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The ICTS logo is the visual proof of the right-angled 
triangle theorem due to Bhaskara II, a 12th century 
Indian mathematician.*

In Lilavati, Bhaskara featured a pictorial proof 
of this theorem. 

:H�DUH�JLYHQ�WKH�ERWWRP�ULJKW�WULDQJOH��D���E�� 
We construct a square by making three copies  
of the triangle, as shown. 

The area of the large square is c².  
The side of the small square is (b – a),  
and its area is (b – a)².  
The area of all four triangles is  4 x ½ ab = 2ab.  
Then the area of all four triangles  
plus the area of the small square is  
c² = (b – a)² + 2ab.  
So c² = b² + a². Bhaskara’s one-word proof was “Behold!”

a
b

c

*See, for example Georges Ifrah,  
The Universal History of Numbers, Volume 2, Penguin, India (2005)



Extracting information from GW observations 

• For sources such as CBCs, expected signals are well-modelled in GR. Weak signals buried in the 
noise can be detected by cross-correlating the data with “banks” of  theoretical templates. 
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Extracting information from GW observations 

• Posterior distribution of  the source 
parameters can be estimated by 
Bayesian inference.  
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FIG. 3: Comparison of the one-dimensional PDFs for a typi-
cal source as detected by the HHLV network (red) and AHLV
network (blue). Note the bimodal posteriors in right ascen-
sion and declination for the HHLV network vs. unimodal ones
for the AHLV network. The latter network also allows for bet-
ter estimates of the posteriors for inclination and luminosity
distance, which is not properly reflected by the simple estima-
tors of the PDF width used in table II. Dashed lines indicate
the true injected values (di↵erent true values of the luminos-
ity distance were used for the HHLV and AHLV injections so
that the total network SNR is 15 in both cases).

SNR. Meanwhile, masses do not strongly correlate with
extrinsic parameters (with the exception of the time of
coalescence), so their estimation is not significantly im-
proved by better sky localization or inclination measure-
ments.

The results from the Fisher information matrix are in
qualitative agreement with the two Bayesian approaches
regarding the partial breaking of the distance/inclination
degeneracy achieved by moving a detector to Australia or
India (leading to marginal improvements in both param-
eters, see table IV). They also indicate that the accuracy
with which masses can be measured is not a↵ected by
the network choice.

V. CONCLUSIONS

In this paper we studied the e↵ect on parameter es-
timation of di↵erent networks of advanced detectors.
We employed two di↵erent Bayesian techniques and the
Fisher information matrix to estimate the accuracy of
parameter recovery. We analysed a set of injections dis-
tributed in a grid in the extrinsic parameter space (with-
out varying the mass and distance of injections) with
the Inspnest code, and verified the results with LAL-

InferenceMCMC . We performed a large scale Monte
Carlo simulation using the Fisher matrix method with
constant-SNR injections. We found consistent results be-

tween the three methods, pointing to significant gains in
sky localization (typically by a factor of ⇠ 3—4) and
modest gains in distance and inclination measurements
with a network including a fourth site. We found that the
4-site networks are able to better resolve the polarisation
angle of the source, in the cases where this is possible.
We found no significant e↵ect on mass measurements.

Comparing the di↵erent network configurations, we
found, as expected, the strongest improvement in sky lo-
calization capability when the longest baseline (namely
AHLV) was used, but that a site in India also provides a
significant improvement in sky resolution. The HHJLV
network, with the shortest extra baseline, provides the
weakest improvement in sky resolution at a fixed signal-
to-noise ratio; however, the fifth detector in this network
can mitigate this, for an overall performance similar to
HILV, but with fewer signals in the tail of the distribution
with poor resolution.

We also find good agreement with previous work. In
particular, Fairhurst [13] finds 20-50% of signals localised
within 20 deg2 for HHLV, and up to 20% within 5 deg2

with HHJLV, for an ensemble of sources at fixed distance
of 160Mpc, in good agreement with figure 1. Despite the
use of a di↵erent population of sources, Nissanke et al

[16] find results which qualitatively agree with our own.
Comparison of the Fisher matrix results in figure 2 with
Wen and Chen [15] shows good qualitative agreement
with their expected distribution for the HLV network at
fixed SNR of 15, when taking into account a factor of
(30/15)2 = 4 for the di↵erence in SNR used (30 in our
case, 15 in theirs).

In the present study, we focused on binary neutron
stars (NS), which are the most “confident” source for the
advanced detectors, but which are not expected to have
significant spins [35]. On the other hand, black holes
(BH) in NS-BH or BH-BH binaries can be rapidly spin-
ning. Previous studies (see, e.g., [19]) have shown that
the presence of spin in one or both binary components
can aid sky localization by providing additional polar-
ization information through the precession inherent in
misaligned spinning binaries. Localization may be fur-
ther enhanced when a signal from a spinning binary is
captured by a four-detector network; on the other hand,
improved resolution of extrinsic parameters with the help
of a fourth detector site may aid in the reconstruction of
astrophysically interesting quantities such as spin-orbit
misalignment angles.

The improved ability to localize sources on the sky will
be crucial in any search for electromagnetic counterparts
to detected gravitational-wave signals (e.g., [1, 2, 36]).
Accurate measurements of the location of the merging
binary can also be useful even in the absence of electro-
magnetic counterparts, for example, in measuring typ-
ical binary kick velocities [37]. We thus conclude that
scientific considerations strongly favor an international
gravitational wave network with four or more sites.
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Speed of GWs from joint GW-EM measurements 

• Time-delay between GW and EM (γ-ray) 
signals from SGRBs can constrain the 
speed of  GWs [Will 1998]. 
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Tests of GR using GW observations 

• Time-delay between GW and EM (γ-ray) 
signals from SGRBs can constrain the 
speed of  GWs [Will 1998]. 
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From the coincident GW+EM observation (Δt 
= 1sec) of one SGRB, powered by NSBH 
merger (located at the horizon distance). 
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The sensitivity of searches scales as square root of the timebase for a coherent search down to
fourth root of timebase for semi-coherent searches. Thus, if one could make a change to the
instrument that improved sensitivity at frequencies above 1 kHz by a factor of 3 and keep this
running for 3 months it would be equivalent to running for more than 2 years for a coherent search
(which is not practical for blind searches at all) and more than 10 years for a semi-coherent search.

There are two main methods of discovery of new continuous wave sources – a search for unknown
sources and a followup of millisecond pulsars discovered by radio/X-ray/�-ray surveys. Since the
gravitational-wave strain at fixed ellipticity increases with the square of the spin frequency, we
expect most gravitational-wave emitting pulsars to be discovered at high frequencies.

For evaluating variations on the LIGO 3 baseline design, we adopt two figures of merit: (1) The
integrated search volume of a PowerFlux-like blind search, where we consider the frequency space
up to 1500 Hz. (2) A targeted search for a pulsar with parameters similar to J1023+0038 (frequency
2 ⇥ 592 Hz, distance 900 pc).

The results for these FOMs under variations of the baseline design are summarized in Table 1. For
both FOMs we find the strongest improvement with increased squeezing.

4.5 Dense Matter Equation of State

In addition to the information gained through observations of GWs from pulsars, the inspiral and
merger of BH/NS or NS/NS binaries can provide a wealth of information about the NS Equation
of State (EoS). This may come about through observing tidal disruption of the NS in a BH/NS
inspiral, observing the phase evolution of the inspiral, and/or the pulsations of the newly born NS
after the merger.

4.6 Testing General Relativity

4.6.1 Testing properties of freely-propagating gravitational waves

We should be able to test the following properties of freely-propagating gravitational waves (GWs):
(i) whether they propagate at the speed of light, or is there any non-trivial dispersion relations, e.g.,
due to mass of the graviton, (ii) does the GW have a scalar component; is the tensor component a
transverse wave, (iii) whether the GWs decay during their propagation, (iv) whether the polariza-
tion tensor simply parallel transports during the propagation, or does it get distorted.

