In pursuit of elusive Cosmic Gravitational waves in the cosmic microwave background

Silver Jubilee Colloquium Chennai Mathematical Institute

> Chennai March 3, 2015

Tarun Souradeep I.U.C.A.A., Pune

The Gravitational Wave Spectrum

http://science.gsfc.nasa.gov/

Cosmic Microwave Background

Pristine relic of a hot, dense & smooth early universe -Hot Big Bang model

Post-recombination :Freely propagating through (weakly perturbed) homogeneous & isotropic cosmos.

Pre-recombination : Tightly coupled to, and in thermal equilibrium with, ionized matter

(text background: W. Hu)

Cosmic "Super-IMAX" theater

History of the Universe

Ping the 'Cosmic drum'

(Fig: Einsentein)

More technically, the Green function

150 Mpc.

Dissected CMB Angular power spectrum

•Low multipole : Sachs-Wolfe plateau • Moderate multipole : Acoustic "Doppler" peaks • High multipole : Damping tail

CMB space missions

Planck CMB sky map

Truly all-sky !!! Only 3% of sky replaced by constrained realization

Foreground for CMB anisotropy

Tarun Souradeep

6-Parameter ΛCDM

	Planck	Planck (CMB+lensing)		Planck+WP+highL+BAO	
Parameter	Best fit	68 % limits	Best fit	68 % limits	
$\Omega_{\rm b} h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024	
$\Omega_{ m c}h^2$				0.1187 ± 0.0017	
100 <i>θ</i> _{МС}				0.00056	
⁷ 'Stand	lard' (cosmologia	cal mo	del:	
Flat ACDM with nearly					
Power Law (PL) primordial power spectrum					
- Power I	AW (PL)	primoralal pov	ver sdeci	rum 🦰	
Power I	-aw (PL)	primoraiai pov	ver speci	rum	

Tarun Souradeep

Non Parametric inference

Cosmological parameter estimation is carried out WITHIN FRW model framework + other priors

What can we say just from data !?!

Planck: Non-Parametric Peak harmonicity

Planck : Non-Parametric Acoustic scale

(Aghamousa, Shafieloo, Arjunwadkar, TS, JCAP 2015)

Towards 'Observing' the Early Universe

Inflation: *a paradigm in search of a model*

Generic Inflation model

A scalar field displaced from the minima of its potential

Generation of fluctuations

Early Universe in CMB

- The Background universe
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

Spin characteristics: (Scalar) Density perturbation

- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Early Universe in CMB

- The Background universe
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

- Spin characteristics: (Scalar) Density perturbations ... cosmic (Tensor) Gravity waves !?!
- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Cosmic GW background From Inflation

Each polarization of Graviton behaves like a Massless, Minimally coupled scalar field (akin to fluctuations of inflaton)

➔ Generation of scalar perturbations is accompanied by generation of Inflationary GW

Ratio of GW/Density perturbation: r ~ Energy scale of inflation

Direct Detection of Gravitational Waves

[Note: Indirect detection of GW emission from binary Pulsar systems confirmed : Hulse & Taylor –awarded Nobel prize 1993]

Cosmic GW detector

History of the Universe

→ PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Filtered at 5 degrees

Full sky map Filtered at 5 degrees

Filtered at 20 arcminutes

Planck CMB Polarization spectra

Tarun Souradeep

Location: South Pole

- "An excellent site for millimeter-wave observation from the ground (DASI, BICEP1, QUAD & SPT)
 - Dry: exceptionally low precipitable water vapour, reducing atmospheric noise due to the absorption & emission of water at ~150GHz observing band.

- Calm : very stable weather, especially during the dark winter months,

 Finally, the Amundsen-Scott South Pole Station has hosted scientific research continuously since 1958. The station offers well-developed facilities with year-round staff and an established transportation infrastructure."

BICEP Polarization Maps

BICEP2: arXiv:1403.3985

Main Results claimed

- r=0.2 (GW) detected at 5.2σ
- r=0.0 (no GW) ruled out at 7.0σ

BICEP2: arXiv:1403.3985

Any concerns !!!?!!!

- Essentially based on single frequency measurements !!!!
- Is the 'cleanest' patch clean enough in *polarized* foregrounds?

Foreground for CMB Polarization

Planck Polarised dust emission

PIP-XXX :Planck intermediate results (1409.5738.v2)

Dust temp T_d =19.6 K , Graybody index prior, β_d =-1.59+-0.11

BICEP/KECK+Planck

Main Result

Planck 2015 + BKP prior on r

Planck 2015 results. XIII. Cosmological parameters

- $r_{0.002} < 0.10$, *Planck* TT+lowP,
- $r_{0.002} < 0.11$, *Planck* TT+lowP+lensing+ext,
- $r_{0.002} < 0.08$, *Planck* TT+lowP+BKP,
- $r_{0.002} < 0.09$, *Planck* TT+lowP+lensing+ext+BKP.

Planck 2015 + BKP prior on r

Finally, still an upper limit on r

... and the search goes on for the elusive GW from inflation

CORE + Cosmic ORigins Explorer

ESA cosmic vision proposal (2020-25) Core proposal doc.

Other Results

- Dust power amplitude $A_d = 3.6 \text{ muK}^2$
- fixed spatial scaling $l^{-0.42}$
- fixed dust temp T_d =19.6 K , graybody index prior, β_d =-1.59+-0.11 [Consistent with PIP-XXX]

The Current Landscape

Spectral Energy Density

• Cosmic Gravity wave background from inflation

 $\log_{10}(f/3)$ (Hz.)

(Souradeep & Sahni, 1992, Souradeep, Ph.D.thesis, 1995)

• SGWB : SGWB end to set the set of $SGWB = \frac{1}{\rho_{crit}} \frac{d\rho_{GW}(f)}{d \ln f}$

- Critical (charactersitic) $\rho_{\rm crit} = \frac{3 c^2 H_0^2}{8 \pi G}$ density for universe:

$$\Omega_{\rm GW} = \int_{-\infty}^{\infty} \Omega_{\rm GW}(f) \, \mathrm{d} \ln f$$

$$- \text{ total SGWB energy density:}$$

$$\Omega_{GW}(k) = \frac{4\pi}{3} \left(\frac{c}{H_0}\right)^2 k^3 P_T(k) [k\mathcal{T}']^2$$

