of water is more than the entropy of icthe volume of
water must be less that that of ice; only then the slope of the vapopressure line
shall be negative.

% d = sdT + vdP:
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Fig. 7.9. Pressure-Temperature phase diagram of water
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Melting line Critical Point

ICE
Vapour Press

Triwa\P;
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Sublimation line
S

In other words, when water
freezes into ice it expands. Hence
do not keep a glass bottle of wa-
ter in a freezer. The bottle will
break when water freezes to into
ice. A major advantage of the
anomalous expansion is that a
lake freezes in winter from top
to bottom. Ice oats on water.
Icebergs on lakes and ponds are
a consequence of the anomalous
expansion of water.

The oating ice on he top of water acts as an insulator impeding fregwy of water
underneath. The water underneath does not freeze even duripgak of winter,
enabling sh and other aquatic life forms and organisms to survive. fCcourse
anomalous expansion of water leads to bursting of water pipelines innter, a
nuisance indeed !
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WORK, AND HEAT : MICROSCOPIC INTERPRETATION,
FLUCTUATIONS AND THE SECOND LAW

8.1 Micro-Macro Connections

Corresponding to every thermodynamic property, we have, in diatical mechanics,
a random variable. The average of this random variable over a suitabensembl#’,
or equivalently over the corresponding probability distribution, eqals the value of
the thermodynamic property. Thus, statistical mechanics proviels us with a ma-
chinery to calculate macroscopic properties from the properties ks microscopic
constituents - atoms and molecules, and interactions amongst the

For example we saw that the mechanical pressure in thermodynamicorre-
sponds to the sum of the momenta transferred to the wall of theontainer by
a very large number molecular impacts. The internal energy in themmdynam-
ics corresponds to the sum of the kinetic energies and the interact energies of
the atoms and molecules of the macroscopic body. Statistical madiics provides
several such examples of micro-macro connections.

When a macroscopic body absorbs a quantity of reversible heat, at constant
temperatureT, its entropy increases byg=T . What is the microscopic counterpart
of entropy in statistical mechanics ? Answer : Boltzmann entropy.

Ludwig Eduard Boltzmann de ned entropy completely in terms of theproba-
bilities of the micro states of a macroscopic system. Formally we have

X
S= Kg pi In pi; (8.1)

where a micro state is indexed by the integer, and its probability denoted by
the symbol p;. The sum runs over all the micro states of the macroscopic system
under the given constraints. The Boltzmann constant ensures dh we measure
entropy in units of joules per kelvin. Thus we have&s  S(p1;p2; ) : Entropy
is a function of the probabilities of the micro states.

A natural question that arises in this context relates to the micrasopic nature
of work and heat - the two principal ingredients of thermodynamigsand to this
Issue we turn our attention below.

47 micro canonical ensemble for isolated system, canonical esemble for a closed system, and grand

canonical ensemble for an open systemtc.
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8.1.1 Work and Heat

In thermodynamics, work and heat are two processes by which a enascopic sys-
tem transacts energy with its surroundings or with another macsxopic system.
Therefore let us recall the micro - macro connection for the inteah energy de-
scribed in Lecture Notes -2. Whatever we discussed in Lecture Met-2, can be
formally expressed as,
X
U= hEi = Pi i (82)

where ; is the energy of the micro state indexed by and p; its probability.
Thus internal energy is a function of the energies of micro stateé of their
probabilities : U U( 1; 2 ;P P2; ).

We can changdJ by two ways.

1. Changef ; : i =1;2; g,keepingfp; : i =1;2; g unchanged. The
change in internal energy brought about this way corresponds teork*.
2. Changefp; : i =1;2; g keepingf ; : i =1;2; g unchanged®. The

change in internal energy brought about in this fashion is called he&ét

We express the above two processes formally as,

X X,
du = pidi+  dp; (8.3)

In the second term on the right hand side of the above equation, lale su-

Berscripted the summation sign with a star to remind us of the constint that
; dp| =0.
|

8.1.2 Micro to Macro : Work

We start with the rst term on the right hand side of Eq. (8.3). We keep in mind

that the probabilities are kept constant. We have,
!

X X . X U
pid P = Pi @ dv = g Pi i dv = @— dv = P dv
i . ev Tev @v
“8 In a quantum mechanical description, the micro states are th e eigenstates;f ; : i =1:2; g

are the energies of the eigenstates; the energy eigenvaluewill change when you change the boundary
condition of the underlying Schmdinger equation. Changi ng the boundary condition is the equivalent
to changing the volume. Work results of when volume changes. Hence it is correct to call this term as
work.

4 ensure i dpi equals zero, since the total probability is unity.

%0 |n statistical mechanics, entropy is purely of probabilist ic origin. In thermodynamics, it is the product
of change in entropy and temperature that corresponds to heat. Hence this change in energy brought
about by changing the probabilities should correspond to heat.



8.1 Micro-Macro Connections 87
8.1.3 Micro to Macro : Heat

We start with the second term on the right hand side of Eq. (8.3). Wéeep in
mind that the energies are kept constant. We have,
!

, X, X U
i = A |—@p dsS = Q i Pi ds = @—dS: T dS
@S @S @S

i i i
8.1.4 Work, Heat, Children, and escalator

Let me illustrate the microscopic nature of heat and work by an analy involving
children playing in an escalator.

Let the rungs of the escalator be labeled (and re-labeled, when thkecalator
moves) by integers that stand for their energies. The energy ofang at any instant
of time is determined by how far above it is from a reference lev@ht entry point of
the escalator. A xed number, sayN , of children are playing - going up and down
- in the escalator. At a particular instant of time let n; be the number children
in the rung labeled byi. Figure (8.2) depicts a schematic of the escalator-children
system; the children depicted as lled circles on the rungs labeled blgdir energies.
We have takenN = 10 . To begin withwe haven; =4; n, =2; n3=1; ny =3.
The other rungs are unoccupied and do not contribute to energyhe energy of
the system is

Eo=(1 4)+(@2 2)+(3 1)+ 3)=23 units :

The rst step is a work step. The escalator moves up; the distribin of children
remains the same. Each rung moves up by two energy units carryimgth it the
children it holds. We relabel the rungs by their new energy values. Tk the rungs
labelled 1; 2; 3; 4 are relabelled and the new labels arg; 4; 5; 6. In the revised
labelling the distribution is given byns = 4; ny =2; ns =1, ng =3 and all
other rungs are are unoccupied. At the end of the rst work stegphe energy of the
system is

EYY =3 4+@ 2)+(B 1)+(@6 3)=43 units

The energy has increased. Hence in this step work is done on theteys

The next step is a heat step. The escalator does not move. But tlohildren
move and the distribution change ton, = 2; n3 = 1; ng =1; ng = 3; Ng =
1;n; = 2. The energy of the system after the rst heat step is

Ef =2 2)+@ 1)+@ 1)+(5B 3)+(®6 1)+(7 2)=56 units

The energy has increased. This means that in the rst heat step sigm has drawn
energy from the thermostat.
We have depicted two more work and heat steps in Fig. (8.2).
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8.2 Work Fluctuations : Jarzynski Identity

Consider a closed system in thermal equilibrium with a thermostat aetmperature
T = 1=(kg ). Consider a process in which we change a macroscopic property,
denoted by the symbol of the system from a value ; to another value 5,
following the time protocol, (t)= 1+ e, 1)t with O t . The
system is under the in uence of the thermostat at temperaturd , throughout the
experimental process. If is nite, we call it a switching process : the system
disappears fromA at the start of the the process. It continues to be in a non-
equilibrium state even after the completion of the process. Howeyef you wait
long enough after the process is completed the system will equilibeapurely by
heat exchange and appear at a poirB . Since the system disappears froh and
appears atB we call it a switching process.

Fix the value of switching time , carry out the process and calculate or mea-
sure the work done. If you repeat the switching experiment emplimg the same
protocol, you will get, in general, a di erent value for the work doneRepeat the
switching experiment several times and collect an ensemble of worklues. Let

(W ; ) denote the probability distribution describing the ensemble.

Jarzynski work uctuation theorem®! says,

hexp( W )i = exp( F); (8.4)
where the angular brackets denote averaging ové/ -ensemble, see below.
Z + 1
hexp( W )i = dW exp( W ) (W; ): (8.5)

1

The Jarzynski identity is remarkable in the sense that it relates anqilibrium
property of the system to non equilibrium measurements made on iThe left
hand side of Jarzynski identity, see Eq. (8.4), is based on irrevidaie processes (for
nite ) while the right hand side involves equilibrium free energies.