Speed of propagation of GWs: According to General Relativity (GR), GWs travel with the
speed c of light. In other theories, the speed vg of propagation of GWs could be di↵erent [146].
Coincident observation of electromagnetic (EM) and GW signals from astrophysical sources such
as GRBs or core-collapse supernovae will enable us to measure the time-delay �ta between the
EM and GW signals, and thus to constrain the speed of GWs. For the case of a source located at a
distance D,

c
c � vg =

D
c�t

; �t = �ta � [(1 + z)�ts + �tm] (4)

where �ts is the time-delay between the GW and EM emissions at the source, z the cosmological
red shift, and �tm is the error in measuring the time-delay between the GW and EM signals at the

page 26
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Mass of the graviton from joint GW-EM measurements 

• A bound on vg implies a bound on the 
graviton-mass [Will 1998]. 
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From the coincident GW+EM observation (Δt = 
1sec) of one SGRB, powered by NSBH merger 
(located at the horizon distance). 

LIGO-T1200099–v2

detector.

The most promising astrophysical sources for this test are short-hard GRBs (assuming that they
are powered by compact-binary inspirals). The time-delay �ts between the GW and EM emissions
at the source is currently uncertain by a few seconds, and the measurement error �tm (few millisec-
onds [147]) is negligible compared to this. It can be seen from Eq.(4) that the sensitivity of this
test is proportional to the distance to the source, and the best bound is provided by sources located
at the horizon distance of the detector (see left panel of Figure 8).

Mass of the graviton: One particular scenario in which the speed of GWs could di↵er from c is
in the case of graviton having a non-zero rest mass. This is characterized by the dispersion relation
v2g/c

2 = 1 � m2
g c4/E2

g, where mg is the rest mass and Eg ⌘ h fGW the energy of the graviton with
frequency fGW, h being the Planck constant. If a velocity vg , c is determined from the time-delay
between GW and EM signals, this provides the following bound on the graviton mass:

mg .
h fGW

c2

q
1 � v2g/c2 (5)

If the GW signal contains multiple frequencies, the bound on mg is limited by the maximum fre-
quency content. In the case of CBCs, the largest frequency (say, the ISCO frequency) is inversely
proportional to the total mass of the binary. Thus, the more massive the binary is the better is
the bound. Figure 8 (middle panel) shows the expected bounds on the Compton wavelength
(�g ⌘ h/mgc) of the graviton from observations of di↵erent equal-mass binaries (larger bounds
are more sensitive).

CBC observations also enable to estimate the mass of the graviton even in the absence of an EM
counterpart. In the case of CBCs, the GW frequency sweeps from lower to higher frequencies.
If the graviton is massive, di↵erent frequency components travel with di↵erent speeds, causing
a distortion in the observed waveform [148]. In particular, the observed GW phase  ( f ) in the
frequency domain will be deviated from the phase  GR( f ) predicted by GR:

 ( f ) =  GR( f ) � ⇡D
�2
g(1 + z)

f �1, (6)

where �g ⌘ h/mgc is the Compton wavelength of the graviton. The right panel of Figure 8 shows
the expected bounds on �g assuming 3.5PN non-spinning inspiral waveforms for  GR( f ).

Decay of GWs during propagation: If GWs decay during propagation (apart from the expected
1/r fallo↵; e.g. due to dissipation), distant sources would appear to be systematically weaker.
The detection of this requires a population of coincident GW+EM observations with red shift z
estimation (say, from the merger binary neutron stars). Then we look for a systematic suppression
of GW amplitude for higher-z sources. The sensitivity of this test would be proportional to the
distance traveled by the GWs. Assuming that the red shift can be accurately estimated for sources
located at arbitrary distances, the relevant figure of merit for GW detectors is simply the horizon
distance.

Detecting transverse scalar polarizations: At leading order in ⌦L/c, where ⌦ is the GW fre-
quency and L is arm length, a transverse scalar component of GW, which produces light phase
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Parametrized deviations from GR: Mass of the graviton

• GW observations of  CBCs can constrain the 
mass of  graviton without relying on an EM 
counterpart. [Will 1998].
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detector.

The most promising astrophysical sources for this test are short-hard GRBs (assuming that they
are powered by compact-binary inspirals). The time-delay �ts between the GW and EM emissions
at the source is currently uncertain by a few seconds, and the measurement error �tm (few millisec-
onds [147]) is negligible compared to this. It can be seen from Eq.(4) that the sensitivity of this
test is proportional to the distance to the source, and the best bound is provided by sources located
at the horizon distance of the detector (see left panel of Figure 8).

Mass of the graviton: One particular scenario in which the speed of GWs could di↵er from c is
in the case of graviton having a non-zero rest mass. This is characterized by the dispersion relation
v2g/c

2 = 1 � m2
g c4/E2

g, where mg is the rest mass and Eg ⌘ h fGW the energy of the graviton with
frequency fGW, h being the Planck constant. If a velocity vg , c is determined from the time-delay
between GW and EM signals, this provides the following bound on the graviton mass:

mg .
h fGW

c2

q
1 � v2g/c2 (5)

If the GW signal contains multiple frequencies, the bound on mg is limited by the maximum fre-
quency content. In the case of CBCs, the largest frequency (say, the ISCO frequency) is inversely
proportional to the total mass of the binary. Thus, the more massive the binary is the better is
the bound. Figure 8 (middle panel) shows the expected bounds on the Compton wavelength
(�g ⌘ h/mgc) of the graviton from observations of di↵erent equal-mass binaries (larger bounds
are more sensitive).

CBC observations also enable to estimate the mass of the graviton even in the absence of an EM
counterpart. In the case of CBCs, the GW frequency sweeps from lower to higher frequencies.
If the graviton is massive, di↵erent frequency components travel with di↵erent speeds, causing
a distortion in the observed waveform [148]. In particular, the observed GW phase  ( f ) in the
frequency domain will be deviated from the phase  GR( f ) predicted by GR:

 ( f ) =  GR( f ) � ⇡D
�2
g(1 + z)

f �1, (6)

where �g ⌘ h/mgc is the Compton wavelength of the graviton. The right panel of Figure 8 shows
the expected bounds on �g assuming 3.5PN non-spinning inspiral waveforms for  GR( f ).

Decay of GWs during propagation: If GWs decay during propagation (apart from the expected
1/r fallo↵; e.g. due to dissipation), distant sources would appear to be systematically weaker.
The detection of this requires a population of coincident GW+EM observations with red shift z
estimation (say, from the merger binary neutron stars). Then we look for a systematic suppression
of GW amplitude for higher-z sources. The sensitivity of this test would be proportional to the
distance traveled by the GWs. Assuming that the red shift can be accurately estimated for sources
located at arbitrary distances, the relevant figure of merit for GW detectors is simply the horizon
distance.

Detecting transverse scalar polarizations: At leading order in ⌦L/c, where ⌦ is the GW fre-
quency and L is arm length, a transverse scalar component of GW, which produces light phase
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Parametrized deviations from GR: Mass of the graviton

• GW observations of  CBCs can constrain the 
mass of  graviton without relying on an EM 
counterpart. [Will 1998].
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[Keppel & Ajith (2010)]

Expected bounds on the Compton wavelength of the graviton 
from BBH observations by future detectors. (dL = 1 Gpc)



Parametrized deviations from GR: Mass of the graviton

• GW observations of  CBCs can constrain the 
mass of  graviton without relying on an EM 
counterpart. [Will 1998].
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[Del Pozzo et al (2011)]

95% lower bound on the Compton wavelength of the 
graviton obtained from 100 simulated detections with 
5 < SNR < 25. 

11

FIG. 5. The effect of the priors on the marginalised posterior density functions of selected parameters. A massive-graviton
signal was injected with M = 5M!, η = 0.15 and λg = 1016m, producing an optimal SNR of 21.6. The same data set is
analysed three times changing only the prior range of the graviton’s Compton wavelength (everything else being the same):
1014.5 ≤ λg/m ≤ 1015, 1015 ≤ λg/m ≤ 1015.5 and 1015.75 ≤ λg/m ≤ 1016.25 . Left panel : marginalized posterior PDF of η and
λg. Right panel : marginalized posterior PDF of M and λg. In both panels, the vertical dotted lines show the limits of the
priors used and the cross marks the injected values of the parameters. The bias in parameter estimation is clearly a function
of the distance between the “real” (injected) value and the upper bound of the prior on λg.

