Rough list of topics for Quantum Mechanics 1, CMI Spring 2011.

- 1. Introductory remarks: why quantum theory? $\langle 1 \rangle$
- 2. Review of classical mechanics $\langle 3 \rangle$
 - (a) Newton's equation
 - (b) Generalized coordinates, degrees of freedom,
 - (c) Energy, Hamiltonian, momentum, angular momentum
 - (d) Hamilton's equations
 - (e) Conserved quantities
 - (f) Action principle and Lagrangian formulation
- 3. Basic concepts of waves $\langle 3 \rangle$
 - (a) Traveling, standing, sinusoidal, monochromatic, plane and spherical waves
 - (b) Amplitude, wave number, frequency, wave vector and intensity
 - (c) Wave equations
 - (d) Wave packets and width of wave packet
 - (e) Dispersive waves, group velocity of wave packet
- 4. Experimental basis & historical development of quantum mechanics
 - (a) Quanta of light/radiation $\langle 3 \rangle$
 - i. Black body radiation & Planck hypothesis
 - ii. Photoelectric effect
 - iii. Compton effect
 - (b) Wave and quantum properties of matter $\langle 5 \rangle$
 - i. Discrete atomic spectra and stability of the atom
 - ii. Bohr Model of the atom
 - iii. Franck-Hertz experiment
 - iv. Raman scattering and discrete molecular spectra
 - v. de Broglie hypothesis on matter waves
 - vi. Electron diffraction: Davisson, Germer & Thompson experiment
 - vii. Double slit interference experiment: wave function as a probability amplitude
 - viii. Wave-particle duality and complementarity principle
- 5. Schrödinger equation, postulates and formulation of quantum mechanics $\langle 7 \rangle$
 - (a) Schrödinger equation from de Broglie matter wave hypothesis $\langle \frac{1}{2} \rangle$
 - (b) Wavefunction, probability density and current $\langle \frac{1}{2} \rangle$
 - (c) Superposition principle and vector space of states $\langle \frac{1}{2} \rangle$
 - (d) Dirac Delta function $\langle \frac{1}{2} \rangle$

- (e) Expectation values of observables in a state $\langle \frac{1}{2} \rangle$
- (f) Ehrenfest's theorem $\langle \frac{1}{2} \rangle$
- (g) Hilbert space of quantum states, Dirac bra-ket notation $\langle 1 \rangle$
- (h) Position eigenstates $\langle \frac{1}{3} \rangle$
- (i) Momentum eigenstates $\langle \frac{1}{3} \rangle$
- (j) Relation between \hat{x} and \hat{p} : Heisenberg commutation relation and uncertainty $\langle \frac{1}{3} \rangle$
- (k) Hermiticity of observables $\langle \frac{1}{2} \rangle$
- (l) Collapse of the wavefunction/measurement and probability postulate $\langle \frac{1}{4} \rangle$
- (m) Summary of postulates of quantum mechanics $\langle \frac{1}{4} \rangle$
- (n) Energy eigenstates: Time-independent Schrödinger equation $\langle \frac{1}{2} \rangle$
- (o) Time evolution operator $\langle \frac{1}{2} \rangle$
- 6. One dimensional quantum mechanical models $\langle 8 \rangle$
 - (a) Particle in an infinite square well $\langle 1.5 \rangle$
 - (b) Free particle $\langle 2 \rangle$
 - i. plane waves
 - ii. minimal uncertainty gaussian wave packet
 - (c) Harmonic oscillator $\langle 4.5 \rangle$
 - i. Variational approach
 - ii. Algebraic approach: creation and annihilation operators
 - iii. Analytic approach: Hermite polynomials
- 7. Some general properties of 1 dimensional quantum systems $\langle 3 \rangle$
 - (a) Parity $\langle \frac{1}{2} \rangle$
 - (b) Time development of expectation values $\langle \frac{1}{4} \rangle$
 - (c) Symmetries and conserved quantities: parity, space and time translations $\langle \frac{1}{2} \rangle$
 - (d) Energy-time uncertainty relation $\langle \frac{1}{4} \rangle$
 - (e) Absence of degenerate bound states in 1d $\langle \frac{1}{2} \rangle$
 - (f) Schrödinger vs Heisenberg pictures & equations of motion $\langle \frac{1}{2} \rangle$
 - (g) Complete sets of commuting observables $\langle \frac{1}{2} \rangle$
- 8. Models with bound and scattering states in 1 dimension; Tunneling $\langle 3 \rangle$
 - (a) Delta function potential: bound states $\langle \frac{1}{2} \rangle$
 - (b) Reflection and Transmission coefficients $\langle \frac{1}{2} \rangle$
 - (c) Scattering against a delta function potential $\langle \frac{1}{2} \rangle$
 - (d) Bound states of finite square well $\langle 1 \rangle$
 - (e) Scattering against a rectangular barrier $\langle \frac{1}{2} \rangle$

- 9. Simple problems in two dimensions $\langle 1 \rangle$
 - (a) Free particle in two-dimensions
 - (b) Two dimensional infinite square well
 - (c) Parity in two dimensions
 - (d) Two dimensional harmonic oscillator
- 10. Quantum mechanics in 3d: Central potentials $\langle 5 \rangle$
 - (a) Free particle in Cartesian coordinates, hamiltonian in polar coordinates $\langle \frac{1}{3} \rangle$
 - (b) Basic properties of angular momentum $\langle \frac{2}{3} \rangle$
 - (c) Angular momentum and rotations $\langle \frac{1}{3} \rangle$
 - (d) Free particle in spherical coordinates, radial momentum $\langle \frac{1}{3} \rangle$
 - (e) Hermiticity and positivity of free particle hamiltonian $\langle \frac{1}{3} \rangle$
 - (f) Conservation of angular momentum in a central potential $\langle \frac{1}{3} \rangle$
 - (g) Separation of variables for particle in central potential $\langle \frac{1}{3} \rangle$
 - (h) Preview of spectrum of angular momentum $L^2, L_z, \langle \frac{1}{3} \rangle$
 - (i) Free particle radial eigenfunctions. $\langle \frac{1}{2} \rangle$
 - (j) Particle in a spherical well. $\langle \frac{1}{2} \rangle$
 - (k) Joint spectrum of L^2 and L_z : spherical harmonics $\langle \frac{1}{3} \rangle$
 - (1) Eigenvalues of L^2 and L_z by ladder operators $\langle \frac{1}{3} \rangle$
 - (m) Spectrum of Hydrogen atom, radial eigenfunctions $\langle \frac{1}{3} \rangle$