8.2.1 Reversible limit : 11

Consider the case with !'1 . The switching process becomes reversible in this
limit. The entire process can be represented by a curve in the prass-volume
phase diagram. Every time you carry out the experiment you will gethe same
work valueW = Wg. The reversible workWr equals the change in free energy
Wgr = F = F(B) F(A).
We have (W; !'1 )= (W Wpg). Therefore,
Z .,

exp( W ) (W WgR)AW =exp( W Rr) (8.6)
1

51 C Jarzynski, Physical Review Letters 78, 2690 (1997)
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Then from Jarzynski identity we get,exp( W r) = exp( F ) which im-

plies that Wg = F:. The work uctuation theorem gives the thermodynamic
identity namely the work done in a reversible isothermal process exjs the change
in free energy.

8.2.2 Dissipation / uctuations : 0 << << 1

When s large, a large number of micro states of the system contribute deciding
the consequences of the switching experiment. Then by virtue dfe central limit

theorem 2, we expect the distribution of W to be Gaussian. Let ; (= hwW i)

denote the rst cumulant (the mean) of the Gaussian and, (= ?2) the second
cumulant (the variance).

1 1(W )2
(W;0 << << 1)= —p?exp 5z (8.7)
For a Gaussian, the third and higher order cumulants are zero. Weave
| £ LW )?
hexp( W )i = —p? dW exp( W )exp 52
1
2
= exp 1+ o 5 (8.8)
From Jarzynski identity we get,
exp 1+(1=2) 2, =exp(  F )
1+(1=2) 2= F
hwi (1=2) & = F (8.9)
2 Letfxi = Xi(1) : i=1;2; N g be a set of N independent, identically distributed, a,gd nite

variance random variables, with a common probability distr ibution f (x). Let Y =(1 =N) iN=l Xi,
be their sum. The probability distribution of the random var iable Y is formally given by,

VAN Z . VAN W 1)(\|
fv(y)= dx 1 dx 2 dx n f(xi) y N Xi

1 1 1 i=1 i=1

Multiply both sides of the above by exp( vy ) and carryRout an integration over y from 1

to +1 . Make use of the property of the delta function : Il g(x) (x  Xo) = d(Xo), while
carrying o% the integration on the right hand side. We get v ( )=[ x( ! =N )]V: where
x ()= ;% dxexp( x )f (x). Therefore,
" #y
X =N n 2
v()=exp nﬂ%n = exp 1+7N_2+ O(1=N?)

Thus when N !'1 | the third and higher order cumulants of Y go to zero and the distribution of y

tends to a Gaussian with mean hyi = hxi and variance 2 = 2 =N.
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The quantity hw i F is called the dissipation or dissipative wor® Callen
and Welton showed that in a thermostatted process, dissipation igqportional to
uctuation and we have the Callen-Welton theorem,
. I
hw i F = 5w (8.10)
which says that dissipation is proportional work uctuations.

Figure (8.1) depicts the Gaussian distribution of workhW i = 60 units of
energy; Wr = 40; 5\, = 160 ; The area under the curve forW Wgr is
sometimes called the probability of violation of the Second law, since ihi§ regime
W is less thanW i . However we must remember thabW i is always greater than
W consistent with the Second law; also see the next section.

Fig. 8.1. Gaussian distribution of work. hwi =60; 2 =160 ;Wgr = F =40

When the switching time increases two things happen.
1. w! O.
2.hwil Wg.

In the reversible limit, the work distribution tends is a delta function entered at
WRr consistent with thermodynamic wisdom.

53 A work performed irreversibly is called dissipative work. F or example when you stir a cup of co ee
with a spoon, you do dissipative work. Imagine a resistor R immersed in a uid. A current i passes
through the resistor for a duration of say t units of time. The work done is i?Rt . This is dissipative
work or irreversible work.
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8.2.3 Jarzynski Identity and the Second Law
The exponential is a convex functiotf. Hence,
hexp( W )i exp( hwi)T (8.11)

The Left Hand Side of the above i€xp( F ) according to jarzynski identity,
Therefore,

exp( F ) exp( hw i) (8.12)

The above is equivalent tchW i F , which is a statement of the second Iat®.

8.3 Heat Fluctuations : Crooks' Identity

Consider a closed system in thermal equilibrium with a thermostat aetmperature
T=1=kg ).Let = fX 1;X5; g denote the set of all possible micro states
of the closed system. Consider a sequence of micro states visitgdhe system at
discrete times starting fromX ( at time 0. Let us denote the sequence by

F : Xo! Xq! ! XN 1! Xn;

where the subscript is the discrete time index an&X; 2 =12 N .
This sequence of micro states is a result of the system transactiegergy with the
thermostat by a heat processes. Our aim is to discover a good maihatical model
for generating and characterizing such a sequence. To this end st&ll turn our
attention below.

Let P (F ) be the probability for the sequencé . From Bayes' theorem we have,

P(XnN;iXN 1 i Xo)= P(XnN jXN 1;XN 2 i Xo) P(Xn 1;XN 2 ; X0(8:13)
Let us assume
P(Xn XN 13XN 25 ;Xo)=P(Xn XN 1); (8.14)

This means that the future depends only on the present and not dhe past. This
is called Markovian assumption and

Xo! Xq! Xn 1! Xy

54 A convex function is one for which f (x1)+ (1 W (x2) f(x1+(@1 YX2) for any x1;X2
belonging to the domain of f and0 < < 1. If we think of as the probability for x1 and 1

as the probability of x», then the Left Hand Side of the above equation is hf (x)i and the Right Hand
Side isf (hxi). Generalizing we can that the function f (x) is convex if hf (x)i f (hxi), where the
angular brackets denote averaging over the probability dis tribution of the random variable x.

Start with Clausius inequality, which is a consequence of the Second law of thermodynamics, and
process as follows :dS g=T ) ¢q TdS ) du q du TdS ) duU q d(u
TS) (T remains constant) ) W dF:

55
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which obeys such a condition is called a Markov chain. Once the preserspeci ed,
the future is independent of the past.

Under Markovian condition, the expression for the joint probabilityof the chain
of micro states, simpli es to

P(XNn; XN 1; i Xo)= P(Xn jXN 1) P(XNn 1:XN 2 Xo)
= P(XnJjXn 1) P(XNn 12]JXn 2) P(Xn 2:Xn 3 ;X0 );
:P(XNjXN 1) P(XN 1jXN 2) P(leXo) P(Xo):
(8.15)

Since we are interested in equilibrium properties of the closed systewe consider
a sequence of states visited by an equilibrium system : The conditidmaeobability,
P(Xi] X;i 1) isindependent of the time index. In other words

P(Xi=X jX;1=X )= W. ; (8.16)

and this quantity is independent of time. We call it time homogeneous akov

chain. Once we know the transition probability matrixW and initial probabilities

of all the micro states, we can calculate the probability of any given &kov Chain.
The transition probability matrix W is a square matrix of sizeb. We have

0o W. 18 ; (8.17)
W. =1 8 : (8.18)

W is called Markov matrix or stochastic matrix. Its elements are all be&teen zero
and unity. The elements of each column add to unify
We consider time homogeneous Markov chain. LBt(X;;n) be the probability
for the system to be in micro stateX;at discrete timen. Let W;; denote the
probability for transition from micro state X; to micro state X; in one time step.
We have
Wi = P (Xi]Xj); (8.19)
the conditional probability that the system is in micro stateX; at any instant of
time given it was in micro stateX; at the previous instant of time. The probabilities

obey the Master equation given below.

X
P(X;;n+1)= P(Xj;n) Wi + P(Xi;n) Wy (8.20)

P
i Wi; =1 8] Therefore,

Wi;i =1 Wj:i . (821)
i 6

56 In addition, if the elements of each row also add to unity, the n the transition probability matrix is
doubly stochastic
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We can write the above as

X X
P(Xi;n+1)= P(Xj;n)Wi;j + P(Xj;n) 1 Wi
j6i « j s
P(Xiin)+ [P(Xj;n) Wij  P(Xi;n)Wj; ]
6
o
P(Xisn)+  [P(X;in) Wy P(Xisn)Wj] 8(8.22)

j=1

8.3.1 Balance Condition

When the system equilibrates we have (Xij;n +1) = P (Xj;n)= (X;) 8 i
Therefore we have
X

1
o

(X)) Wi; (Xi) Wi;
j
This is called the balance condition which ensures that the Markov clmeeventually
equilibrates.

8.3.2 Detailed Balance Condition

Look at the balance condition given as a sum over for eachi. We can make
a stricter demand that each term in the sum be zero. Then we getéhdetailed
balance condition :

(Xj) Wi = (X)) Wi 810 =12 , b

An important consequence of this is that detailed balance ensurelat the
Markov chain is reversible; hence it is most suited for describing anuwlgorium
system. For, no matter what kind of observations you make on argeilibrium
system, you can not tell which direction time moves. Both directionare equally
plausible and equally unveri able. Equilibrium is a time-reversal invariahstate.
Detailed balance captures this subtle property.