FIG. 6. The 95% lower limit on the graviton Compton wave-
length λ95%

g , see Eq. (17), in observations with second gener-
ation ground-based instruments of inspiral signals from bina-
ries with chirp mass M = 5M! and η = 0.15 modeled using
General Relativity waveforms. The histogram shows the rel-
ative frequency of the lower-limit from 100 injections with an
optimal signal-to-noise ratio in the range 5 ≤ SNR ≤ 25. By
comparison the Solar System bound on the graviton Compton
wavelength is λg ≥ 2.8× 1015 m [18].

ity, this may be particularly powerful if a given theory
is characterised by some “global parameters” – e.g. the
Compton wavelength of gravitons – that are independent
of the actual gravitational wave signal at hand. In this
case one can construct posterior density functions that
take into account all the data available and therefore
strengthen the inference process. For the specific case

considered in this paper, we will consider how one can
set more stringent lower limits on the graviton’s Comp-
ton wavelength using observations of a number of coa-
lescing binaries each of which with different parameters.
Specifically in our case we consider the example of infer-
ring λg from the combined probability distribution from
multiple, independent, observations.
Let us assume that we have a set of N independent

observations, d1, . . . , dN , in which a gravitational wave
signal from a coalescing binary is detected (hereN should
not be confused with number of dimensions of the signal’s
parameter vector "θ introduced in Section II). We want
to estimate the marginal PDF of λg from the joint set of
observations. From Bayes’ theorem we can write:

p(λg|d1, . . . , dN ) ∝ p(λg)p(d1, . . . , dN |λg) , (18)

and from the chain rule,

p(d1, . . . , dN |λg) = p(d1|λg, d2, . . . , dN )p(d2, . . . , dN |λg) .
(19)

Since the observations are independent, Eq. (19) simpli-
fies to

p(d1|λg, d2 . . . , dN ) ∝ p(d1|λg) , (20)

and in general we can write

p(λg|d1, . . . , dN ) ∝ p(λg)
N
∏

i=1

p(di|λg) , (21)

where

p(di|λg) =

∫

d"θ p("θ) p(di|"θ,λg) (22)

is the marginalised likelihood for the ith observation.

p(�|d) / p0(�)L(d|�)

prior

posterior distribution 
of λ, given data d

likelihood of d, 
given λ



Parametrized deviations from GR: Scalar-tensor theories 

• Leading order radiation is dipolar. Possible to 
constrain the coupling parameter in known 
theories (e.g Brans-Dicke) & generic ST theories. 
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Fig. 1. Projected bounds on !D from the proposed Einstein Telescope for a NS-BH system as
a function of BH mass (NS mass is assumed to be 1.4M�). These are compared against the
best bounds that you expect from aLIGO and also the existing solar system bound from Cassini
experiment. (Figure is taken from.47 )

suring the time delay parameter � to unprecedented accuracies.50 For example
ASTROD-I mission may be able to bound � at the level of 3 ⇥ 10�8 which is
three orders of magnitude better than the present bound. This will also lead to very
accurate constraints on BD parameter, albeit, from non-GW observations.

2.1.2. Possible bounds on generic scalar-tensor theories

There have been studies about the bounds that GW observations can put on generic
scalar-tensor theories. Damour and Esposito-Farese compared the probing power of
(ground-based) GW observations and binary pulsar observations in the context of a
two-parameter family of scalar-tensor theories51 and concluded that binary pulsar
observations are better probes of strong-field radiative aspects of relativistic gravity.

More recently, the possible bounds on generic dipolar radiation was studied in
Ref.,52 where the bounds on a dipolar phasing parameter � (which is related to !BD

in the case of BD theory) and an amplitude parameter ↵ was obtained for aLIGO
and ET configurations. A parametrised gravitational waveform in Fourier domain
(given in Eq. (6) and (7) of that paper) forms the basis of their analysis. Here based
on the same formalism we extend the results to the case of space-based detectors,
especially eLISA and LISA detectors.

Fig. 2 presents the bounds on ↵ and � expected from eLISA and LISA config-
urations. The typical bounds from various detectors are compared in Table 2. The
table indicates an order of magnitude improvement in the bound on the parame-
ters using classic LISA configuration, whereas the bounds from ET and eLISA are
comparable. It should be pointed out that the estimates are obtained using Fisher
matrix formalism which is valid in the limit of high SNR.

Generic bounds on Dipolar gravitational radiation 7
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Figure 1. Bounds on α and β as a function of the mass of the binary system for a
mass ratio of 2. A lower cut-off in frequency of 10Hz and 20Hz has been used for ET
and AdvLIGO, respectively.

For the noise spectrum of AdvLIGO detector, we have used the analytic fit given

in Eq. (2.1) of [22]. The configuration and the noise model for third generation Einstein
Telescope is based on. Eq. (2.2) and (2.3) of [22].

The upper frequency cut-off of signals is assumed to be the frequency at the last

stable orbit FLSO after which PN approximation ceases to be valid. The quadrupolar

term is truncated at 2FLSO and the dipole term at FLSO, respectively. The expression

for FLSO as a function of the total mass m of the binary, is given by

FLSO = (2π 63/2m)−1. (11)

We take the low frequency cut-off of AdvLIGO to be 20Hz and of ET to be 10Hz. The

distance to the source in both cases is fixed to be 200 Mpc. The effect of increasing
distance will be to increase the errors in a linear fashion. The mass ratio of the systems

is assumed to be 2.

One of the caveats of the present analysis is the use of Fisher matrix as an error

estimator. Fisher matrix may underestimate the errors for low signal to noise ratio

events[43, 44, 45]. There have been different proposals in the literature to go beyond

the Fisher matrix [46, 47] in the context of parameter estimation of inspiral signals. In
the present work we do not address these issues and leave them for future.

5. Results

Fig. 1 presents our results. The left panel shows the results for the bounds on α and

the right panel for β for ground-based interferometers AdvLIGO and ET. The bounds
obtained from the Fisher matrix analysis are shown as a function of the total mass of

the binary. The masses range from the binary neutron star or NS-stellar mass black

hole (BH) case on the lower side to the black hole binaries consisting of stellar mass

BHs or intermediate mass BHs (IMBH) on the higher end.

[Arun (2012)] [Arun & Pai (2013)]
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Figure 3. Mass–mass diagram of the double pulsar system summarizing the measured PK
parameters in combination with the derived mass ratio (R ≡ mA/mB = xB/xA, solid red line)
and constraints given by the mass functions of the binary system. The latter are indicated by
the coloured regions which mark areas in the diagram that are excluded by the Keplerian mass
functions of the two pulsars and the condition that sin i ! 1. Further constraints are shown as
pairs of lines enclosing permitted regions as predicted by general relativity (see section 3.1). These
are the measurement of the advance of periastron ω̇ (diagonal dashed line); the measurement of
the gravitational redshift/time dilation parameter γ (dot-dash line); the measurement of Shapiro
parameter r (solid green line) and Shapiro parameter s (dotted green line); the measurement of the
orbital decay Ṗb (dot-dot-dot-dash line); and the rate of spin precession of B, #SO (almost vertical
dashed line). The inset is an enlarged view of the small square which encompasses the intersection
of the tightest constraints. The permitted regions are those between the pairs of parallel lines and
we see that an area exists which is compatible with all constraints, delineated by the solid blue
region.

(This figure is in colour only in the electronic version)

Strictly speaking, the separation between the pulsars of only 880 000 km is large enough
for the pulsars to move in the weak-field range of each other’s gravitational field. However, as
we explain below, the pulsars’ motion is still sensitive to strong-gravitational self-field effects
which are predicted by the majority of alternative theories. Hence, the above test of GR is
currently the best under strong-field conditions.

5. Alternative theories of gravity

In the previous section we have seen that the timing observations of the double pulsar are in
perfect agreement with general relativity. It is the purpose of this section to investigate what
this means for alternative theories of gravity.

Before the discovery of the Hulse–Taylor binary pulsar in 1974 [41] high-precision tests for
relativistic gravity were restricted to the solar system, which exhibits only very small (∼10−6)
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performed effectively with all  k’s, especially in the case
of LISA. This is another reason why LISA is such an
important mission. All the test parameters, including the
log-terms at 2.5PN and 3PN order, can be estimated with
fractional accuracies better than 10!2 in the case of LISA
for massive BBH binaries with the total mass in the range
104–107 M", and with fractional accuracies better than
100% in the case of EGO for stellar mass BBH binaries
with the total mass range 2–10M". This demonstrates the
exciting possibility of testing the nonlinear structure of
general relativity using the GW observations by EGO and
LISA. A similar analysis in the case of Advanced LIGO for
sources with the total mass #10M", shows that all the
parameters, except  4 and  6l, can be measured to a
relative accuracy of 100%. Thus, though the 3PN log-
term cannot be probed with Advanced LIGO, the 2.5PN
log-term can be tested leading to an interesting possibility
in the more immediate future.

