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Thermodynamics and Statistical Mechanics

For every thermodynamic property we have in statistical mechanics a
random variable

the average of the random variable over a suitable ensemble gives the
corresponding thermodynamic property

consider a thermodynamic property called internal energy usually
denoted by the symbol U

In statistical mechanics we have the corresponding random variable
called energy denoted by the symbol E
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energy fluctuates as the macroscopic system moves from one
microstate to another ... in equilibrium

these fluctuations are an integral part of an equilibrium system

in fact we relate these fluctuations to heat capacity - a well defined
thermodynamic property of the system

We carry out an average of this fluctuating energy over say a
canonical ensemble and make correspondence with internal energy of
a closed system in thermodynamics : 〈E 〉 = U.

we employ suitable Monte Carlo method - e.g. Metropolis algorithm,
to generate the canonical ensemble of microstates
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Mechanical and thermal properties

Such a computational scheme has possible because

a numerical value for energy can be assigned to each microstate of a
macroscopic system.

Let us now look at computation of Entropy

we notice that a numerical value of entropy can not be assigned to a
single microstate

entropy is something that belongs to a collection of microstates

energy is a ”private” property

entropy is a ”public” property

entropy is a property that belongs to all the microstates

How de we calculate entropy employing Monte Carlo simulations ?
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Nature of Entropy

Let {Ci : i = 1, 2, · · · } denote the microstates of a system

Let {p(Ci) : i = 1, 2, · · · } denote their probabilities

the entropy of the system is given by,

S = −kB
∑

i

p(Ci ) ln p(Ci ).

p(Ci ) =
1

Ω̂(E ,V ,N)
⇒ S = kB ln Ω̂ : Isolated system : Microcanonical

p(Ci ) =
exp(−E (Ci)/kBT )

Q(T ,V ,N)
⇒ closed system : Canonical

p(Ci ) =
exp[−(E (Ci)− µN(Ci))/kBT ]

Q(T ,V , µ)
⇒ open : Grand canonical

etc.
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Monte Carlo Simulation based on Metropolis algorithm

Consider an equilibrium system characterized by
{p(Ci ) : i = 1, 2, · · · }.
Aim : simulate the system employing Markov Chain Monte Carlo
methods based on Metropolis rejection technique; i.e. generate a large
number of microstates belonging to an ensemble defined by {p(Ci )}
Start with an initial microstate C0;

Generate a Markov Chain

C0 → C1 → · · ·Ci → Ci+1 → · · ·

following Metropolis rejection procedure :
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Metropolis Rejection

Let Ci be the current microstate in the Markov Chain;

let pi = p(Ci) be its probability.

Construct a trial microstate by making a local change in Ci .

Call it Ct .

Let pt = p(Ct) be its probability.

Calculate p = min

(
1,

pt

pi

)

generate a random number r ;

if r ≤ p, accept the trial microstate and advance the Markov Chain to
Ci+1 = Ct ;

if not, reject the trial state and advance the Markov Chain to
Ci+1 = Ci .

iterate
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Closed and Open systems

Note :

since the algorithm requires only ratio of probabilities, we need to
know p(C ) only upto a normalization constant.

It is precisely because of this we can simulate

a closed system :
knowledge of Boltzmann weight exp[−βE (C )] is adequate
we need not know the partition function, Q =

∑
i exp[−βE (Ci )]

an open system :
knowledge Boltzmann-Gibbs weight exp[−β{E (C )− µN(C )}] is
adequate
we need not know the grand canonical partition function,
Q =

∑
i exp[−β{E (Ci)− µN(Ci)}]
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Strategy :

Generate a long Markov Chain from an arbitrary initial microstate C0

employing Metropolis algorithm

Discard initial microstates : let the system equilibrate and lose its
memory of C0

Consider a property ξi that is defined for a microstate e.g. energy

calculate its average : 〈ξ〉 = (1/N)
∑

i ξi over a Monte Carlo sample
of size N taken from the end segment of the Markov chain.

what if the property can not be defined for a microstate e.g. entropy ?

we need special techniques : Non - Boltzmann Monte Carlo

Let gi = g(Ei ) define density of states : number of microstates in an
interval around Ei divided by the width of the interval ∆Ei .
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Entropic Sampling

We estimate {gi : i = 1, 2, · · · } over the required range of energy,
iteratively

Several techniques have been proposed for the iteration; we describe
below entropic sampling

ENTROPIC SAMPLING:

Set gi = 1 ∀ i and hi = 0 ∀ i .