8.3.3 Time Reversed Markov Chain

At discrete time N let us reverse the Markov chain and get
R : Xy ! Xy 1! ! Xq! Xo:

A little thought will tell you the chain R is also a Markov chain : for, the future
in R (which is past inF ) is independent of past inR (which is future in F ) once
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the present inR (which is the same as present i ) is speci ed. Hence the time
reversed chain is also Markovian.

Let us denote the transition probability matrix of the time reversedchain by
the symbol W (R). We have

PXn = Xi; Xnu = Xj)

W = P(Xn = XijXpa = Xj)=

(Xj)
_ P(Xn+1 = ijXn = Xi) (X,)
(Xj)
- w, ) (8.23)
T (X))

The condition for reversibility isWi;(jR) = W;; : The transition probability matrix

should be the same for both Markov chains - the time forward and éhtime
reversed. Hence on the left hand side of the above equation replwiﬁ by Wi;

and reorganize the terms. Then the condition for reversibility realas,

Wi;j (XJ) = Wj;i (Xi): (824)

We immediately recognize this as detailed balance condition. Thus a Maw chain
of micro states of an equilibrium system obeys detailed balance conalit and hence
is reversible.

Now we have a good mathematical model - a reversible Markov chato, de-
scribe an equilibrium closed system transacting energy with the thapstat by
heat processes. We need an algorithm that will give us the right traition matrix
obeying detailed balance. Consider two micro states;, and X; of the equilibrium

closed system. Let; and ; denote their energies. Also let ; / exp( i)
and ; / exp( j be their probabilities. These are also called Boltzmann
weight. Letr = ;= ; = exp| ( i)]. Metropolis algorithm prescribes
that Wj; =min :(1;r). Itis easily veri ed that the Metropolis algorithm obeys
detailed balance condition : Let ; > ;. ThenW;; =1 andW;; = ;= j;
ThereforeW;; ; =  andWj; ; = ( ;=) i = j, consistent with the

detailed balance condition.

8.3.4 Crooks identity

Now we are ready to state Crooks' identity about heat uctuatiors. Let Q(F )
be the energy transacted by the system with the thermostat, ding a forward
sequence of micro states starting froX o. Let P (Fj X o) be the conditional prob-
ability of the forward Chain given the initial micro state X,. Let P (Rj X ) be the
conditional probability of reverse chain, given the initial micro statexX \ . Crooks'
identity 57 says

5" G E Crooks, Journal of Statistical Physics 90 1481(1998)
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P (Fj Xo)

m =exp[ Q (F)]: (8.25)

where Q(F ) is the energy transacted by heat in the forward process.

8.3.5 Crooks' Identity : A Back-of-the-Envelope Calculati on

Let me illustrate Crooks' identity on a back-of-the-envelope prdbm described

below.
We refer to the children-in-the-escalator analogy discussed earl@éend depicted

in Fig. (8.2).
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Fig. 8.2. A work step is followed by a heat step. Three consecutive pairs of work and heat steps are
shown. There are ten children placed at di erent rungs label led by their energies. The work step consists
of the elevator moving up or down - the rungs move up or down carrying the children along with them.
The children in each rung remain stay put. The movement of occ upied rungs are indicated by dashed
line connecting a rung before and after the work step. In the heat step, the elevator stands still. The
chldren move up or down the rungs. The distribution of childr en changes. The rst heat step changes the
distribution from fnsz =4 ;ns =2;n5 =1;ng =3gtofn, =2;n3=1;n4=2;ns5 =3;ng =
1;n7 =1 g. The work and heat steps are also marked asW and H at the bottom of the gure.

There are ten children, marked as lled circles in the gure, positiongat various
rungs of an escalator. The rungs are labelled by their energy leve@nly the
occupied rungs are shown in the gure.

Initial Distribution. To begin we have children occupying the rungs labelled
1; 2; 3; 4. The energy of the system i$23 units.
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First Work Step.  The escalator goes up by two units. The rungs go up carrying
along with them the children; there occurs no change in the distribign of the
children. The rungs are re-labelledi: ! i +2 . This is a work step. At the end of
the rst work step, the energy is43 units; it has increased by20 units.

First Heat Step. The work step is followed by a heat step in which the escalator
does not move but the children do. The heat step increases the eme of the
system from43 to 46, an increase by3 units. The probability for this to happen
is! 3, where we have taken = exp( ).

Second Work Step. The second work step shifts the energy from6 to 33 a
decrease byl3 units. The probability for the work step is unity.

Second Heat Step. The heat step that follows, reduces the energy further by
10 units. The probability of such a heat step unity. At the end of the seond heat
step, the system ha3 units of energy.

Third Work Step.  The work step that follows, the third one, increases the energy
from 23 to 63 units. The probability of the work step is unity.

Third Heat Step. The heat step that follows, increases it further to72 units.
The increment is by9 units and the probability such a heat step id °.

Veri cation of Crooks' identity. We have,

P(FjXo)= 13 1 1°=11
P(RjXy)=1 110 1=110
P(FjXo) _

2

The net energy transacted in the forward process, by heat is givéy,
Q(F)=(46 43) + (23 33) + (72 63) = 2 units : (8.27)

Thereforeexp( Q ) = ! 2; verifying Crooks' identity.

8.4 End Remarks

In these lectures | have dealt with microscopic description of heahd work. Heat
originates from change of probabilities of micro states; work has isigin in change
of the energies of the micro states. We discussed at length of thethrematical
machinery, like cumulant expansion, central limit theorenetc. required for charac-
terizing work uctuations. We found that from an ensemble of worksalues obtained
from non equilibrium switching experiments, we can extract equilibriunfree ener-
gies. More importantly we found a way to estimate the probability fowork done
in a switching experiment to be less than reversible work. We learnefireversible
Markov chains, for describing heat uctuations. We found a dissigave segment of



8.4 End Remarks 97

a Markov chain is overwhelmingly more probable than its reverse, actebeautifully
guanti ed in Crooks' identity.

The work and heat uctuation theorems tell us the of the probabiliy for a
macroscopic system to behave in a way opposite to the way dictatbg the Second
law of thermodynamics. We found that the probability of the so-callg Second law
violation is exponentially small for large systems.

In a sense the uctuation theorems bring the curtains down on théramatic
narrative started by James Clerk Maxwef® half and one century ago, when he
invented a demon to violate the Second law of thermodynamics. Magils argu-
ment was simple : if entropy is of probabilistic origin, and this is what stéstical
mechanics would like us believe, then the Second law is of statisticaigom. If so,
the Second law can be violated with nonzero probability.

The uctuation theorems of Jarzynski, and Crooks provide us witha quan-
titative measure of what a Maxwell's demo?® can accomplish, in small systems
and/or over small time-intervals of observation

58 J C Maxwell, letter to P G Tait dated 11 December 1867, reprodu ced in G C Knot, Life and Scientic
Work of Peter Guthrie Tait , Cambridge University Press (1924)p.213

5 For information on Maxwell's demon, see H S Le, and A F Rex (Ed s.) Maxwell's Demon : En-
tropy, Information, and Computing , Adam Higler, Bristol (1990); ibid, Maxwell's Demon, Princeton
University Press (1990); ibid, Maxwell's Demon - 2 : Entropy, Classical and Quantum Informa tion,
Computing, Institute of Physics (2003).






WORKED EXAMPLES

9.1 PV = . Adiabatic process

Starting from the rst law of thermodynamics, show that an adiab&®® of an ideal
gasis described bV =, orequivalently, TV 1=, orP! T = g,
where ; :i =1;2;3 are constants and = Cp=Cy . For a mono atomic ideal
gas =5=3.

Solution

Start with the rst law of thermodynamics.

dU =dQ+ dW; dQ =0 (adiabat) ) duU
CydT

dw
PdV  (9.28)

Now start with the ideal gas law and proceed as follows.
PV = nRT ; PdV + VdP = nRdT

1
dT = — (PdV + VdP)
nR

C
CydT = ﬁ%(PdV-FVdP) (9.29)

From Eq. (9.28) and Eq. (9.29) we get, PdV = (Cy=nR)(PdV + VdP):
ReplacenR by C, Cy, and®, get,

C 1
Pdv = — Y (PdV + VdP)) PdV = ——(PdV + VdP)
C, Cv 1
1 V dP
1= —— 1+ —
1 PdV
P dv
P v
PV = (9.30)

where 4 is a constant.
The other two equations can be obtained by noting thaPV = nRT .

