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Extracting information from GW observations

® For sources such as CBCs, expected signals are well-modelled in GR. Weak signals buried in the
noise can be detected by cross-correlating the data with “banks” of theoretical templates.

p = maxy [d* lAz()\)]

A da’ra!ﬁ 7\ &\ source
SNR sighal Pparamefers
template
~ Signal template Data

Cross-correlation




Extracting information from GW observations

® Posterior distribution of the source S
parameters can be estimated by pgf;:;ﬂ::g:'i"
Bayesian inference. N
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Speed of GWs from joint GW-EM measurements

® Time-delay between GW and EM (y-ray)
signals from SGRBs can constrain the
speed of GWs [Will 1998].
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Tests of GR using GW olbservations

® Time-delay between GW and EM (y-ray)
signals from SGRBs can constrain the
speed of GWs [Will 1998].
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Mass of the graviton from joint GW-EM measurements

® A bound on v, implies a bound on the
graviton-mass [Will 1998].
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Parametrized deviations from GR: Mass of the graviton

® (W observations of CBCs can constrain the
mass of graviton without relying on an EM
counterpart. [Wil 1998].
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Parametrized deviations from GR: Mass of the graviton

® (W observations of CBCs can constrain the
mass of graviton without relying on an EM
counterpart. [Wil 1998].
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Parametrized deviations from GR: Mass of the graviton

® (W observations of CBCs can constrain the [Del Pozzo et al (2011)]
mass of graviton without relying on an EM 01200 | | |
counterpart. [Wil 1998].
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Parametrized deviations from GR;

10
® [eading order radiation is dipolar. Possible to
constrain the coupling parameter in known 0
theories (e.g Brans-Dicke) & generic ST theories. 5
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Parametrized (generic) deviations from GR

® Measure the deviations from the known PN Analogous to the tests of
coefficients of the GW phase by treating each GR using binary pulsars
coefficient as a free parameter R

2

[Kramer & Wex (2009)]
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Parametrized (generic) deviations from GR

® Measure the deviations from the known PN
coefficients of the GW phase by treating each
coefficient as a free parameter
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Parametrized (generic) deviations from GR

® Measure the deviations from the known PN
coefficients of the GW phase by treating each
coefficient as a free parameter
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Parametrized (more generic!) deviations from GR
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Tests of no-hair theorem from black-hole ring downs

. . , [Gossan et al (2012)]
e All QNM frequencies of a Kerr BH are unique functions of

mass and spin. If we treat frequencies as free parameters,
they all should intersect at one point in the mass-spin plane.
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Tests of no-hair theorem from black-hole ring downs
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Measuring the energy and ang momentum loss from BBHS

[Ongoing work with Abhirup
Ghosh, Archisman Ghosh and
Walter Del Pozzo|

® Binary black-hole coalescences are the most
energetic astrophysical processes after the Big
Bang.
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merger (time scale ~ 1000 M)
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Measuring the energy and ang momentum loss from BBHS
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Measuring the energy and ang momentum loss from BBHS

® Binary black-hole coalescences are the
most energetic astrophysical processes
after the Big Bang.

® |f we observe an inspiral-merger-
ringdown signal with good enough SNR,
the initial parameters of the binary can be (m1 , Mo, Sl , Sz) — (Mf, Sf)
measured from just the inspiral portion of
the signal.

® From these estimates, the final state of
the BBH can be predicted using NR
simulations.



Measuring the energy and ang momentum loss from BBHS

[Pic. Abhirup Ghosh]
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Measuring the energy and ang momentum loss from BBHs

Inconsistency between these
estimates point to unexplained
loss of energy and angular

momentum (extra dimensions?,

dissipation?)

[PhD project of Abhirup Ghosh]
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Other ideas of testing GR under exploration ...

® (onstraints on non-GR polarizations

® Bayesian parameter estimation of the ST coupling
constant(s) from GW observations.

® Testing cosmic censorship conjecture. Is S < M??

® Completely model independent test. Subtract the
best fit GR template from the data. Is the residual
consistent with the noise?



What limits our measurements?

® (alibration errors GW detectors
have calibration uncertainty ~few
percents in amplitude and few
degrees in phase.

® Complexity in the source
spins, precession, eccentricity,
non-quadrupole modes, matter
effects, etc.

® Waveform uncertainty PN
calculations are known only up to
limited order, numerical and gauge
issues in NR simulations, ...
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What limits our measurements?

Agathos et al (2014
® (Calibration errors GW detectors 0.0% | g! ! 2014

have calibration uncertainty ~few || TaylorT4 + all
- . 0.07} (70 catalogs) [ SR S SR SR

percents in amplitude and few | : : | ;

degrees in phase.
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® Complexity in the source
spins, precession, eccentricity,
non-quadrupole modes, matter
effects, etc.

® Waveform uncertainty PN
calculations are known only up to
limited order, numerical and gauge
issues in NR simulations, ...

"Known unknowns": Possible to model most of
the errors and to account for them ...

[PhD projects of M. Saleem, Anuradha S] 24



Summary

when asked what
he would do if Eddington’s expedition to the island of Principe failed to match his
theory, Einstein famously replied: “I would feel sorry for the good Lord. The theory
is correct.” Chandrasekhar made a similar private remark to Clifford Will when Will
was a postdoc in Chicago: “Why do you spend so much time and energy testing GR?
We know that the theory is right.”

.. we will do 1t, any way.



