

Testing theories of gravity using upcoming gravitationalwave observations

Parameswaran Ajith

International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore

CMI Silver Jubilee Workshop: Astronomy, Cosmology & Fundamental Physics with GWs Chennai 4 March 2015

Extracting information from GW observations

• For sources such as CBCs, expected signals are well-modelled in GR. Weak signals buried in the noise can be detected by cross-correlating the data with "banks" of theoretical templates.

Extracting information from GW observations

Posterior distribution of the source parameters can be estimated by Bayesian inference.

of **A**, given data d

3

Speed of GWs from joint GW-EM measurements

 Time-delay between GW and EM (γ-ray) signals from SGRBs can constrain the speed of GWs [Will 1998].

Tests of GR using GW observations

Time-delay between GW and EM (γ-ray) signals from SGRBs can constrain the speed of GWs [Will 1998].

From the coincident GW+EM observation (Δt = Isec) of <u>one</u> SGRB, powered by NSBH merger (located at the horizon distance).

Mass of the graviton from joint GW-EM measurements

From the coincident GW+EM observation ($\Delta t =$ Isec) of <u>one</u> SGRB, powered by NSBH merger (located at the horizon distance).

Parametrized deviations from GR: Mass of the graviton

 GW observations of CBCs can constrain the mass of graviton without relying on an EM counterpart. [Will 1998].

$$v_g^2/c^2 = 1 - m_g^2 c^4/E_g^2$$

Different frequency components travel with different speeds → characteristic deformation in the observed signal!

Parametrized deviations from GR: Mass of the graviton

 GW observations of CBCs can constrain the mass of graviton without relying on an EM counterpart. [Will 1998].

Expected bounds on the Compton wavelength of the graviton from BBH observations by future detectors. ($d_L = I$ Gpc)

Parametrized deviations from GR: Mass of the graviton

GW observations of CBCs can constrain the mass of graviton without relying on an EM 0.1200 counterpart. [Will 1998]. 0.1000 0.0800 Relative Frequency 0.0600 prior 0.0400 $p(\boldsymbol{\lambda}|d) \propto p^0(\boldsymbol{\lambda}) \mathcal{L}(d|\boldsymbol{\lambda})$ 7 0.0200 posterior distribution likelihood of d, 0.0000 of **A**, given data d given 6

95% lower bound on the Compton wavelength of the graviton obtained from 100 simulated detections with 5 < SNR < 25.

Parametrized deviations from GR: Scalar-tensor theories

Parametrized (generic) deviations from GR

 Measure the deviations from the known PN coefficients of the GW phase by treating each coefficient as a free parameter

Parametrized (generic) deviations from GR

 Measure the deviations from the known PN coefficients of the GW phase by treating each coefficient as a free parameter

Expected constraints on the deviations from the PN coefficients in Adv LIGO (source located at 300 Mpc)

Parametrized (generic) deviations from GR

 Measure the deviations from the known PN coefficients of the GW phase by treating each coefficient as a free parameter

Odds ratio of two hypotheses

Parametrized (more generic!) deviations from GR

• Parameterized Post-Einstein framework

Introduce deviations in the amplitude and phase of the GR signal, which are motivated by alternative theories. [Yunes & Pritorius]

$$\mathcal{A}(f) \to \left(1 + \sum_{i} \alpha_{i} u^{a_{i}}\right) A_{\mathrm{GR}}(f) ,$$
$$\Psi(f) \to \left(\Psi_{\mathrm{GR}}(f) + \sum_{i} \beta_{i} u^{b_{i}}\right) ,$$

Theory	a	α	b	β
Brans-Dicke [9, 10, 14–16]	—	0	-7/3	β
Parity-Violation [22, 34–37]	1	α	0	_
Variable $G(t)$ [38]	-8/3	α	-13/3	β
Massive Graviton [8–14]	—	0	-1	β
Quadratic Curvature $[23, 44]$	—	0	-1/3	β
Extra Dimensions [45]	—	0	-13/3	β
Dynamical Chern-Simons [46]	+3	α	+4/3	β

Tests of no-hair theorem from black-hole ring downs

• All QNM frequencies of a Kerr BH are unique functions of mass and spin. If we treat frequencies as free parameters, they all should intersect at one point in the mass-spin plane.