80 a quasi static reversible adiabatic process is oftern refered to as an adiabat.

51 To show this, we start with enthalpy H (S;P)= U + PV whereP = (@U=@Vs:) dH =
du + d(PV)= dU + d(nRT ) since PV = nRT ; CpdT = CydT +nRdT ; Cp Cyv = nR
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Substitute P = nRT=V in Eq. (9.30) and getTV 1=
Substitute V = nRT=P in Eq. (9.30) and get,P! T = 3
9.2 Work done in an adiabatic process

Show that the work done in a (quasi static reversible adiabatic press in an ideal
gas depends only on the initial and nal temperatures.

Solution
For an adiabat, PV = . Initial state A = P;;V3;T; = P;V;=(nR). Final
stateB = P,;V,; T, = P2V2=(nR).
Z B ZV2 V2 +1 V1 +1
W = PdV = dv=v =
A V1 1
PV, VY, PP,
- 1
_ P2V P13
- 1
nR (T T
= (T : 1) (9.31)

9.3 Work done in an isothermal process : ideal and van der
Waal gas

Consider a quasi-static reversible process in whichmoles of an ideal gas expands
isothermally from an initial volume ofV; to a nal volume of V,.

(i) Derive an expression for work done
(i) What is the energy transacted by heat
(i) Derive an expression for the work done by the van der Waal gas

Solution

(i) Work done in an isothermal process :

dw = PdV; P = nRT=V ;
= nRTdvV=V (9.32)
Z v, dv
W = nRT v = nRT In(V,=V,) (9.33)
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(i) Energy transacted by heat :
For an isothermal process in an ideal gafJ =0 ;
From rstlaw: dU = dQ + d W .
Therefored Q = dW =+ nRT In(V,=V,)
(i) Work done in van der Waal gas : the van der Waal equation of statis

n2
P + aW (V  nb)= nRT (9.34)

a and b are van der Waal constantsR is universal gas constant. We can write
the above in a convenient form,

n? nRT
P=a—+ ———— (935)
vz vV nb
Work done is
az vz gy “va gy
W = PdV = an? —5 DRT
Vi Vi V Vi V nb
2 1 Vs nb
=an° — — nRT In —— (9.36)
Vi Vp Vi nb

9.4 An adiabat is steeper than an isotherm

C B P Finn, Thermal Physics (Second edition) Nelson Thornes (1993)P.223 (3.10)
Show that an adiabat for an ideal gas is steeper by a factorthan an isotherm
at a point onthe P  V phase diagram.

Solution
Adiabat :
P
@V
= (Pv) Vv !
= il (9.37)
= v _
Isotherm :
P
PV = ) P=V 1) @F v o2
@V
= (PV)V ?
P
= — (9.38)
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9.5 Adiabats don't meet

Show that no two adiabats meet at a point.

Solution

Proof by reductio ad absurdum Assume two adiabats meet aA on the pressure
- volume phase diagram as shown in Fig. (9.3).

adiaM>

Isotherm

Fig. 9.3. Reductio ad absurdum: Two adiabats are assumed to meet atA ; An isotherm intersects them
at B and C and forms acycleA! B! C! A.

A! B andA ! C are the two adiabats meeting atA. Let B ! C
be an isotherm cutting both the adiabats. By this construction we &wve a cycle
A! B! C! A.Assume a machine starts af. Let the working substance
be ideal gas, The machine goes tB adiabatically; the gas expands and does
work. It is then compressed isothermally as it goes frod ! C. During this
process work is done on the system and equivalent heat is absorlfean a heat
reservoir at temperatureT . In the least leg of the cycle the gas undergoes adiabatic
compression and the machine returns to its initial state. There is nchange in the
entropy of the machine, since its thermodynamic state at the end the same as
it was at the beginning. The heat source loses entropy since it supglibeat to
the machine during isothermal compressioB ! C. Note there is no transaction
of heat during the two adiabats, A ! B andC ! A and hence no change in
entropy. There is a net work done which equals the area enclosed e three
curves. But then there is a decrease in entropy and is not permittdoy the Second
law.
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Also according to Carnot's principle, to get extract work, heat haso fall from
hot to cold. But in the cycle under consideration we have only the ha&tource; the
cold sink is not there. Hence no two adiabats meet.

96 Cp Cy

SeeD Kondepudi, and llya Prigigine, Modern Thermodynamics : from heat engines to dissipative struc-
tures, John Wiley (1998)p.45
Starting from the rst law of thermodynamics, show that,

ou av .
@V  @T

In the above, Cp is heat capacity at constant pressureC, is heat capacity at
constant volume; For an ideal gas, show that the above reduces@, Cy = nR.

Cp CV: P +

Solution

Start with U~ U(T;V).

du = @ dT + @ =dQ+dW (9.39)
@T @V ¢
dQ = @J dT + @J dw
@T @V ¢
= @J dT + P + @J dv (9.40)
@T @V ;

If the system is heated at constant volume, no work is done. HendeQ = dU.
Therefore,

d U
Cy = _Q = @_ (9.41)
T @V
If the system is heated at constant pressure, we proceed as folo
@Uu
dQ=CydT + P+ — dv (9.42)
@V .
d U \%
Cp = —Q: CV + P+ @— @— (943)
dT @V - @T
) \%

If you want to increase the temperature of the system keeping itt &onstant
pressure, you have to supply additional heat to compensate fdre accompanying
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volume expansion. The right hand side of the above equation conpesds to this
additional heat.

What we have above is a very general statement. For an ideal gas,depends
only oneT; it is independent ofV . Hence

U
@_ =0:
@V -
Also for an ideal gas,
nRT
V =
P
Therefore,
@V _ MR
@T , P
It it follows then Cp Cy = nR
9.7 Exact and inexact di erentials
We have, f = dx + x=ydy . Show that f is not an exact di erential

by : (i) Method -1 : calculate the changes occurring in the quantity along the
following two paths, (2;2) ! (3;2) ! (3;3) and (2;2) ! (2;3) ! (3;3),
and show they are di erent (i) Method - 2 : Take the partial derivaive of the pre
factors ofdx with respect toy and that of dy with respect to x and show they
are di erent.

Divide all the terms in the given equation byx;let g = f=x . Show that
g is a perfect di erential following the two methods listed above.

Solution
It is given that f = (x;y)dx + (x;y)dy, where X;y) = and
(x;y)= x=y .

() Change inf along the two paths
(@) path-1:(2;2! (3;2) ! (3;3) is given by,

YA 3 Z 3
(Path 1)= dx (xy =2)+ dy (x=3;y)
2 2
Z3 Z3
= dx +3 dy=y
2 2
= +3 In(3=2) (9.45)

(b) path-2 :
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Z, Z 4
(Path 2)= dy (x=2;y)+ dy (xy =3)
27z, z, °?
=2 dy=y + dx
2 2
= +2 In(3=2) (9.46)

Therefore f (path 1) 6 (path 2). This is su cient (though not nec-
essary) to show thatf is not an exact di erential.

(i) We nd
@ @
- :O1 — = = 947
@y , @x , (9.47)
Thus,
@ 6 @ (9.48)
@y @x

Therefore f is not a perfect di erential. This condition is necessary and
su cient to show that f is not a perfect di erential.
(i) Diving both sides of the given equation byx we get
f
X

1 1
g = = —dx + —dy (949)
X y
We have (X;y )%’ =x and (x;y)= =y.
The change ing along path-1 is given by,
yA 3 YA 3
(Path 1) = dx (x;y =2)+ dy (x =3;y)
2 2
Z, Z
dx=x + dy=y
2 2
InN3=2)+ In(3=2) (9.50)
The change in g along path-2 is given by,
Z 4 Z g
(Path  2)= dy (x=2;y)+ dy (x;y =3)
2 2
Z 3 Z 3

dy=y + dx=x
2 2
InNB=2)+ In(3=2) (9.51)

We ndthat (path 1)= (path 2). This condition is necessary forg
to be a perfect di erential, but not su cient.
We nd

e . @ =0 (9.52)
@y @x

The above is a necessary and su cient condition folg to an exact di erential
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9.8 Iso-entropic process

A particular system obeys the fundamental equation,

U—AN3ex S
BEARVERS NK g

whereA (joule metre?) is a constant. Initially the system is atT = 317 :48 kelvin,
andP =2 10° pascals. The system expands reversibly until the pressure drops
to a value of10° pascals, by a process in which the entropy does not change. What
is the nal temperature ?

HINT: Derive expressions for temperature T and pressure P by taking partial derivatives of U with
respect to S and V respectively. Find a relation between P and T for a quasi static reversible process

in which the entropy and number of particles N remain the same.