With reference to Fig. 2, one may wonder why the error
in  4 is the largest relative to the other, higher order,  ’s.
We believe that there are several reasons for this odd
behavior: recall that the PN terms in the Fourier phase
are given by  kf$k!5%=3. When k & 5, there is no depen-
dence on frequency and when k & 4 the term varies very
slowly as f!1=3. Therefore, terms close to k & 5 are likely
to suffer from large variances since the frequency depen-
dence of the corresponding term is weak. Although one
might expect  6 also to suffer from large relative errors, the
fact that in this case the term increases with frequency as
f1=3 contributes to making it a more important term than
 4. We also observe that  4 has significantly larger cova-
riances with  0 and  2 which adds to its poor
determination.

In Fig. 3, we have depicted the power of the proposed
test in the m1–m2 plane. We present the uncertainty con-
tours, with 1-! error bars, associated with the different test
parameters in them1–m2 plane, when  0 and  2 are used to
parametrize the waveform and in the case of LISA. The
parameter  6l is much better determined by LISA than
EGO, as one would expect. This figure is an explicit
demonstration of the efficacy of the proposed test and the

accuracy with which the future GW observations of BH
binaries by EGO and LISA can test GR in its strong field
regime.

As mentioned earlier, the spin and angular parameters
add a lot of structure to the waveform which contain addi-
tional information that can be extracted and more tests
conducted. Covariance between the old and new parame-
ters is likely to increase the error boxes but the tests
become more demanding as a result of seeking consistency
amongst a greater number of parameters. Future studies
should look into the more general case incorporating the
effects of spin and systematic effects of orbital eccentricity
that could affect the tests, and more interestingly, go be-
yond the restricted waveform approximation by incorpo-
rating the amplitude corrections [22] to the GW phasing.

We conclude by discussing the extent to which we can
extend the current proposal to discriminate between differ-
ent theories of gravity such as massive graviton theories
and scalar-tensor theories [6,23]. The limitations of GW

0 0.5 1 1.5 2
106(m1/MO).

0

0.5

1

1.5

2

10
6 (m

2/M
O
) .

ψ4ψ3

ψ6

ψ7

ψ6l

ψ5l

FIG. 3 (color online). Plot showing the regions in the m1–m2

plane that correspond to 1-! uncertainties in the test parameters
 T &  3,  4,  5l,  6,  6l,  7 for a $106; 106%M" supermassive
black hole binary at a redshift of z & 1 as observed for a year by
LISA. (Note that the 1-! uncertainty in  3 is smaller than the
thickness of the line.)
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FIG. 2 (color online). Plot showing the relative errors ! T= T , in the test parameters  T &  3,  4,  5l,  6,  6l,  7 as a function of
the total massM of a supermassive BBH at a redshift of z & 1 observed by LISA (right panel) and of a stellar mass compact binary at a
distance of DL & 200 Mpc observed by EGO (left panel). The rest of the details as in Fig. 1.
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT = ψ3,ψ5l as a function of total mass of binaries in the
range 11-110M! (with component masses having mass ratio of 0.1) located at 300 Mpc observed by Advanced LIGO, using both the RWF
and the FWF as waveform model with the source orientations chosen arbitrarily to be θ = φ = π/6, ψ = π/4, and ι = π/3. The noise curve
corresponds to the one shown in Fig. 1 for the Advanced LIGO case and its analytical fit is given by Eq.(2.1). It is evident from the plot in the
left panel that the fractional accuracies with which ψ3 can be measured are better than 6% for the entire mass range under consideration when
FWF is used and thus can be used to test the theory of gravity. ψ5l (right panel) can be measured with fractional accuracies better than 23%
for the entire mass range when FWF is used but being a poorly determined parameter it can provide a much less stringent test of the theory of
gravity.

it can still provide a less stringent test of the theory. The mea-
surement of other PN coefficients is not accurate enough to
lead to a meaningful test of GR.
The plots clearly show the benefits of bringing higher har-

monics into the analysis. The use of the FWF typically im-
proves the estimation by a factor of 3 to almost 100.

B. Einstein Telescope

In the previous section we have seen that with Advanced
LIGO one can only test PN theory up to 1.5PN. Can one do
better with the proposed third generation detector like the ET?
In what follows we investigate the extent to which one can test
the PN theory using GW observations of stellar mass and in-
termediate mass BBHs using ET. In addition to this we will
discuss some other key issues influencing the results such as
effects of PN systematics on the test, choice of parametriza-
tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Figure 5 plots the relative errors ∆ψT /ψT as a function of
total mass M of the binary at a distance of DL = 300 Mpc.
We have considered stellar mass BBHs of unequal masses and
mass ratio 0.1, with the total mass in the range 11-44M!. Fig-
ure 5 also shows two types of comparisons: (a) full waveform
vs restricted waveform, and (b) a lower frequency cutoff of

10 vs 1 Hz. The top and bottom panels correspond to the
lower frequency cutoff of 1 and 10 Hz, respectively, while
the left and right panels correspond to the RWF and FWF, re-
spectively. The source orientations are chosen arbitrarily to
be θ = φ = π/6, ψ = π/4, and ι = π/3. It should be evi-
dent from the plots that the best estimates of various test pa-
rameters are for the combination using the FWF with a lower
cutoff frequency of 1 Hz. In this case, all ψi’s except ψ4 can
be measured with fractional accuracies better that 2% for the
total mass in the range 11-44M!. On the other hand when the
lower cutoff is 10 Hz, with the FWF all ψi’s except ψ4 can be
measured with fractional accuracies better than 7%. It is also
evident from the plots that as compared to other test parame-
ters, ψ3 is the most accurately measured parameter in all cases
and best estimated when the lower frequency cutoff is 1 Hz.
On the other hand, ψ4 is the worst measured parameter of all
the test parameters. However, we see the best improvement in
its measurement when going from the RWF to the FWF.

Figure 6 shows the regions in the m1-m2 plane that cor-
respond to 1-σ uncertainties in ψ0, ψ2 and various test pa-
rameters which in turn will be one of the six test parameters
ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l, andψ7, one at a time, for a (2, 20)
M! BBH, at a luminosity distance of DL = 300 Mpc observed
by ET. It is evident from the plots corresponding to various
tests that each test parameter is consistent with corresponding
fundamental pair (ψ0, ψ2).

Expected constraints on the deviations from  the PN coefficients in 
Adv LIGO (source located at 300 Mpc)

[Mishra et al (2010)]
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FIG. 4: The log odds ratios for individual sources. The blue
crosses represent signals with standard GR waveforms, the
red circles signals with a constant 10% relative o↵set in  

3

.
A separation between the two is visible for SNR & 10 and
becomes more pronounced as the SNR increases.

Bayes factors for each of the hypotheses against the noise-
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=
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In Fig. 6, we show the cumulative number of times that
a particular B i

1

...ik
noise

is the largest, against SNR, for the
case where the injections have ��

3

= 0. 1. The results
are entirely as expected, considering that the injected
waveform has a shift in  

3

only:

• The Bayes factor B 3

noise

corresponding to the hy-
pothesis H

3

dominates;

• The Bayes factors B i
1

...ik
noise

corresponding to hy-
potheses that involve  

3

being non-GR tend to out-
perform those that do not;

• The Bayes factors for the non-GR hypotheses devi-
ate from the GR one already at low SNR, showing
that our method will perform well in the low-SNR
scenario.

Because of the first two points, one may be tempted to
assign di↵erent prior odds to the various hypotheses in-
stead of setting them all equal to each other. For instance
one might consider downweighting the most inclusive hy-
pothesis, H

1 2 3

, by invoking Occam’s razor. However, the
violation of GR we assume here is of a rather special
form. In reality one will not know beforehand what the
nature of the deviation will be; in particular, its e↵ect
may not be restricted to a single phase coe�cient. It is
possible that all coe�cients are a↵ected, in which case

FIG. 5: Top: The normalized distribution P (lnOmodGR

GR

) of
log odds ratios for individual sources, where the injections
are either GR or have ��

3

= 0.1. Bottom: The normalized
distribution P (lnOmodGR

GR

) of logs of the combined odds ratios
for GR injections and injections with ��

3

= 0.1, for catalogs of
15 sources each. The e↵ectiveness of the catalog approach to
testing for deviations from GR comes from the combination
of multiple sources, each source contributing to the overall
result in proportion to its own Bayes factors.

one would not want to a priori deprecate H
1 2 3

. As ex-
plained in Sec. III C, our hypothesis H

m od G R

corresponds
to the question whether one or more of the phasing coef-
ficients {  

1

,  
2

,  
3

} di↵er from their GR values; one may
want to ask a di↵erent question, but this is the one that
is the most general within our framework. To retain full
generality, all sub-hypotheses H i

1

i
2

...ik need to be taken
into account and given equal weight.