Start with an initial microstate C0.

update h(E (C0)) = h(E (C0)) + 1

make a local change in C0 and construct a trial state Ct

calculate p = g(E (C0))/g(E (Ct )).

Generate a random number r ;
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ENTROPIC ENSEMBLE

if r ≤ p accept the trial state and set C1 = Ct

if not, reject the trial state and set C1 = C0.

update the histogram of energy h(E (C1)) = h(E (C1)) + 1

iterate After some 10,000 runs, we update the density of states as
follows :

gi =

{
gi × hi if hi 6= 0

gi if hi = 0

this completes the first iteration.

re-set the histogram to zero;

employ the updated density of states {gi : i = 1, 2, · · · } in the
second iteration, collect histogram, and employing the histogram
update the density of states for the next iteration
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ENTROPIC ENSEMBLE

and proceed to the next iteration and so on

after a few iterations the histogram would become flat

this signals that the the underlying density of states has converged to
its true value

from the converged density of states, we can calculate entropy and
free energy as follows

S(Ei ) = −kB ln g(Ei )

F (Ei ,T ) = Ei − kBT ln g(Ei )
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ENTROPIC ENSEMBLE

We can employ the converged density of states in a production run
and generate an entropic ensemble of microstates
We first un-weight the entropic ensemble to a micro canonical
ensemble :

Let C be a microstate belonging to the entropic ensemble; we attach a
statistical weight and set it to unity to begin with. We divide the
statistical weight by g−1(E (C )); this ensures passage from entropic
ensemble to a micro canonical ensemble

we then re-weight to a canonical ensemble : multiply the statistical
weight by Boltzmann weight exp[−βE (C )].

canonical ensemble average of a mechanical property say E can be
obtained as

〈E 〉 =

∑
C E (C ) g(E (C )) exp[−βE (C )]∑

C g(E (C )) exp[−βE (C )]

where the sum runs over the microstates of the entropic ensemble
generated employing the converged density of states.
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Wang-Landau Algorithm

Start with an initial microstate C0.

update g(E (C0)) = α× g(E (C0)) where the Wang-Landau factor is
taken as α = e.

h(E (Ca0)) = h(E (C0)) + 1

construct a trial state Ct from C0

calculate the ratio p = g(E (C0))/g(E (ct ))

generate a random number r

if r ≤ p accept the trial state : C1 = Ct

if not reject : C1 = C0

update g and h : g(E (C1)) = α× g(E (C1)), and
h(E (C1)) = h(E (C1)) + 1

Proceed to the next step : generate C2, and update g and h.

Typically we carry out some ten thousand Monte Carlo steps

This constitutes the first Wang-Landau iteration run
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Wang-Landau Algorithm

Reduce α to
√
α, reset the histogram values to zero and start the

second Wang-Landau iteration run.

Iterate further until α is nearly unity when the simulation stops

for example, after 25 iterations, the Wang-Landau factor α is
1− 3× 10−8.

{gi} at the end of the last run gives a good estimate of the density of
states upto a multiplicative constant.

ln gi gives entropy upto an additive constant

We can monitor the histogram h(E ) and check if it is flat

Flatter the histogram, closer is g(E ) to the true density of states.

we follow the criterion : If the maximum and minimum of the entries
in the histogram do not differ more than 20% we take the histogram
to be flat.
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Figure : Two dimensional lattice model of an hairpin DNA : loop structure-
Four-site occupation Bond FLuctuation Model
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Figure : Free Energy as a function of energy : N = 110; f = 0.06;
T = TC (TOP) T < TC (LEFT) and T > TC (RIGHT)
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often we require free energy as a function of order parameter

for the polymer the end - to - end distance x is good order parameter.

We need g(E , x) - density of states in both energy E and order
parameter x space.