5.20 $---1_{22}$ $----0_{33}$ 5.10 0_{32} 0_{32} 0_{32} 0_{32} 0_{32} 0_{32} 0_{33} 0_{32} 0_{33} 0_{32} 0_{32} 0_{32} 0_{33} 0_{32} 0_{32} 0_{32} 0_{32} 0_{33} 0_{32} 0_{33} 0_{32} 0_{33} 0_{32} 0_{33} 0_{32} 0_{32} 0_{32} 0_{33} 0_{32} 0_{32} 0_{32} 0_{33} 0_{32} 0_{33} 0_{33} 0_{32} 0_{33} 0_{33

[Gossan et al (2012)]

Tests of no-hair theorem from black-hole ring downs

• All QNM frequencies of a Kerr BH are unique functions of mass and spin. If we treat frequencies as free parameters, they all should intersect at one point in the mass-spin plane.

 Binary black-hole coalescences are the most energetic astrophysical processes after the Big Bang. [Ongoing work with Abhirup Ghosh, Archisman Ghosh and Walter Del Pozzo]

over the late-inspiral & merger (time scale ~ 1000 M) larger than the total luminosity of the observable EM universe!

- Binary black-hole coalescences are the most energetic astrophysical processes after the Big Bang.
- If we observe an inspiral-mergerringdown signal with good enough SNR, the initial parameters of the binary can be measured from just the inspiral portion of the signal.
- From these estimates, the final state of the BBH can be predicted using NR simulations.

numerical relativity simulations

$$(m_1, m_2, \mathbf{S}_1, \mathbf{S}_2) \rightarrow (M_f, S_f)$$

y GR (-/

Measuring the energy and ang momentum loss from BBHs

- Binary black-hole coalescences are the most energetic astrophysical processes after the Big Bang.
- If we observe an inspiral-mergerringdown signal with good enough SNR, the initial parameters of the binary can be measured from just the inspiral portion of the signal.
- From these estimates, the final state of the BBH can be predicted using NR simulations.
- The mass and the spin of the final black hole can be measured independently from the ringdown part of the signal.

[Pic. Abhirup Ghosh] 99.0 inspiral estimate 98.5 98.0 ¥ 97.5 97.0 96.5 96.0 0.44 0.46 0.48 0.42 0.50 0.52 a_f/M_f

Inconsistency between these estimates point to unexplained loss of energy and angular momentum (extra dimensions?, dissipation?)

Other ideas of testing GR under exploration ...

- Constraints on non-GR polarizations [PhD project of Krishnendu]
- Bayesian parameter estimation of the ST coupling constant(s) from GW observations. [K. G. Arun, PA, A. Ghosh, ...]
- Testing cosmic censorship conjecture. Is $S \le M^2$? [PA, A. Ghosh, ...]
- Completely model independent test. Subtract the best fit GR template from the data. Is the residual consistent with the noise?

What limits our measurements?

- Calibration errors GW detectors have calibration uncertainty ~few percents in amplitude and few degrees in phase.
- **Complexity in the source** spins, precession, eccentricity, non-quadrupole modes, matter effects, etc.
- Waveform uncertainty PN
 calculations are known only up

calculations are known only up to limited order, numerical and gauge issues in NR simulations, ...

What limits our measurements?

- Calibration errors GW detectors have calibration uncertainty ~few percents in amplitude and few degrees in phase.
- **Complexity in the source** spins, precession, eccentricity, non-quadrupole modes, matter effects, etc.
- Waveform uncertainty PN calculations are known only up to limited order, numerical and gauge issues in NR simulations, ...

"Known unknowns": Possible to model most of the errors and to account for them ... [PhD projects of M. Saleem, Anuradha S]

Summary

[Quoted from Berti et al (2015)]

when asked what

he would do if Eddington's expedition to the island of Principe failed to match his theory, Einstein famously replied: "I would feel sorry for the good Lord. The theory is correct." Chandrasekhar made a similar private remark to Clifford Will when Will was a postdoc in Chicago: "Why do you spend so much time and energy testing GR? We *know* that the theory is right."

... we will do it, any way.