2. Signals with constant relative deviation ��
3

= 0.025

It is clear that, if signals arriving at the Advanced
Virgo-LIGO network would have a (constant) fractional
deviation in  

3

as large as 10%, then at least under the
assumption of Gaussian noise, we would have no trouble
in discerning this violation of GR even if only 15 events
were ever recorded. Now let us look at a smaller devia-
tion in  

3

; say, 2.5%.

[Li et al (2012)]
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2

satisfy key criteria that physicists would like to require.
On the observational front, one wishes that any GR al-
ternative passes all Solar System and binary pulsar tests
with flying colors, only predicting deviations from GR in
the strong-field regime, where tests are currently lacking.
Many theories, such as Brans-Dicke theory [9, 10, 14–16],
are heavily constrained by this requirement [1]. On the
theoretical front, one would wish viable GR alternatives
to lead to well-posed theories, with a positive definite
Hamiltonian and free of instabilities. All perturbative
string theory and loop quantum gravity low-energy effec-
tive theories [22, 23] currently lead to higher-derivative
theories, which might violate this theoretical criteria.
The paucity of concrete alternative models to GR [24]

has impacted other testing grounds, such as those based
on solar system observations, or the aforementioned bi-
nary pulsar systems. In those instances the standard
approach has been to develop models that parameterize
a wide class of possible departures from GR - the pa-
rameterized post-Newtonian formalism [25–28] and the
parameterized post-Keplerian formalism [29]. It is nat-
ural to adopt the same strategy when analyzing grav-
itational wave data, which leads to the parameterized
post-Einsteinian (ppE) formalism introduced in Ref. [5].
To motivate this approach, consider the standard post-

Newtonian (PN) expression for the dominant contribu-
tion to the stationary phase waveform describing the
Fourier transform of the time-domain gravitational wave
strain signal of the inspiral of two non-spinning black
holes on circular orbits (see e.g. [10]):

h̃GR(f) =

√

5

24

C
π2/3

A(f)
M5/6

DL
eiΨ(f) , (1)

where f is frequency, M = η3/5M is the chirp mass,
M = m1 + m2 is the total mass, η = m1m2/M2 is
the dimensionless, symmetric mass ratio, DL is the lu-
minosity distance and C is a geometric factor that de-
pends on the relative orientation of the binary and the
detector (its average for LISA is C̄ = 2/5). The am-
plitude A(f) and phase Ψ(f) are developed as a series
in u = πMf = η3/5v3, where v is the relative velocity
between the two bodies [30] :

A(f) =
∞
∑

k=0

γku
(2k−7)/6 . (2)

and

Ψ(f) = 2πftc − Φc +
∞
∑

k=0

[ψk + ψkl lnu]u
(k−5)/3 . (3)

The coefficients γk(η), ψk(η) and ψkl(η) are currently
known up to k = 7 in the post-Newtonian expansion of
GR.
In the simplest proposal of Yunes and Pretorius [5],

the phase and amplitude are modified by only one ppE
term each, but as pointed out by the authors there is

no reason to believe that an alternative theory of gravity
will predict such a restricted deviation from GR. In view
of this, Yunes and Pretorius proposed four different pa-
rameterizations that differed in their level of complexity,
one of the most complicated of which is (see Eq. (46)
in [5])

A(f) →

(

1 +
∑

i

αiu
ai

)

AGR(f) ,

Ψ(f) →

(

ΨGR(f) +
∑

i

βiu
bi

)

, (4)

where the coefficients αi and βi may depend on the sym-
metric mass ratio η (and in more general cases, also on
the spin angular momenta and the difference between the
two masses) and AGR and ΨGR are the standard expres-
sions in Eqs. (2) and (3). This is in essence the ppE
approach.
In an earlier study, Arun et.al. [31–33] considered what

can now be interpreted as a restricted version of the ppE
formalism in which the exponents ai and bi are required
to match those found in GR. This amounts to asking how
well the standard PN expansion coefficients could be re-
covered from gravitational wave observations. They also
developed internal self-consistency checks based on the
observation that each coefficient ψk(η) provides an inde-
pendent estimate of the mass ratio η. While interesting,
these tests are limited in scope as few of the well known
alternative theories of gravity (Brans-Dicke [9, 10, 14–
16], Massive Graviton [8–14], Chern-Simons [22, 34–37],
Variable G [38], TeVeS [39]etc.) have corrections with
exponents ai and bi that match those of GR [5]. The full
ppE formalism allows us to look for a much wider and
realistic set of possible departures from GR.
Our goal here is to study how the ppE formalism can

be used to search for waveform deviations from GR us-
ing data from the next generation of ground based inter-
ferometers (aLIGO/aVirgo) and future space based in-
terferometers (e.g. LISA). Bayesian model selection is
used to determine the level at which departures from
GR can be detected (See Ref.[40] for a related study
that uses Bayesian inference to study constraints on Mas-
sive Graviton theories). Advanced Markov Chain Monte
Carlo (MCMC) techniques are used to map out the pos-
terior distributions for the models under consideration.
From these distributions, we are able to quantify the de-
gree of fundamental bias in parameter extraction, and in
particular, if the fundamental bias can be significant in
situations where there is no clear indication that there
are departures from GR.
Recently, Pozzo et.al. [37] performed a similar study

that applied Bayesian model selection to estimate the
bounds that could be placed on massive graviton theory.
As such, their work is a sub-case of the ppE framework,
i.e. a particular choice of (b,β). Their implementation
differed from ours in that they used Nested Sampling
while we used MCMC techniques, but as we will show,

4

parameter degeneracies that exist in the inspiral phase,
but these benefits come at the cost of having to consider
additional ppE parameters. We will consider this in a
separate publication.
In the stationary phase approximation, our ppE wave-

forms are parameterized as follows

h̃(f) = h̃GR(f) [1 + α ua] eiβ ub

f < fmax , (9)

where (α, a) are amplitude ppE parameters and (β, b) are
phase ppE parameters. As noted previously, both α and
β can depend on the spin angular momenta and mass dif-
ference of the two bodies, as well as the symmetric mass
ratio of the system. With a single detection, however,
these dependencies are impossible to determine, and so
we defer an analysis of them to future work. Here h̃GR(f)
is the usual GR waveform quoted in Eq. (1). We set the
maximum frequency cut-off at twice the innermost stable
circular orbit frequency of a system described by GR. A
more consistent choice would be to use the minimum of
the ppE energy function, but the results were found to
be fairly insensitive to the choice of fmax. To simplify the
analysis we restrict our attention to the lowest PN order
in the amplitude of Eq. (2), setting γk = 0 for k > 0.
The GR phase terms in Eq. (3) are kept out to k = 7.
Furthermore, we limit the range of the ppE parameters a
and b to not be greater than these corresponding highest
order PN terms, namely a < 2/3 and b < 1. 1

As discussed in the Introduction, the ppE framework
introduces i sets of ppE theory parameters (αi, ai,βi, bi)
that modify the amplitude and phase, but we here work
to leading order, keeping only the i = 0 set. This ap-
proach will tend to over-estimate how well the ppE pa-
rameters (α0, a0,β0, b0) ≡ (α, a,β, b) can be constrained
by the data. A better approach, which we intend to pur-
sue in future studies, is to marginalize over the higher
order terms.
Table I lists the leading ppE corrections that have been

computed for several alternative theories of gravity. Gen-
erally, the exponents a and b are pure numbers fixed by
the theory, while the amplitudes α and β are free param-
eters that relate to the unknown coupling strengths of the
modified/additional gravitational degrees of freedom.