Solution
U 1 AN 2exp(S=NR 1
vy &9 o1 ( )L () (953
@S V2 R V2
P(S:V)= @u - 2 AN 3exp(S=NR ) = ! (S) (9.54)
N VARVRVE AR
Tl=2
5= a(S) (9.55)
It is given that entropy does not change during the process of eapsion. Therefore,
Tl=2
513 = (9.56)
where is a constant. Therefore,
T11=2 T21=2 Tl 1=2 Pl 1=3
1=3 ~ 513 ) e e (9.57)
P, P, T P>

It is given : T, = 317 :47 kelvin; P, =2 10° pascals; andP, = 10 ° pascals.
ThereforeT, =2 278  317:48 = 200 kelvin

9.9 Joule's ideal gas engine

ThecycleA'! B! C! D! A ofanideal gas engine proposed by Joule
is depicted on aP VvV phase diagram below. There are four segments - quasi
static and reversible. The segment& ! B (volume increases) andC ! D
(volume decreases) are isobaric; the segmefds! C (expansion) andD ! A
(compression) are adiabats.
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() Find the energy transacted by heat and work in each of the fousegments of
the cycle
(i) Find the entropy change in each of the four segments of the dgc
(i) Show that the e ciency of the engine is givenby =1  (P;=P;) , where
=( 1)= and = Cp=Cy =5 =3 for mono atomic ideal gas.

P2- ---

L L v
Vi V2 V3 V4
Fig. 9.4. A reversible cycle of Joule's engine
Solution
(i) SegmentA! B
dW = P,dVv (9.58)
Zy,
Vi
W (A ! B) is negative. Work is done by the system.
dQ=Cp dZT = (5 =2)P,dV (9.60)
B
Q(A! B)= Cp dT =(5 =2)P,(Vs Vy) (9.61)

A

Q(A ! B) is positive; heat is absorbed by the system. Segmdat! C

W(B ! C)= PaVs zlv“  Q(B! C)=0 (9.62)

W (B ! C) is negative; work is done by the system
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SegmentC ! D

Zy,
W(C! D)= P, dV = Py(V, V) (9.63)
Va

W (C ! D) is positive : work is done on the system

Q(C! D)= 5P1(V‘; V) (9.64)

Q(C ! D) is negative; heat is liberated by the system.
SegmentD ! A

W(D ! A)= szl—ilvz - Q(D! A)=0 (9.65)

W (D ! A) is positive; work is done on the system.
(ii) Calculation of entropy

S(B)= S(A)+ ‘ d_Q— S(A) + %ZW dl
- ars T 2 v, V
5nR
= S(A)"‘ |n( V3=V1) (966)
S(C)= S(B) (9.67)
5nR
S(D): S(C)"‘ In(V2=V4) (968)

Adiabat : PV = )y PV =

Adiabat B! C : P,” V3= P;” V,
Adiabat D! A : P;” Vo= P,7 V4

VsV,

—= 2P, (Vs Vi)= P77 (V4 V
V, Vs 2(3 1) 1(4 2)
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(i) E ciency of a Joule's engine

3 W —1 Q- —1 Q(C! B
Q1 Q1 Q(A! B
_1 Pi(Vs V)
Po(Vs Vi)
=1 PPy
PP 15
P, 1 (1=)
-, 1 (9.69)
P>

9.10 Cyclic Process : Rectanglein SV Plane

See N Newman, J Ruhl, S Staggs, and, S Thorset,Princeton Problems in Physics with Solutions, Uni-
versities Press (2000)p.24 and p.153

n mols of an ideal gas engine goes through a (quasi-static) reversityelic process
depicted in Entropy - Volume phase plane, depicted below.

S
D
s— € >
A
S[— B < A
\%

Vl V2

Fig. 9.5. Areversible cyclein SV phase plane

Cv denotes the heat capacity at constant volume. It is independent temper-
ature. Show that the e ciency of the engine is given by

V]_ nR=C v

=1 _—
V,
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whereR is the universal gas constant.

Solution

Let us rst derive an expression for temperature as a function aéntropy and
volume : T T(S;V ), see below.

du =
TdS =

dS
Z

ds =
S =

InT =
T =

where is a constant.
There are four segments

TdS PdVv
du + PdV
dv
CvdT + NnRT ——
\%
dT dv
Cy —+nR —; (9.70)
il Vz
T dv
Cv —+nR —
T \
CyInT + nR InV +a constant
S nR
— —— InV +a constant (9.72)
Cv Cy
exp(S=Cy)V "M=Cv (9.72)

JA! B 22B! C 3.C! D and4.D! A.

Work is done only during the segment€ ! D andA ! B.

Consider segmentC !

W(C! D)=

=+

=+

D.
Zy,
P dv

Y
nR T —

Y
7.,

nR dv v ("RCv) 1exp(S,=Cy)
Vi

C v exp(S,=Cy) ;}/ R=C v

Vi

V2
V1 |
C v exp(S,=Cy) V, "™V vy, "Cv  (9.73)

Similarly we can calculateW (A ! B). Thus we have

W(C! D)=

W(A! B)=+

h i

C v exp(S,=Cy) Vv, ™V v, v (974
h i

C v exp(S;=Cy) Vv, "¢V v, "V (9.75)

The total work done is given byWw = W(C! D)+ W(A! B).
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W= Cy Vv, v y, mCv exp( S2=Cv) exp(S1=Cv) (9.76)

Note : W is negative; the engine delivers work.

The transaction of heat occurs during the segmen8 ! C andD ! A.
During the processB ! C, entropy increases. Hence heat is absorbed. Let us
denote the quantity of heat absorbed by the symbai;. We have,

Zg,
q: = T dS

S1
ZS

2
= v, "y . exp(S=Cy) dS
1

= C vV, ™Y exp(S:=Cy) exp(S:=Cy) (9.77)

The e ciency of the engine is formally given by,
_ W]

Q:
V]_ nR=C \V2

v, (9.78)

9.11 Isothermal expansion and Helmholtz Free Energy

One hundred moles of a gas 800 k expand isothermally from a volume ofl m?
to a volume of2 m3. What is the change in Helmholtz free energys (T;V;N ),
if the gas obeys equation of state of

(@) anideal gasPV = nRT ;
(b) avan der Waal's gas (P + an?=V?2)(V nb)= nRT .a =0:4261 pa nm®
(mol) 2;b=37:406 10 ® m® (mol) 1.

Solution

First we show that the work done in a reversible process equals thHeaage in free
energy.

du =dQ+ dWwW (9.79)

dw =dUu dQ=dU TdS (9.80)
= d(U TS)since dT =0 for an isotherm (9.81)

= dF (9.82)

Alternately,
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F=U TS (9.83)
dF = dU TdS SdT (9.84)
= PdVv SdT (9.85)
F
P = @— (9.86)
@V -
dw = PdVv (9.87)
F
= @— dv (9.88)
@V +
= dF (9.89)
Z,, Z,, Vv
Ideal Gas : W = Pdv = nRT v = nRT In(V,=V,)
V1 Vi

Hence; F(T;Vo;n) F(T;Vy;n)= W

NRT In(V,=V,)
100 8:314 300 In2

= 1:729 10° |
van der Waal Gas

Zv, Zv, dv Z v, dav

W = PdV = nRT — 4+ an? —

Vi Vi V nb Vi V2
Vo nb , 1 1
= nRT In ——— an —  —
V1 nb V, Vi

Hence we have

F(T;Vy;n) F(T;Vyn)= W = 1:721 10°j:

9.12 Internal energy is an extensive property

The internal energyU of a single component thermodynamic system expressed as
a function of entropy S, volumeV , and number of particlesN is of the form
U(S;V;N )= aS*3V wherea and are constants.

(i) What is the value of ?
(i) What is the temperature of the system ?
(i) What is the pressure of the system ?
(iv) The pressure of the system obeys a relation given By = U=V |, where! is
a constant. Find the value of! .
(v) if the energy of the system is held constant, the pressure ardlume are related
by PV = constant . Find
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Solution
(i)
U(sS;V)= asS*3v

U, S, and V are extensive properties of a thermodynamic systertl is an
extensive function ofS and V . In other wordsU is a rst order homogeneous

function of S and V .

