Frontiers in Physics 27 - 29, Sept. 2012

Self Avoiding Growth Walks and Protein Folding

K P N Murthy[†], K Manasa^{*}, and K V K Srinath[†]

[†]School of Physics, * School of Life Sciences University of Hyderabad

September 29, 2012

KPN, Manasa, Srinath (UoH)

Protein Folding

September 29, 2012 1 / 20

3 1 4 3 1

acknowledgement:

- Thanks to Suneel Singh, V S Ashoka, S V S Nageswara Rao, and Soma Sanyal for the invitation
- Manasa and Srinath acknowledge with thanks the summer fellowship awarded in the year 2012, by the School of Physics, for carrying out this project;
- Monte Carlo simulations were carried out in the Centre for Modeling Simulation and Design(CMSD)

acknowledgement and warning

warning :

- I am going to talk about the following issues :
 - Protein folding
 - Levinthal paradox
 - non-bonded nearest neighbour contact pair
 - athermal to thermal random walk
 - Kinetic Walk walk that grows faster than it could relax
 - irreversible growth and linear homo/hetero polymers
 - Interacting Growth Walk (IGW)
 - Protein folding some results

Protein Folding

- Protein : non-branching hetero polymer
- monomers are from amongst twenty amino acids
- biological function : intimately related to its unique (?) and thermodynamically stable (meta stable ?) conformation
- A Challenging Problem in biophysics : Levinthal's paradox (1969) C Levinthal, "How to fold graciously" Conf. Illinois (1969)
 - a thought experiment
 - astronomical number of possible conformations : order of 3300
 - sequential sampling : requires time, longer than age of the universe to fold to its correct native conformation, even if conformations are sampled at rapid (nanosecond or picosecond) rates.
 - "paradox" : proteins fold spontaneously on a millisecond and often microsecond time scale.
 - This paradox is central to computational approaches to protein structure prediction.

Attempt to resolve Levinthal paradox

- fold step-by-step by considering kinetic growth models lattice or off-lattice
- speed up the folding by rapidly forming local interaction which in turn determine the next step in folding process
- *i.e.* implement local "equilibration"; do not insisit on global equilibrium
- decide local moves on the basis of local partition function on the basis of possible energy and entropy changes
- Interacting Growth Walk (IGW) is a kinteic walk that attempts this, within the frame work of lattice models

3 N 4 3 N

- Self avoiding walks (SAW) are most suitable for modeling polymer conformations
- SAW is a random walk that does not intersect itself excluded volume or hard core repulsion
- self avoidance is best modeled by considering walk on a lattice the random walk can not visit a site it has already visited
- algorithms to generate SAW : blind ant, myopic ant, Boltzmann ant, Kinetic Growth Walks(KGW), Interacting Self avoiding walks etc
- We shall consider only Interacting Growth Walks (IGW)
- self avoiding walks are athermal objects can not define temperature
- define energy through non-bonded nearest neighbour contact
- athermal to thermal

.

non-bonded Nearest Neighbour (nbNN) contact pair

- The monomers marked in red constitute a non-bonded nearest neighbour pair.
- They occupy nearest neighbour sites on the lattice but are not connected by a bond.
- Each nbNN contact pair carries an energy ϵ .
- The athermal SAW becomes thermal, when we define such contact interaction.

- *n* : number of non-bonded nearest neighbour contacts in a polymer conformation
- energy = $n \times \epsilon$: where ϵ is the energy per contact.
- ϵ is negative for attractive interaction and positive for repulsive interaction
- each possible step is given Boltzman weight on the basis of change in energy
- a step is randomly selected on the basis Boltzmann weights
- temperature is treated purely a tuning parameter for optimal folding has no physical significance

IGW algorithm for a linear homopolymer

- None of the three moves lead to new nbNN contacts
- hence all the three moves are equally probable
- select one of them randomly

IGW algorithm for a linear homopolymer

 Move-1 leads to one new nbNN contact. Moves - 2 and 3 do not lead to new nbNN contacts

•
$$Q = \exp(-\beta\epsilon) + 1 + 1$$

•
$$P(1) = \frac{1}{Q} \exp(-\beta \epsilon)$$
. $P(2) = P(3) = \frac{1}{Q}$

10 / 20

IGW algorithm for a linear homopolymer

- Move-1 leads to one new nbNNcontact.
- Move-2 leads to two new nbNN contacts

•
$$Q = \exp(-\beta\epsilon) + \exp(-2\beta \epsilon)$$

• $P(1) = \frac{\exp(-\beta\epsilon)}{Q}; P(2) = \frac{\exp(-2\beta\epsilon)}{Q}$

11 / 20

IGW algorithm for a hetero polymer

- I have illustrated IGW growth rules for a linear homo polymer
- a protein is a linear hetero polymer
- we coarse grain the amino acids and put them into two categories Hydrophoebic *H* and Polar *P*.
- *ϵ_{HH}*, *ϵ_{PP}*, *ϵ_{HP}* denote the energy associated with nbNN Contact made by *H*, *H*, *P*, *P* and *H*, *P* respectively.
- *H* and *H* would like to come close for expelling water from the interior Hence we take $\epsilon_{HH} = \epsilon < 0$.
- *P* and *P* or *H* and *P* do not have any such preference. We take $\epsilon_{PP} = \epsilon_{HP} = 0$
- Carry out IGW growth exactly the way described earlier with appropriate for nbNN contact energies.

12 / 20

< ロ > < 同 > < 回 > < 回 > < □ > <

Sequences considered are

- *H H H P P H H P H H P H H P H H P H H P H H P H H P H H P H*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

æ

KPN, Manasa, Srinath (UoH)

Protein Folding

September 29, 2012 14 / 20

<ロ> <同> <同> < 同> < 同>

Results

æ

KPN, Manasa, Srinath (UoH)

Protein Folding

September 29, 2012 15 / 20

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Ten benchmark sequences are given in K Yue, Proc. Natl. Acad. Sci. USA **92**, 325 (1995) have been taken up for folding
- All the sequences have 48 Monomers
- We also present the results obtained by Yue et al and
- U Bestola, H Fruenken, E Gerstner, P Grassberger, and W Nadler Struc. Func. Genetics **32**, 52 (1998)

16 / 20

Results on Benchmark sequences : 1 - 5

Sequence	$-E_{min}(Reported)$	-E _{min} (Ours)
1	31,32	31
2	32,34	32
3	31,34	32
4	30,33	30
5	30,32	30

17 / 20

KPN, Manasa, Srinath (UoH)

Protein Folding

September 29, 2012

Results on benchmark sequences : 6 - 10

Sequence	$-E_{min}(Reported)$	- <i>E_{min}(Ours)</i>
6	30,32	30
7	31,32	31
8	31,31	30
9	31,34	31
10	33,33	31

KPN, Manasa, Srinath (UoH)

Protein Folding

September 29, 2012 18 / 20

L Toma and S Toma, Protein Sci. 5, 147 (1996)

Sequence	$-E_{min}(Reported)$	-E _{min} (Ours)
Toma and Toma - 1	34	33
Toma and Toma - 2	42	41

19 / 20

KPN, Manasa, Srinath (UoH)

Protein Folding

 ▶
 <</td>
 ≥
 ≥
 ≥

 September 29, 2012

< 17 ▶

- Interacting Growth Walks in three dimension
- folding of Benchmark protein sequences employing IGW algorithm
- $\bullet\,$ Study of performance of algorithm for various values of $\beta\,$
- and

• Thanks