C. Instrument Response

The aLIGO/aVirgo analysis was performed using sim-
ulated data from the 4 km Hanford and Livingston de-

1 It is certainly conceivable that the leading order deviation arising
from an alternative theory comes in at some high order, and has
a much larger magnitude than the nearest exponent term in the
PN expansion. Thus it is not a priori inconsistent to allow a
range of exponents outside of that of the PN expansion used for
the GR signal in the ppE waveforms, though this would require
more complicated priors on the amplitudes, and so for simplicity
in this study we restrict to the stated range.

Theory a α b β
Brans-Dicke [9, 10, 14–16] – 0 -7/3 β
Parity-Violation [22, 34–37] 1 α 0 –

Variable G(t) [38] -8/3 α -13/3 β
Massive Graviton [8–14] – 0 -1 β

Quadratic Curvature [23, 44] – 0 -1/3 β
Extra Dimensions [45] – 0 -13/3 β

Dynamical Chern-Simons [46] +3 α +4/3 β

TABLE I: Leading ppE corrections in several alternative the-
ories of gravity (GR corresponds to α = β = 0). In dy-
namical Chern-Simons gravity, (α,β) are proportional to the
spin-orbital angular momentum coupling. For non-spinning
binaries, the last row would simplify to (α, β) = (0, 0), but
we include it here for completeness.

tectors and the 3 km Virgo detector. The time delays
between the sites and the antenna beam patterns were
computed using the expression quoted in Ref. [47]. Since
the detectors barely move relative to the source during
the time the signal is in-band, the antenna patterns can
be treated as fixed and the time delays ∆t between the
sites can be inserted as phase shifts of the form 2πf∆t.
For the instrument noise spectral density, we assumed all
three instruments were operating in a wide-band config-
uration with

Sn(f) = 10−49

(

x−4.14 − 5x−2 + 111
(2− 2x2 + x4)

2 + x2

)

,

(10)
and x = (f/215Hz).

The space based (LISA) analysis was performed using
the A and E Time Delay Interferometry channels [48] in
the low frequency approximation [49, 50]. It is known
that this approximation can lead to biases in some of the
recovered parameters, such as polarization and inclina-
tion angles. This, however, is an example of a model-
ing bias introduced by inaccurate physical assumptions,
and not of a fundamental bias resulting from incomplete
knowledge of the theory describing gravity. In our cur-
rent study the modeling bias is avoided by using the same
low frequency response model to produce the simulated
data and to perform the analysis.

In contrast to the ground based detectors, the sig-
nals seen by LISA are in-band for an extended period
of time, and the motion of the detector needs to be
taken into account. The time dependent phase delay
between the detector and the barycenter and the time
dependent antenna pattern functions are put into a form
that can be used with the stationary phase approxima-
tion waveforms by mapping between time and frequency
using t(f) = (dΦ/df)/2π. Details of this procedure can
be found in Ref. [51]. The noise spectral density model
includes instrument noise and an estimate of the fore-
ground confusion noise from unresolved galactic binaries,
matching those quoted in Ref. [52].
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FIG. 2: The PDF’s for β
−3 in a one-parameter ppE template

recovered from MCMC searches on injections containing two
ppE parameters (b = −3 and b = −2). The plots on the left
are for injections containing two ppE parameters of the same
sign, and on the right of opposite signs. The more weight in
the PDF at β = 0, the lower the Bayes factor in favor of a
non-GR signal. In the critical case, we find that alternating
signs in the phase corrections can cause a non-GR signal to
be indistinguishable from a GR one. In the convergent and
asymptotic cases, this does not occur. System parameters for
this figure are the same as in Figure 1, also listed in Table I,
and the useful cycles of phase are in listed in Table II.

This plot shows that the bounds placed on the ppE pa-
rameters from a signal that includes an explicit noise re-
alization are consistent with those found when no noise is
added to the signal. That is, including an explicit noise
realization does not affect the conclusions derived from
a cheap-bound calculation with noise accounted for only
through the detectors’ noise spectrum in the likelihood.
To understand this result, it is useful to look at Fig-

ure 4, which shows the recovered PDF’s for the β pa-
rameter from three different runs, each including noise
generated with a different random seed. Since the in-
jected signal was a GR NS-NS inspiral waveform with
SNR 15, we would expect the β PDF’s to peak at zero.
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FIG. 3: (Color Online) (3σ)-bounds on β that can be in-
ferred for different values of b, calculated from the PDF’s of
β generated by recovering a GR signal with a ppE template.
This plot shows the bounds for both a signal with no noise,
and three that include Gaussian noise, generated from three
different random seeds. The results are essentially identical.
The signal parameters for this injection are in Table I.

It is clear from this figure that, although the peak of the
PDF is shifted by the inclusion of noise, the uncertainty
in the recovery of this parameter, i.e. the spread of the
distribution, is not affected. This concept has been ex-
plored before, in [35] and [34]. In [35], the authors argue
that when discussing our ability to measure system pa-
rameters in general, and not for a particular case, what
we really want to do is examine the noise-averaged uncer-
tainties in these parameters. That is, we are interested in
how well we can measure parameters when averaged over
many specific realizations of the noise. The authors show
that the noise-averaged uncertainties are the same as the
uncertainties calculated with zero noise injected into the
signal. In [34] it is argued that the specific noise realiza-
tion will affect our parameter estimation, and while this
is technically true, we have shown in this section that
the overall effect is minimal. In any case, for the type of
analysis that we want to do in the rest of this paper, the
reasoning of [35] applies, and so we do not inject an ex-
plicit noise realization for any of our analyses in the other
sections. It has also been claimed in [25] that simulated
data that only includes a signal injection, ie. that does
not include a noise realizations, will necessarily lead to
posterior distributions for the system parameters that are
Gaussian. This is patently false, as can easily be demon-
strated by analytically calculating the posterior distribu-
tion for a signal of the form (d0/d) cos(2πft), which leads
to a highly non-Gaussian distribution in the distance d.
Obviously, signals with high SNR will be better for

testing GR, as they are better for any type of GW data
analysis. When discussing how well GR can be tested us-
ing GW detections, the highest-SNR events are the ones
that will lead to the strongest constraints. In our pre-
vious paper, we analyzed signals with SNR ∼ 20, which

4

differing signs. In particular, let us study the effect that
this relative sign has on the detectability of a non-GR
behavior. We will then explore the difference between
non-GR phase corrections that either shrink in magni-
tude at higher PN order, stay at approximately the same
magnitude, or grow in magnitude at higher PN order.
We begin by examine how the relative sign of the phase

corrections affects the detectability of departures from
GR. To do this, we consider three non-GR injections:

• Case i. A ppE waveform with a single ppE phase
term (b = −3), with magnitude controlled by β−3.

• Case ii. A ppE waveform with two ppE phase
terms (b = −3 and b = −2), with β−3 and β−2 of
the same sign.

• Case iii. A ppE waveform with two ppE phase
terms (b = 3 and b = +2), with β−3 and β−2 of
different sign.

We choose these values of b because, for b < −5, βb is al-
ready well-constrained by binary pulsar observations, as
demonstrated in [24, 31]. Case (i) is the type of injection
that has been explored in previous work. Cases (ii) and
(iii) include higher-order phase corrections, but differ in
their relative sign.
Figure 1 shows the Bayes factors between GR and a

one-parameter ppE template family with b = −3 and ppE
parameter β−3 for the three injections discussed above.
The error bars in this figure are estimated by calculat-
ing the Bayes factors using multiple MCMC runs with
different random seeds. The spread in the calculated val-
ues are reflected in the error bars. Observe that when
the injection contains ppE corrections of the same sign
(dotted, magenta curve), these add up to make the signal
more discernible from GR. In this case, the Bayes factor
crosses 10 for the smallest value of β−3. Therefore, if
(βb,βb+1) share the same sign, we can detect deviations
from GR with lower strengths than if there were only
one phase correction. On the other hand, observe how
when the non-GR signal contains alternating sign GR
modifications (dashed blue line), these have the effect of
partially canceling the non-GR effect out. In this case,
the Bayes factor crosses 10 for a much larger value of β−3.
Therefore, if the corrections have alternating signs, e.g. if
(βb,βb+1) have different signs, then our ability to detect
departures from GR is reduced. The sign of the ppE am-
plitude exponent also affects the PDFs of the recovered
βi parameters, as we will see below.
The relative magnitudes of the terms also affects the

analysis. Concentrating on the multi-term ppE models of
Eq. (4), we define three cases, depending on the relative
magnitude of these exponents in the series expansion:

• Convergent Case: Injections where the ppE
terms get smaller as the PN order increases,
i.e. βb > βb+1 > βb+2.
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FIG. 1: (Color Online) Bayes factors between a GR model
and a one-parameter ppE model for three different ppE signal
injections. The dotted (magenta) line corresponds to an in-
jection with the two positive ppE terms β

−3 > 0 and β
−2 > 0

(case ii), the solid (red) line corresponds to the single, positive
ppE term β

−3 > 0 (case i), and the dashed (blue) line corre-
sponds to the two ppE terms of alternating sign β

−3 > 0 and
β
−2 < 0 (case iii). System parameters for the systems studied

here are listed in Table I. As expected, the signal with ppE
terms of alternating sign is harder to distinguish from GR,
as evidenced by its Bayes factor growing the slowest with the
magnitude of β

−3.