U(S;V )= U (S;V)

We have,
a + (4 :3) 84:3 \Vj = S 4=3 Vv
+ (4 23) = ) + i =1 ) = E
3 3
(i) The temperature of the system is given by,
_ _ U 4a s 7°
U(siV)= as*y 1S T(siv) = 20 2 S
@S 3V
(i) The pressure of the system is given by,
U a S
P(S;V)= @_ = - =
@V ¢ 3 V
(iv) We have,
as4:3
U= ——;as*®=uv*™
\/ 1=3

Substitute the above in the expression foP , see below

as*=3 uvi= 1U

3V 48~ 3y4s8 3y

Therefore! =1 =3.
(v) We have
asS4=3 asS 43 U

U= —; P = —; — =3V
Vv 1=3 3V 4=3 P

PV = constant if U is held constant

Therefore =1.
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9.13 Adiabatic leaking

adapted from C B P Finn, Thermal Physics, Nelson Thornes (Second edition) (1993)p.224 3.13

A thermally insulated chamber containsl000 moles of mono-atomic ideal g&%
at 10 atm. pressure. Its temperature i300 K. The gas leaks out slowly through
a valve into the atmosphere. The leaking process is adiab&ficquasi static, and
reversible.

(i) How many moles of gas shall be left in the chamber eventually?
(i) What shall be the temperature of the gas left in the chamber ?

latm=0:981 10°Pa; = Cp=Cy =5=3

Solution

The gas in the chamber leaks out because of the pressure di erenghe pressure
in the chamber decreases as the gas leaks out. The leaking contnuetil the
chamber is at the same pressure as the atmosphere. Since thendber is thermally
insulated there is no transaction of energy by heat between theanber and the
Initial pressure P; 10 atm
Final pressure P 1 atm
Initial amount of gas n; 1000 moles
" Final amount of gas n¢ ?
Initial temperature T; 300 K
Final temperature T; ?

Apply ideal gas law to then; moles of gas left in the chamber. We have
Pt T, =P T,

surroundings. We have

From the above we get,
T pe (U=

= ) Tf =119:4K
T, P,

PiV = niRTi ; PfV = nfRTf ;

nj Ti PI
ng Py
nj - I:)i

n; =1000 10 3 = 251 :2moles

62 py = nRT
B pv =
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9.14 Processes in PV phase diagram : Energy

transacted by heat and work
See C B P Finn, Thermal Physics, Nelson Thornes (1993)p.222; Problem: 3.4

Consider the (quasi-static) reversible processes depicted in theeBsure-Volume
phase diagram below.

P

9.6. A Quasi-static reversible process inP  V phase plane

When the system goes through the pattA ! C ! B it absorbs an

energy of80 joule by heat and does work 080 joules.

When it goes along the path A ! D ! B, the work done by the system
is 10 joules.

What is the energy transacted by heat ? Does it absorb or throw ay heat

?

The system travels fromB to A along the curly path shown in the gure.

During this process,20 joules of work is done on the system.

What is the energy transacted by heat ?

If U(A)=0,and U (D) =40 joules, What is the energy transacted by
heat during the processA ! D ? What is the energy transacted by heat
duringD ! B

Solution

It is given that in the path A'! C ! B, the energy transacted by heat
Q, and work W are given byQ = 80 j; W = 30 j: Therefore
UuB) U(A)= Q+W =50j:ForthepathA! D! B,W = 10j;

andQ = U(B) U(A) W =50 ( 10)=60] :

Forthe curly path B! C,W =20j andQ = U(A) U(B) W =
( 50 20)= 70]j. Energy exits by heat during the proces8 ! C.
Consider the pathA'! D ! B.Work is done only in the segmenA ! D.
Notice that volume does not change in segme® ! B, hence no work is
done.

It is given that during the processA ! D ! B, the work done by the system
is 10 j. Thereforee W(A ! D)= 10j;

Q(A! D)=U(D) UA) W =50 j

Q(ID! B)=Q(A! D! B) Q(A! D)=60 50=10



116 9. Worked Examples

915P T,V T,and P V phase diagrams

One mole of an ideal gas is in thermal equilibrium at temperatur00 k, and

pressurel:0 10° pa. Call it the initial state and denote it by A. It goes to a

nal state D, at 400 k and8 10° pa, by two di erent reversible processes :
Process-1 : There are two steps. In the rst step the system g fromA
to B whence the volume remains constant and the temperature increas
to 400 k. In the second step the system goes froB to the nal state D
isothermally.
Process-2 : There are two steps. In the rst step, the systenogs fromA
to C whence the pressure remains the same and the temperature irRces
to 400 k. In the second step the system goes fro@ to the nal state D
isothermally.

Cy =3nR=2;Cp =5nR=2; R =8:314 jK ! (mole) '. n number of moles= 1.

(a) Sketch both the processes in a single graph sheet wRhon they axis and
T on the x axis.

(b) Sketch both the processes in a single graph sheet wighon the x axis and
V ontheY axis.

(c) Calculate the energy transacted by heat and work at each gteof the two
processes.

(d) Calculate the change in entropy and show that it is independentféhe path

Solution

Pressure versusTemperature Plot: Inthepath A! B,V isa constant,
P is a linear function of T passing through origin and with a slopenR=V .

The P versusT plot is given below, see Fig. (9.7) Left. Volume versus
Temperature Plot : In the path A ! C, P is constant. HenceV a linear

function of T with a slope nR=P and passing through the origin. Volume
versustemperature plot is shown in the gure below,seeFg. (9.7) Right.

W)

Fig. 9.7. Left: P versusT; Right: V versusT; Process-1:A! B! D.Process-2:A! C! D
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Pressure versusVolume Plot The PressureversusVolume plot is shown in
the gure below.

P
D
B \\\\
______________ "_"_‘_‘_-_-_—_-_-___...
A C
\
Fig. 9.8. Process-1:A! B! D.Process-2:A! C! D
Work and Heat during the given two processes
Process-1: A! B! D
Segment A! B
Energy transacted by heat is given by,
Z,
Q(A! B)= Cy dT =(3nR=2) (400 100) =3741 :30]
Ta

Volume does not change during this segment. Hence no work is done.
W(A! B)=0:

Segment B! D

The process is isothermal compression. For an ideal gas, this medh) =0 ;
since according to the rst law of thermodynamics

U(D) UB)= QB! D)+ W(B! D);

we haveQ(B ! D)= W(B ! D): To calculateW (B ! D) we
proceed as follows.
Z o Z o dv Z py dP
W(B'! D)= PdV = nRTg — = nRT 3 —
B B V PB

= nRT B |n( PD :PB)

We havePp =8 10° pa. We need to calculatePsg .
For an ideal gasPoVa = Tao andPg Vg = Tg.

SinceVA = Vg, we havePB =Tg = Pa=Ta.
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This givesPg = P,  Tg=Ta ) Pg =4 10° pa

Therefore,

W(B ! D)= nRTInB=4)=1 8:314 400 In2=+2305 :13]
QB! D)= W(B! D)= 2305:13]j

Therefore for the Process - 1, we have,

Q(A! B! D)= Q(A! B)+ Q(B! D)=3741:30 2305:13]
=+1436 :17j

W(A! B! D)= W(A! B)+ W(B! D)= 0:0 +2305:13
=+2305 :13]j
U = U(B) U(A)=1436:17+2305:13 =+3741 :30 ]

Process-2: A! C! D

Segment A! C
Q(A! C)= Cza(TC = Ta) = (5 nR=2)300=+6235 :50 |

Ve

W(A! C)= PdV = Pa(Vc Va)= nR(Tc Ta)
Va

= 2494:20 |
Segment C! D

The process is isothermal. This implie® = W.
Z o Zvo gy Z P gp
W(C! D)= Pdv = nRT — =+ nRT —
c ve V pc P
=+ nRT In8
=+6915 :39

Q(C! D)= 6915:39]

Therefore for the Process - 2, we have,

Q(A! C! D)= Q(A! C)+ Q(C! D)
+6235 :50 6915:39 = 670:89 j
W(A! C)+ W(C! D)
2494:20 + 6915 :39 = +4421 :19 ]
U(D) U(A)
670:89 + 4421 :19 = +3741 :30j

W(A! C! D)

U
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Calculation of Entropy
We take S(A) = 0, with out loss of generality.

Z400
S(B)= Cy — =@=2)nR In4=17 :29jk *
100 T

Z400
S(C)= Cp - =(5=2)nR In4=28 :81jk *
100

Process-1: A! B! D
The segmentB ! D is isothermal. Therefored Q = dW = PdV.

We getdS = d Q=T = PdV=T = nRdV=V = nRdP=P .
Ppb =8 10%*pa.;Pg =4 10° pa.

