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1. Consider a particle of mass m moving subject to the double well potential V(x) = g(x2−a2)2 with
g, a > 0.

(a) Suppose we consider a non-static solution with energy E = ga4 , where the trajectory lies in
the left well. Find the left turning point xm of such a trajectory and indicate E, xm in a graph
of the potential.

(b) Obtain the following expression for the time taken by the particle to go from xm (starting at
rest) to x = 0

T =

√
m
2g

∫ 0

xm

dx
√

2x2a2 − x4
. (1)

(c) Identify where in the interval xm ≤ x ≤ 0 the integrand is singular (i.e. diverges). Roughly
plot the integrand as a function of x in this interval.

(d) Show that T = ∞ by considering the leading behaviour of the integrand near its singularities.
Which singularity is integrable and which is not? Do this without evaluating the indefinite
integral explicitly. Conclusion: a particle released from rest at xm takes infinitely long to
reach x = 0 and cannot cross the barrier.

2. Consider small transverse vibrations of a string stretched between a and b with constant mass per
unit length ρ and constant tension τ , subject to Dirichlet boundary conditions. Suppose u(x, t)
and ũ(x, t) are two solutions of the wave equation subject to the same initial conditions u(x, 0) =

ũ(x, 0) = h(x), u̇(x, 0) = ˙̃u(x, 0) = v(x) and the same boundary conditions. Use conservation of
energy to show that u(x, t) = ũ(x, t) , i.e., that the solution of the initial-boundary value problem
for the wave equation is unique. Hint: Consider w(x, t) = u(x, t)− ũ(x, t) . What can you say about
w?

3. Consider small transverse vibrations of height u(x, t) of a string stretched between x = a and
x = b with constant tension τ and mass per unit length ρ . Recall a typical Lagrangian from point
particle mechanics Lp = 1

2 mq̇iq̇i − V(q) .

(a) Provide a dictionary relating the following quantities from point particle mechanics to appro-
priate quantities for a vibrating string. (i) index i , (ii) coordinate qi , (iii) particle mass m ,
(iv)
∑

i (v) by analogy with the formula for momentum pi , a formula for the momentum π

conjugate to u .

(b) Suppose u(x, t) → u(x, t) + δu(x, t) is an infinitesimal symmetry of the wave equation and
boundary conditions. Then by analogy with the point particle case, propose a formula (with-
out any proof) for the corresponding conserved quantity Q .

(c) Show that a constant shift u→ u+α is a symmetry of the wave equation with open boundary
conditions.

(d) Using the previous proposal, give a formula for the corresponding Noether conserved quan-
tity Q and check using the wave equation that it is indeed conserved.
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4. It is possible to argue that the contraction of two ε symbols given below should be expressible as
a linear combination of products of Kronecker deltas:

3∑
i=1

εi jkεilm = aδ jkδlm + bδ jlδkm + cδ jmδkl ∀ 1 ≤ j, k, l,m ≤ 3. (2)

Find the constants a, b, c using the known properties and values of ε and δ .

5. We seek a generator of type F3(p,Q, t) for a finite canonical transformation from old to new
canonical variables and hamiltonian (q, p; H)→ (Q, P; K) .

(a) Staring from appropriate action principles for Hamilton’s equations in the old and new vari-
ables, express the equations of transformation in terms of F3 , i.e., find q, P,K in terms of
F3

(b) By comparing the relations among differentials for F1 and F3 , express F3 as a Legendre
transform of F1(q,Q)

(c) Find a generating function of type F3(p,Q) that generates the scaling CT Q = λq.P = p/λ .

6. Consider the finite canonical transformation, corresponding to a rotation of the phase plane

Q = cq − sp and P = sq + cp where s = sin θ and c = cos θ. (3)

(a) We seek a generating function of type-II W(q, P) for the above finite CT. Find the differential
equations that W(q, P) must satisfy to ensure it generates the above CT.

(b) Integrate the differential equations and give a simple formula for the generating function
W(q, P) .

(c) Verify that your proposed function W(q, P) indeed generates the above finite rotation.

(d) Find a generating function of type F1(q,Q) that generates the same finite rotation via an
appropriate Legendre transform from W(q, P) . This provides an example of a CT that admits
a generator of both type I and II.

(e) Try to find a generator of type I for the identity CT, by letting the angle of rotation go to zero.
What do you find?

7. Consider finite canonical transformations for one degree of freedom.

(a) Find all (finite) linear canonical transformations (q, p) 7→ (Q, P) that fix the origin (q =

0, p = 0). How many parameters are involved in their specification?

(b) Identify the matrix group of such CTs. How many real parameters are involved in its speci-
fication?

(c) Find a generating function of the second kind W(q, P) for the above finite CTs. Express the
answer in terms of the parameters used to specify the above CTs. Mention in what cases
there is no generator of type 2 and give one such example with a suitable name.
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