• Critical Case: Injections where the ppE terms
remain of about the same size as the PN order in-
creases, i.e. βb ∼ βb+1 ∼ βb+2.

• Asymptotic Case: Injections where the ppE
terms get bigger as the PN order increases, i.e. βb <
βb+1 < βb+2.

Obviously, there are an infinite number of ways to choose
how large the βi constants are relative to each other, but
the classification defined above provides a useful sum-
mary. More concretely, we here define convergent1 cases
as those where the ppE terms injected have βn+1 <
(umax)−bn , where umax = πMfmax. Similarly, critical
cases are defined such that βn+1 ≈ (umax)−bn , while
asymptotic cases have βn+1 < (umax)−bn .

An alternative and roughly equivalent way to define
these three different cases is by the number of useful cy-
cles of phase [32] that accumulate during the signal for
each correction to the phase. The number of useful cycles

1 We use the words “convergent,” “critical” and “asymptotic”
loosely here. These names do not necessarily imply that the
series posses these properties.
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FIG. 5: Projections in the (M, j)-plane of the 90% confidence limits on !22, ⌧22 and !33 (blue, blue dotted and red lines,
respectively) for non-GR injections of M = 500M� (top at 125Mpc; with �!̂22 = �0.01, SNR = 2 867 (left) and �!̂22 = �0.05,
SNR = 2 779 (right)), M = 106 M� (middle at 125Mpc; with �!̂22 = �0.01, SNR = 1 753 (left) and �!̂22 = �0.05, SNR =
1 735 (right)) and M = 108 M� (bottom at 1Gpc; with �!̂22 = �0.001, SNR = 115 130 (left) and �!̂22 = �0.005, SNR =
115 031 (right)). The injected value is denoted in each case by a diamond.

Tests of no-hair theorem from black-hole ring downs 

• All QNM frequencies of  a Kerr BH are unique functions of  
mass and spin. If  we treat frequencies as free parameters, 
they all should intersect at one point in the mass-spin plane. 

15

[Gossan et al (2012)]
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FIG. 2: Single-source GR background distributions (dark grey) and foreground distributions (light gray), for a 10% deviation
in !

22

(left), a 10% deviation in !
33

(middle), and a 10% deviation in ⌧
22

(right). In all three cases there is significant
overlap between background and foreground; for a maximum tolerable false alarm probability of � = 0.05, the e�ciencies are,
respectively, 47%, 46%, and 5%.

FIG. 3: GR background distributions (dark gray) and foreground distributions (light gray), for a 10% deviation in !
22

(left), a
10% deviation in !

33

(middle), and a 10% deviation in ⌧
22

(right). This time we considered catalogs of 10 sources each. Again
with � = 0.05, this time e�ciencies of 98% are attained for the two mode frequencies. On the other hand, the deviation in ⌧

22

remains hard to detect, with an e�ciency of only 14%.

FIG. 4: Growth of the e�ciency ⇣ with the number of sources per catalog, for a 10% deviation in !
22

(left), a 10% deviation
in !

33

(middle), and a 10% deviation in ⌧
22

(right), for maximum tolerable false alarm probabilities � = 0.05 and � = 0.01,
respectively. In order to understand uncertainties in ⇣ due to having a finite number of catalogs, the available simulated sources
were randomly combined into catalogs to obtain 1000 di↵erent realizations. Shown are the median e�ciencies (solid and dashed
lines) and 95% confidence intervals.

measuring the parameters �!̂22, �!̂33, and �⌧̂22 in or-
der to see what constraints can be put on them. Indeed,
within the Bayesian parameter estimation framework im-
plemented by Veitch and Vecchio [48–50] that we use

here (see also [51] for comparisons with other Bayesian
methods), given a waveform model corresponding to a

hypothesis H with parameters ~�, the joint posterior den-

Tests of no-hair theorem from black-hole ring downs 

16

[Meidam et al (2014)]
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FIG. 8: Top panels: Posterior density functions for �!̂
22

(left), �!̂
33

(middle), and �⌧̂
22

(right), both for a single source at a
distance of 20.69 Gpc (z = 2.47) with an SNR of 19.14, and for a catalog of 20 sources. Bottom: Evolution of medians and
95% confidence intervals of PDFs as more and more sources are included.

is visible. In reality one would also expect lighter systems
to be seen, for which one would want to utilize informa-
tion from the inspiral and merger regimes as well. Given
appropriate GR waveform models (as are likely to become
available on the timescale of ET) it should be possible to
put extremely stringent restrictions on GR violations by
using the thousands of stellar-mass binary coalescence
events that ET will plausibly observe. However, as we
have shown, even events where only the ringdown can be
accessed will separately allow for interesting tests of the
strong-field dynamics of GR.

Finally, as found in [16] for the case of single systems
with M ⇠ 106 M�, eLISA will be able to perform tests
of the no-hair theorem at a comparable level of accuracy
as ET with M ⇠ 103 M�. Since the detection rate for
such sources with eLISA may be in the order of tens
per year [60] (i.e. what we assumed for ET in this pa-

per), results from TIGER, including the combining of in-
formation from multiple sources, should also be similar.
Detailed investigations are left for future work.
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Measuring the energy and ang momentum loss from BBHs

• Binary black-hole coalescences are the most 
energetic astrophysical processes after the Big 
Bang. 
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Measuring the energy and ang momentum loss from BBHs

• Binary black-hole coalescences are the 
most energetic astrophysical processes 
after the Big Bang.

• If  we observe an inspiral-merger-
ringdown signal with good enough SNR, 
the initial parameters of  the binary can be 
measured from just the inspiral portion of 
the signal.  
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Measuring the energy and ang momentum loss from BBHs

• Binary black-hole coalescences are the 
most energetic astrophysical processes 
after the Big Bang.

• If  we observe an inspiral-merger-
ringdown signal with good enough SNR, 
the initial parameters of  the binary can be 
measured from just the inspiral portion of 
the signal.  

• From these estimates, the final state of  
the BBH can be predicted using NR 
simulations.
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Measuring the energy and ang momentum loss from BBHs

• Binary black-hole coalescences are the 
most energetic astrophysical processes 
after the Big Bang.

• If  we observe an inspiral-merger-
ringdown signal with good enough SNR, 
the initial parameters of  the binary can be 
measured from just the inspiral portion of 
the signal.  

• From these estimates, the final state of  
the BBH can be predicted using NR 
simulations.

• The mass and the spin of  the final black 
hole can be measured independently from 
the ringdown part of  the signal. 

20

rin
gd

ow
n 

es
tim

at
e

inspiral estim
ate

[Pic. Abhirup Ghosh]

More general scalar-tensor theories

[KGA, 2012]

One can introduce a new amplitude parameter (↵) in addition to the
phase parameter � into the waveform which describes a generic dipolar
GW emission.
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In the above expression, the Fourier Domain phasing is given by

 ̃(vk) =  ̃
Newt
GR (vk)

�
1 + �v�2

k + · · ·
�
, (2)

where it is straightforward to show that � = �4�/7.

Bounds
One can then obtain the expected bounds ↵ & � for various detector
configurations.

K G Arun (CMI) Strong Field Tests of GR 04 March 2015 18 / 33



Measuring the energy and ang momentum loss from BBHs
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 Inconsistency between these 
estimates point to unexplained 

loss of energy and angular 
momentum (extra dimensions?, 

dissipation?) 
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Other ideas of testing GR under exploration ... 

