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During my PhD, I have been working at the Chennai Mathematical Institute with
my supervisor Prof. Govind Krishnaswami on problems in nonlinear dynamics and chaos
with a focus on the three-body [1, 2] and three rotor [3, 4, 5] problems. In addition to
these problems, I also have some interest in non-Euclidean geometry, nonlinear time-series
analysis and dynamics on networks.

1 Geometrical approach to the planar three-body problem

In [1] and the expository review [2], we investigated the planar dynamics of three masses
subject to either Newtonian or inverse-square potentials by treating the trajectories as
reparametrized geodesics of the Jacobi-Maupertuis (JM) metric on the configuration man-
ifold. Isometries of the JM metric allow us to define reduced dynamics on quotients of
the configuration space, which are simpler to study, but nevertheless, encode significant
information on the full dynamics. We used Riemannian submersions to find the JM met-
rics on these quotients and showed that this geometric reformulation regularizes collisions
in the case of the 1/r2 , but not in the case of the 1/r potential. In contrast with other
regularizations [6, 7], this does not involve an extrapolation of the dynamics past a colli-
sion nor a change in dependent variables. Moreover, extending work of Montgomery [8],
we proved the negativity of the scalar curvature on the configuration manifold and its
quotients for equal masses. Sectional curvatures were also found to be largely negative,
indicating widespread geodesic instabilities. An interesting direction for further research
is to relate the local geodesic instabilities we find to medium- and long-time behavior as
well as chaos. While it is still a challenge to do this in the three-body problem, we were
able to find a simpler system where we could establish such a connection. This is the
problem of three coupled rotors.

2 Instabilities, chaos and ergodicity in the three rotor problem

In the three rotor problem, three equally massive particles move on a circle subject to
attractive cosine inter-particle potentials [3, 4, 5]. The quantum version of this problem is
relevant to modeling a chain of (three or more generally n) coupled Josephson junctions [9]
where the rotor angles are the phases of the superconducting order parameters associated
to the segments between junctions. The problem of two rotors reduces to that of a simple
pendulum, while the n → ∞ limit is described by the sine-Gordon field [10]. Between
these two extremes, we find that the dynamics of three rotors is rich and displays novel
signatures of chaos. Upon passing to center of mass variables, the relative dynamics on
a two-torus was shown to possess only one conserved quantity: the relative energy E in
units of the coupling strength.

Three families of periodic solutions: We found two families of periodic orbits at all
energies: (a) Pendula where two of the rotors form a ‘molecule’ with zero separation at all
times and (b) Isosceles breathers where one rotor is always midway between the other two.
Interestingly, we also found non-rotating choreographies up to moderate energies, where
all rotors are equally separated in time.

Four signatures of onset of widespread chaos: We found that the relative dynamics
on the two-torus displays order-chaos-order behavior: it is integrable at E = 0 and E =∞
but displays a fairly sharp transition from regular to chaotic behavior as E is increased
beyond Ec ≈ 4 and a more gradual return to regularity as E → ∞ . We discover several
manifestations of this transition to stochasticity: (a) a dramatic rise of the fraction of
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the area of the Hill region of Poincaré surfaces occupied by chaotic sections, (b) the
spontaneous breaking of discrete symmetries of Poincaré sections present at lower energies,
(c) the change in the sign of the curvature of the Jacobi-Maupertuis metric, which goes
from being strictly positive for E < 4 to possessing both signs when E > 4 and (d) the
accumulation of stability transitions in pendula at the libration to rotation threshold at
E = 4.

Ergodicity in a band of global chaos and recurrence time statistics: Remarkably,
we also found a band of global chaos 5.33 ≤ E ≤ 5.6, where generic Poincaré sections were
seen to fill up the entire Poincaré surfaces, leading us to conjecture ergodic behavior. In
fact, the Liouville measure ensemble-average distribution functions of relative angles and
angular momenta were shown to agree with the corresponding time-average distributions,
providing evidence for ergodicity in this band of energies. Moreover, trajectories ema-
nating from a small volume were shown to become uniformly distributed over the energy
hypersurface indicating that the dynamics is mixing. Furthermore, the distribution of
recurrence times to finite size cells was found to follow an exponential law with the mean
recurrence time satisfying a scaling law with an exponent (equal to 2/3) as expected from
global chaos and ergodicity.

Future directions: We hope to obtain a better understanding of the physical mechanism
underlying the onset of chaos and accumulation of stability transitions. The application
of the methods of Chirikov and Greene should provide some insight. It would be nice to
prove the accumulation of stability transitions in pendula as in Ref. [11] and establish its
asymptotic periodicity on a log scale. Moreover, the nature of bifurcations and local scaling
properties at these transitions are also of interest. In another direction we would like to
examine our conjecture that the three rotor problem is not integrable at any energy other
than E = 0 and ∞ . Finally, we hope to investigate quantum manifestations of classical
chaos and ergodicity in this problem. This could have implications for the physics of chains
of coupled Josephson junctions.
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