ZPo gp
S(D)= S(B) nR 3 =17:29 nR In2=17 :29 5:76
Pg
=11:53jk !
Process-2: A! C! D
The segmentA ! D is isothermal. Therefored Q = dW = PdV. We
getPp =8 10% pa.;Pc = P, =1:0 10° pa.
Z by dpP

S(D)= S(C) nR -

=17:29 3nR In2=28 :82 17:29=11:53jk *

9.16 Right Triangle : cyclic process in P V

One hundred moles of an ideal gas goes through a quasi-static rei@e cyclic
processC ! A ! B ! C depicted on the Pressure-Volume phase plane
given below.

Let P(C)= P(B)= p=10°pa;P(A)=2p;V(A)= V(C)= v=3
m3; andV (B) = 2 v. Let D be a point on the cycle, at which the temperature
is maximum. LetS(C) =0 .

(i) Find D and T(D).

(i) Depict the cycle in Temperature-Entropy phase plane.

Solution

SincePV = nRT , we haveT(A) = T(B) = 2 pv=(nR) = 721 :674 k;
T(C) = pv=(nr) =360 :247 k
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2p

9.9. A Quasi-Static Reversible Cycle in PV phase plane

Segment C! A
As the systems moves fron€ to A reversibly, volume remains constant av
and the pressure increases fromto 2p. Let x be a parameter that varies from
0 to 1. When the system is atC, x = 0 ; when the systemis atA, x = 1. We
haveP (x) = xp + p; T(x) = vp(1l+ x)=(nR);, and

Z x dx

S(x)= S(C)+ Cy T x == CyIn(2+ x):

We can expressl a a function of S, by eliminating x ; we get,
NnRT
pv

S=Cyln or T = ﬂexp(S:CV):

nR
Segment A! B
As the system goes fromA to B, volume increases fronv to 2v and pressure
decreases fron2p to p. Let y be a parameter that varies from0 to 1. When
the system is atA, the value ofy is 0; and when the systemisaB,y =1.
We have,

pv(l+ y)2 )

V(y)=v(l+y), P(y)=p@2 vy) T(y)=

nR
dT pv L .
We nd that a = ﬁ(l 2y): The derivative vanishes aty = 1 =2. Hence
y
, d2T 2pv
T is extrema aty = 1=2. We have, — = — < 0: Aty = 1=2,
dy? nR

the temperature is maximum.y = 1 =2 corresponds to the mid point of the
segmentAB . We haveT(y =1=2) =9 pv=[4nR].
Calculation of entropy
Zp2 y) gp Zva+y) gy
S(y)= S(C)+ Cy —+ Cp ~ (9.90)
p P v Vv
=CvIn@2 y)+ Cpin(l+ vy)
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Segment B! C
When the system goes frolB ! C, volume decreases frorv to v; pressure
remains constant atp. Let0 z 1 be a parameter. We have,

V(z)=v(2 2)

Toy= P 2
nR 7
z dz
S(z)= S(C) Cp
1 2 Z

= CpIn2 2)

The Cycle inthe T S phase plane is shown below.
850
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o o o
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o
o
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350 : :
0 500 1000 1500
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Fig. 9.10. The cycle represented inP  V phase plane in gure (9.16), plotted in T S phase plane

9.17 S(P) from Gibbs Free Energy

Gibbs free energy of a gas is given b = RT In(P=Py) ATP , where
R is the universal gas constantA and P, constants. Derive an expression for
entropy as a function of pressure
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Solution

Gibbs free energy is obtained by Legendre transform :
S! T, V! P; and U(S;V;N)! G(T;P;N)

U U
G=U TS+ PV; @— =T, @— = P
@S V:N @V S:N
Therefore
@G
S = — = AP R In(P=Py):
QT »

9.18 Isothermal compression of water

One kilogram of water is compressed isothermally from &0 Celsius from
one atmosphere t®20 atmosphere pressure. What is the energy transacted by
heat and by work ?

isotherm compressibility % of water ¢+ = 0:5 10 % atm ! 1 atm = 1 :01325 10° pa.
Coe cient of thermal expansion % for wateris =2:0 10 * per Celsius. Assume there is no
change in volume of water upon application of pressure.

Solution

Energy transacted by work

@/ dT + @/
@T » @P ;

Compression is isothermal and reversible. Therefodd = 0 in the above.
State 1 : P=P;=1 atm. ; T=20 C; State 2 : P=P,=20 atm ; T=20 C;

@V

V.  V(T;P); dv = dP

dv = — dP; dwW = P dVv (9.91)
@P ;
Z 2
W = PdVv
z',
V
= P %:) dP
1 7 )
= 1V P dP
1
TV (P; PH)=2
=0:9975 joules (9.92)
54 |sothermal compressibility + = 1=V )(@V=@®+.

% Coe cient of thermal expansion = (1 =V )(@V=@Rr .
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Energy transacted by heat

S S(T;P); dS= @s dT + @s
Q@T » @P

Compression is isothermal and reversible. Therefodd = 0 in the above.

dP (9.93)

@S
ds = — dP ; dQ=+ T dS (9.94)
@P
Z 2
Q= TdS (9.95)
z',
@S
= T — dpP (9.96)
1 @P T
P \Y @s ov
N @,  @T,
Z 2 @V Z 2
Q= T — dP = TV dP
1 @T P 1

TV (P, P;)= 112:82 joules






PROBLEMS

10.1 Problems Set - 1

(1) Foracylinder, V. =2 RHdR + R 2dH; whereR denotes the radius and
H the hight. Show that V is a perfect di erential. ExpressV as a function
of R andH .
(2) Let
f =@xy yd)dx+(@2xy x?)dy:

(a) Consider the following two paths :
M @¢G;n! 251! (252 and (i) (L;1) ! ;2 (2;2).
Calculate the changes in the quantity along these two paths.
(b) Calculate partial derivatives of the pre factors odx anddy and nd if o
IS an exact or inexact di erential.
(3) Consider a system oh moles of ideal gas.

g = CydT + PdV

is the energy transacted by heat in a quasi static reversible preaseC, is the
heat capacity at constant volume. For an ideal gaBV = nRT . Express the
energy transacted by heat as follows :

qg = (T;P)dT + (T;P) dP:

Derive expressions for the functions (T;P ) and (T;P ). Show that q is
not a perfect di erential. Now consider the quantity g=T . Callit S and
show it is a perfect di erential.

(4) Consider the thermodynamic phase plane witdl on the X axis and P on
the Y axis. One mole of a mono atomic ideal gas is at an equilibrium stéte
represented by the pointA = (270 k ;1 atm:). It is taken quasi statically and
reversibly from stateA to state B = (370 k ; 2 atm :) as described below.

(i) Process 1: Al C ! B; whereC = (370 k ;1 atm) . During
the processA ! C pressure remains constant and during the process
C ! B, temperature remains constant. Calculated the energy transac
by heat and work for each segment of the process and for the wdprocess
Al C ! B. Calculate also the change in internal energy and entropy
during the process.

5 only equilibrium states can be represented by points in the t hermodynamic phase diagram.
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(i) Process 2 : A! D ! B; whereD = (270 k ;2 atm:). The
processA ! D is isothermal. The proces® ! B is isobaric. Calculate
the energy transacted by heat and work in each segment and théele of

the processA ! D ! B. Calculate the change in internal energy and
entropy.
(5) Show that for a mono atomic ideal ga®®V = for an adiabatic process.

Here is a constant. What is ? Derive similar equations of state involving
1.PandT and 2.V and T.

(6) Consider quasi static and reversible expansion of a mono atondeal gas from
Vi =1 litre to V, = 2 litres. Initial pressure of the gas i?; = 2 atm. and
temperature T; = 300 k. If the expansion is adiabatic calculate the energy
transacted by work. Let the adiabatic expansion take the systernom

A=(P;=2atm ;;V; =1litre ;T =300k)to B =( P;,;V, =2litre ;T,):
Let W, 5 denote the work done. Consider now an isothermal expansion from
AtOC:C:(P3;V3: Vo, = 2 litre Tz = T1:300k)

Calculate the energy transacted by heat and work.

Consider a quasi static reversible process that takes the systérmom C to B.

Calculate the energy transacted by heat and work during the pressC ! B.

Thus we have two processes K ! B : adiabatic and process A ! C !

B where the segmenAA | C is isothermal. Show that di erence in the work
done in processes | and Il equals heat transacted in process |l statement of
the rst law of thermodynamics.

(7) Consider Carnot engine on the thermodynamic phase plane wittolmume on
the X axis and pressure on th&' axis. Derive and expression for the e ciency
of the Carnot engine : the energy transacted by work divided thenergy taken
from the source by heat.

Depict the Carnot engine on temperature-entropy phase diagraend derive
an expression for the e ciency.

(8) At 0 C ice melts with a latent heat of fusion 0834:92 kilo joules per kilogram.
Calculate the entropy change if one kilogram of ice melts completely otvater
at0 C.