• Constraints on non-GR polarizations [PhD project 
of  Krishnendu]

• Bayesian parameter estimation of  the ST coupling 
constant(s) from GW observations. [K. G. Arun, PA, 
A. Ghosh, ...]

• Testing cosmic censorship conjecture. Is S ≤ M2 ? 
[PA, A. Ghosh, ...]

• Completely model independent test. Subtract the 
best fit GR template from the data. Is the residual 
consistent with the noise? 

22



What limits our measurements?

• Calibration errors GW detectors 
have calibration uncertainty ~few 
percents in amplitude and few 
degrees in phase. 

• Complexity in the source 
spins, precession, eccentricity, 
non-quadrupole modes, matter 
effects, etc. 

• Waveform uncertainty PN 
calculations are known only up to 
limited order, numerical and gauge 
issues in NR simulations, ... 
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degrees in phase. 

• Complexity in the source 
spins, precession, eccentricity, 
non-quadrupole modes, matter 
effects, etc. 

• Waveform uncertainty PN 
calculations are known only up to 
limited order, numerical and gauge 
issues in NR simulations, ... 
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“Known unknowns”: Possible to model most of 
the errors and to account for them ...
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clearly identified as BNS events according to the criterion
M < 1.3M�, then one will want to construct a back-
ground distribution for catalogs of N sources each. We
computed backgrounds using the injection sets of Fig. 7,
but now randomly combining injections into catalogs of
15 sources each. The results are shown in Fig. 8. When
information from multiple GR sources is combined, one
expects H

GR

to be much more favored over H
modGR

,
and this is what we see: in both cases, the distribution
of lnOmodGR

GR

stretches to much more negative values.
However, when making comparisons of di↵erent physical
set-ups, combining information from multiple sources can
make the di↵erences show up much more clearly than in
the case of single sources. For the purposes of this paper,
a much smaller number of simulations were performed
than one would in reality; one has (cat)Dspins,all

N,N 0 = 0.24,
but this will in large part be due to small number statis-
tics. Reassuringly, even for catalogs of sources, the two
background distributions are rather similar, with both
favoring strongly negative values of log odds.

FIG. 8: The same comparison as in Fig. 7, but now for cat-
alogs of 15 sources each. Note how GR is typically much
more favored when information from multiple GR sources is
combined.

Finally, we want to show at least one example of how
well violations of GR might be detectable in the presence
of strong tidal e↵ects, instrumental calibration errors,
and precessing spins. Recalling that the 1.5PN contri-
bution to the orbital motion is where, according to GR,
the dynamical self-interaction of spacetime first becomes
visible [7, 8], we consider a (heuristic) violation of GR
at that order, taking the form of a �10% shift in the
relevant coe�cient in the expansion of dv/dt(v):

dv

dt
(v) = G

PP

(v) + G
tidal

(v)

+ �⇠
3

↵
3

(m
1

,m
2

, ~S
1

, ~S
2

) v12, (15)

where we note that the leading-order contribution to
dv/dt goes like v9; ↵

3

(m
1

,m
2

, ~S
1

, ~S
2

) is the 1.5PN co-
e�cient predicted by GR, and �⇠

3

= �0.1.

In Fig. 9, we show background as well as foreground log
odds ratio distributions, for catalogs of 15 sources each,
where in both cases the injections include neutron star
tidal deformation, instrumental calibration errors, and
precessing spins. As before, the recovery is with TaylorF2
waveforms that allow for (anti-)aligned spins, cut o↵ at a
frequency of 400 Hz. We see that the separation between
the distributions is complete: almost regardless of false
alarm probability, with 15 BNS detections the e�ciency
in finding the given GR violation is essentially 100%.
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FIG. 9: Log odds ratio distributions for catalogs of 15 sources
each. The blue, dotted histogram is the GR background for
TaylorT4 signals with precessing spins, neutron star tidal
deformation, and instrumental calibration errors. The red,
dashed one is a foreground distribution for signals with the
same e↵ects present, and with a GR violation that takes the
form of a constant �10% shift at 1.5PN, as explained in the
main text. In both cases, the recovery is with (anti-)aligned
spinning TaylorF2 waveforms cut o↵ at 400 Hz.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

We have developed TIGER, a data analysis pipeline to
perform model-independent tests of general relativity in
the strong-field regime, using detections of compact bi-
nary coalescence events with second-generation gravita-
tional wave detectors. The basic idea is to compare the
GR hypothesis H

GR

with the hypothesis H
modGR

that
one or more coe�cients in the post-Newtonian expres-
sion for the phase do not depend on component masses
and spins in the way GR predicts. Though the latter hy-
pothesis has no waveform model associated with it, it can
be written as the logical union of mutually exclusive sub-
hypotheses, in each of which a fixed number of phase coef-
ficients are free parameters on top of component masses,
spins, sky position, orientation, and distance, while the
others depend on masses and spins in the way GR pre-
dicts. In present form, the pipeline can in principle al-
ready be applied to binary neutron star events, for which
waveform models that are reliable and can be generated

[Agathos et al (2014)]

[PhD projects of  M. Saleem, Anuradha S]



Summary

... we will do it, any way. 

[Quoted from Berti et al (2015)]

Testing General Relativity 5

1. Introduction

Einstein’s theory of general relativity (GR), together with quantum mechanics, is one
of the pillars of modern physics. The theory has passed all precision tests to date with
flying colors. Most of these tests – and arguably all of them, with the possible exception
of binary pulsar observations – are probes of weak-field gravity; more precisely, they
probe gravity at intermediate length (1 µm . ` . 1 AU ⇠ 1011m) and therefore
intermediate energy scales. Laboratory experiments and astrophysical observations
verify the so-called “Einstein equivalence principle” (i.e. the weak equivalence principle
supplemented by local Lorentz invariance and local position invariance) and they
set constraints on hypothetical weak-field deviations from GR, as encoded in the
parametrized post-Newtonian (PPN) formalism (see [1] for an introduction, and [2]
for a review of the state of the art on experimental tests of GR).

The conceptual foundations of GR are so elegant and solid that when asked what
he would do if Eddington’s expedition to the island of Principe failed to match his
theory, Einstein famously replied: “I would feel sorry for the good Lord. The theory
is correct.” Chandrasekhar made a similar private remark to Clifford Will when Will
was a postdoc in Chicago: “Why do you spend so much time and energy testing GR?
We know that the theory is right.” Giving up the fundamental, well tested principles
underlying Einstein’s theory has dramatic consequences, often spoiling the beauty
and relative simplicity of Einstein’s theory. However, there is growing theoretical
and experimental evidence that modifications of GR at small and large energies are
somehow inevitable.

From a theoretical point of view, GR is a purely classical theory. Power-counting
arguments indicate that GR is not renormalizable in the standard quantum field
theory sense. Strong-field modifications may provide a solution to this problem: it
has long been known that the theory becomes renormalizable if we add quadratic
curvature terms – i.e., high-energy/high-curvature corrections – to the Einstein-
Hilbert action [3]. Furthermore, high-energy corrections can avoid the formation of
singularities that are inevitable in classical GR, as shown by the Hawking-Penrose
singularity theorems [4]. Candidate theories of quantum gravity (such as string theory
and loop quantum gravity) make specific and potentially testable predictions of how
GR must be modified at high energies.

From an observational point of view, cosmological measurements are usually
interpreted as providing evidence for dark matter and a nonzero cosmological constant
(“dark energy”). This interpretation poses serious conceptual issues, including the
cosmological constant problem (“why is the observed value of the cosmological constant
so small in Planck units?”) and the coincidence problem (“why is the energy
density of the cosmological constant so close to the present matter density?”). No
dynamical solution of the cosmological constant problem is possible within GR [5]. It
seems reasonable that ultraviolet corrections to GR would inevitably “leak” down to
cosmological scales, showing up as low-energy (infrared) corrections.

The arguments summarized above suggest that GR should be modified at both
low and high energies. This is a serious challenge for theorists. Einstein’s theory is the
unique interacting theory of a Lorentz-invariant massless helicity-2 particle [6], and
therefore new physics in the gravitational sector must introduce additional degrees of
freedom. Any additional degrees of freedom must modify the theory at low and/or
high energies while being consistent with GR in the intermediate-energy regime, i.e. at
length scales 1 µm . ` . 1011m, where the theory is extremely well tested. Laboratory,