An early strategy proposed consists of flattening the histogram in the
E − x space.

however such a calculation is time consuming;
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we propose a technique in which we estimate g(E , x) in the
production run of the Wang-Landau method

The operating equation is

〈g(Ei , xj )〉 =

∑
C δ(E (C ) − Ei )δ(x(C ) − xj)g(E (C ))∑

C δ(E (C ) − Ei )g(E (C ))

the sum runs over the microstates generated during the production
run.

the Landau free energy is given by

FL(xj ,T ) = −kBT ln
∑

i

〈g(Ei , xj )〉 exp(−βEi )
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Figure : Free Energy as a function of magnetization in a 32× 32 Ising spins on a
square lattice
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Free Energy Difference

Another important area of research in computational soft condensed
matter physics is estimation of free energy between two equilibrium
states of a system

∆F = F (B)− F (A)

See C Chipot, and A Pohorille, Free Energy Calculations : Theory and

Applications in Chemistry and Biology, Springer (2007)

Several computational methods have been developed

thermodynamic integration
adaptive integration
perturbation
slow switching
fast switching
instantaneous switching
etc.
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perhaps the most recent of these is a method based on Jarzynski
equality

〈exp(βW )〉 = exp(−β∆F )

LHS : averaging over an ensemble of work done in switching
experiments, all carried out with the same time protocol

a parameter λ is switched from an initial value λI to a final value λF

C Jarzynski, Nonequilibrium equality for free energy differences, Phys.
Rev. lett. 78 2690 (1997).
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A typical Monte Carlo simulation proceeds as follows :

start with an initial microstate C0 of the macroscopic closed system
from an equilibrium ensemble at temperature T = 1/kBβ and λ = λI .

You can use Metropolis algorithm to equilibrate the system

find the energy of the initial microstate

change the value of λ by ∆λ

call it a work step

calculate the resulting change of energy ∆E

energy transacted by work is w1 = ∆E
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carry out a few heat steps employing Metropolis algorithm

in a Metropolis step the system transacts energy with the
surroundings by heat

the system tries to equilibrate at the changed value of λ; but it does
not

find the energy of the system at the end of a few heat steps
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change λ by ∆λ; work step

calculate the change in energy; it equals w2, the work done in the
second work step

proceed in the same way until λ = λF

this constitutes a switching experiment

W1 =
∑

i wi is the energy transacted by work
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repeat the above starting with a new initial equilibrium microstate
with λI and T

the experimental protocol remains the same : number of work steps
and the number of heat steps between two consecutive work steps are
the same for all the experiments

accumulate an ensemble of work values

the free energy difference is given by

∆F = −kBT ln

[
1

N

N∑

i=1

exp(−βWi )

]
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Slow Switching :

∆λ is small

quasi static limit obtains when ∆λ → 0

the work distribution is Gaussian by virtue of central limit theorem

work distribution is sharply peaked at ∆F

the variance is extremely small

the fluctuations of W are small

the statistical error bar on the average work - given by one-sigma
confidence interval - is small

but the computational time required is large since the number of work
steps is large
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Fast switching

∆λ is large

instantaneous switching obtains when ∆λ = λF − λI

the work distribution is not Gaussian

the work distribution is very broad i.e., the variance is large

W fluctuates heavily from one experiment to the other

the statistical error bar on the average work is large

to reduce the statistical error bar we need to simulate the experiment
a very large number of times

this would require very large computer time
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In this context Suman Kalyan proposed a new Method for computing free
energy difference. It employs

Jarzynski equality, in conjunction with

instantaneous switching and

entropic ensemble.

It employs Wang-Landau algorithm to obtain

the density of states in the iteration run and

an entropic ensemble in the production run
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initial microstate C is random sampled from an entropic ensemble;

let the energy of the initial microstate be denoted by EI (C )

the switching is instantaneous : ∆λ = λF − λI

let the energy of the microstate after switching be denoted by EF (C );

the work done is obtained as the difference of energy of the
microstate before and after switching : W = EF (C )− EI (C )

KPN Murthy (MCNS) Conference on Computational Physics 3 December 2015 33 / 36



we first un-weight the microstate to a microcanonical ensemble

multiply by the density of states, g(EI (C ))

we then re-weight it to the required canonical ensemble

multiply by Boltzmann weight, exp(−βEI (C ))

the free energy difference is given by

∆F = −kBT ln

[∑
C g(EI (C )) exp[−βEF (C )]∑
C g(EI (C )) exp[−βEI (C )]

]

in the above, the sum both in the numerator and the denominator
runs over the microstates generated in the production run of the
Wang-Landau algorithm driven by the density of states obtained in
the previous iteration run.
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Figure : Free Energy difference as a function of temperature for a liquid
crystalline system 5× 5× 5 cubic lattice; Lebwohl - Lasher model; electric field is
switched from 0 to 1.0
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and

THANKS
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