10.2 Problems Set - 2

(10) For anideal gasPV = nRT , wheren is the number of moles an& measured
in units of j k * mole !, is the universal gas constant. Work done in a quasi
static reversible process involving in nitesimal changenivolume at constant
pressure isd W = PdV . The bar ond for work, is to remind us that work
is not a property of the systemd W is a small quantity but not an in nites-
imal; it is not an exact di erential; W is not a property of the system; it a
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property of the process. It depends on the path. You have tdegrate P dV
along the path describing the process to get the work doneeath has to be
necessarily quasi static and reversible.

Calculate the energy transacted by work by an ideal gas in the follovg quasi
static reversible processes

() Isothermal : from V; to V,.

(i) 1sothermal : from P; to P».

(i) Isobaric (presure is kept constant atP ) : from V; to V5.

(iv) Isobaric (at constant pressure P) : fromT; to T,.

(v) Adiabatic : from V; to V..

(11) A particular gas obeys the equation of state given by,

an?
P+T (V nb)= nRT:

In the aboven is the number of moles of the gas and b are constants.
R =8:314 j k ! mole ! is the universal gas constant. The gas expands by
a quasi static, reversible isothermal process from an initial sta{d®;;V,) to a
nal state
(P, < P 1;V, > V). Find an expression for the energy transacted by work.
Tell whether work is done on the system or by the system.

(12) Calculate the change in entropy whet kg. of nitrogen is taken from a pressure
from 1 bar at temperature 300 k to a pressure3 bars and temperature500 k.
For nitrogen Cp =1041;6jk kg !
Assume nitrogen behaves like an ideal gas.
lbar=100k Pa;l1pa=1Nm 2
R=8.314jk ! mole !;
nitrogen weighs28 g mole ?.

(13) A fundamental equatior?’ of a single component substance is given ¥,

Vo S? .

U= ;
RZ2 NV

wherevy, , and, R are constants.
(i) First check if U is an extensive.
(i) Find the three equations of staté® :
T T(S;V;N),P P(S;V;N),and = (S;V;N).

57 A fundamental equation is one which expresses an extensive poperty as a ( rst order homogeneous)
function of other extensive properties.

%  Taken from H B Callen, Thermodynamics and an Introduction to Thermostatistics (Student Edition)
Wiley India (2002)p.39; Problems 2.2-1, - 2.2-3

% An equation of state expresses an intensive property as a (zeo-th homogeneous) function of its
extensive properties.
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(i) Show that T; P; and each is a zeroth order homogeneous function of
S;V;N .
(iv) Express as a function of T; V; N .
(v) Sketch P versusV for a xed T and N . This is called isotherm. Sketch
isotherms forT; and T, > T 4.
(14) The fundamental equation of a substance is given by,

S? R V 2
u= — — _— —
R N v N
Show that,

U .
=

Express as a function of T and P .
(Taken from the reference given in footnote (68) Problems 2.2-4, 2.2-5)
(15) The fundamental equation of a substance is given by,

Vo S? S

Find the three equations of state.
(Taken from the reference given in footnote (68) Problem 2.2-6

10.3 Problems Set - 3

(19) N D Hari Dass, The Principles of Thermodynamics Taylor and Francis

(2014)p.16
The volumetric coe cient of thermal expansion is de ned as
1 @V
SV @T .
THe isothermal compressibility de ned as
1 @V
kr = — —
vV @P ;

Show that the energy transacted by work, when temperature dnpressure
change, can be determined in terms of and 1 and is given by

dwW = PV (ky dP dT ):
In a constant volume (isochoric) process, show that

@P _
@T vkt
Verify this for an ideal gas.
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(20) You can increase the e ciency of a Carnot engine by raising thgurce temper-
ature, T, or by lowering the sink temperature,T,. Assume it costs the same to
change the temperature of the source or the sink, by the same ammt. Which
of the two options is cost e ective for improving the e ciency of the Carnot
engine.

(21) H B Callen, Thermodynamics Wiley (1960)p.71
A Carnot engine draws energy by heat from a source of boiling watdelivers
one joule or work and rejects energy by heat to ice cubes, meltingem in the
process. How much of energy it withdraws from the source by heatHHow many
grams of ice it melts in the sink 780 calories of energy is required to melt one
gram of ice.

10.4 Problems Set - 4

(22) to be supplied
(23) to be supplied
(24) Consider an isolated system oN identical, indistinguishablg® and non-
interacting point particles, in two dimensions Each particle is of massn.
The particles are con ned to an area A..
Let b(E; A; N ) denote the number of micro states of the (macroscopic) sys-
tem with energy less than or equal tde .
(i) Show that

1 AN (2mE )N
h2N- N1 (N +1)
(i) Express S as a function ofE, A, and N .
(i) Derive expressions for the partial derivatives o6 with respect toE, A and
N and interpret these quantities.
(iv) Derive equipartition theorem.
(25) Consider an isolated system dfl identical, indistinguishable, see footnote (70)

and non-interacting point particles, in_.one dimensionsEach particle is of mass
m.

b(E; AN ) =

The particles are con ned to a length L.
Let b(E; L; N ) denote the number of micro states of the (macroscopic) sys-
tem with energy less than or equal td .
(i) Show that
1 N (@2mE )N=2
hN N ! 5 +1
(i) Express S as a function ofE, L, and N .
(i) Derive expressions for the partial derivatives o with respect toE, L and
N and interpret these quantities.

0 as speci ed by Boltzmann, i.e. employ Boltzmann counting of micro states.
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(iv) Derive equipartition theorem.
(26) The internal energy of a mono atomic van de Waal gas is given by

3nRT an

2 \

In the above, n is the number of moles; "a" is a constantR is the universal
gas constant. The gas is allowed to expand adiabatically into a vacutihfrom
a volume ofV, to a volume ofV, ( > V ;): Let T, be the initial temperature
of the gas. What is its nal temperature ?

If a mono atomic ideal gas expands adiabatically into vacuum from a hane
V; and temperatureT; to a volume V,, what will be the nal temperature ?

U(T;V;n)=

10.5 Problems Set - 5

(27) Evelyn Guha, Basic Thermodynamics, Narosa (2000)p.77
An ideal gas is taken through a cyclic process, which is represenwmtua P
V plane, by a rectangle. LetP; and P, be the lower and higher pressures
respectively. LetV; and V, be the lower and higher volumes respectively. (i)
Calculate the work done per cycle. (ii) Indicate which parts of the e involve
heat ow into the gas. (iii) Show that the e ciency of the engine is given by,

P P1 Vo Vi

where = Cp=Cy - the ratio of heat capacity at constant pressure to that
at constant volume.

(28) An ideal gas goes through a quasi static reversible cyclic pess
Al B! C! A asshown below, on a pressure-volume phase plane.

\Y
P

"t when a gas expands into a vacuum, no work is done. Note : Work isdone only when there is movement
against an opposing force. When a gas expands into a vacuum, here is no force that opposes the
expansion. Hence no work is done.
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The segmentC ! A is a reversible adiabat. LetV (A) = v;V(B) =
V((C)= V,;P(C)= P;P(A)= P(B)= P,. = Cp=Cy - the ratio of
heat capacity at constant pressure to that at constant volume(i) Show that
the e ciency of the engineis =1 E ﬂ (i) Let S(A)=0;
1 (Vi=V2)

nd S(B) and S(C)

(29) Evelyn Guha, Basic Thermodynamics, Narosa (2000)p.59 worked example 3
One mole of an ideal gas is taken through a quasi static reversiblecleywhich
when plotted on a Pressure-Volume phase plane is a circle traversaolck-wise,
A! B! C! DI A, see gure below.

o B
C
2 A
1
D
1 2 3 .
S—

The area of a square in the gure isV P =[10 3m?3)] [10° (pa)].
Show that (i)] net work done in one cycle is 314§ (iJ(C) U(A) =600
j; (i) heat absorbed by the gas during the proces& ! B ! C - upper
hemisphere traversed clock-wise, is 100 j.

(30) G(T;P)= RT In(P=Pgy) AT P; isthe Gibbs free energy of a system,
whereR, A and P, are constants. Derive an expression for entropy as a function
of pressure.

(31) Start with fundamental relation expressing entropy as a fution of energy,
volume and the number of particles S  S(U;V; N ).

(i) Express the partial derivatives

@S @S @S
— y = ;and —— ;
@U V:N @V U;N @N uUv
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interms of T, P, and .
S U
(i) Show that Q @—
@U V;N @V S;N

@ _ . 9
@Vv T UN @N
(iv) For an ideal gas show that

e
@V T un

(iii) Show that

@V

ESU;N_

—| T

U;N
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