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Water, water, everywhere ... (ST Coleridge, Rime of the Ancient Mariner)

@ Whether we do physics, chemistry, biology, computation, mathematics,
engineering or the humanities, we are likely to encounter fluids and be
fascinated and challenged by their flows.

@ Fluid flows are all around us: the air through our nostrils, tea stirred in a cup,
water down a river, charged particles in the ionosphere etc.

@ Let us take a few minutes to brainstorm and write down terms and
phenomena that come to our mind when we think of fluid flows.
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Terms that come to mind in connection with fluids

@ flow, waves, ripples, sound, wake,

@ water, air, hydrodynamics, aerodynamics, lift, drag, flight.
@ velocity, density, pressure, viscosity, streamlines,

@ laminar, turbulent, chaotic

@ vortex, bubble, drop

@ convection, clouds, plumes, hydrological cycle

@ weather, climate,

@ rain, flood, hurricane, tornado, cyclone, typhoon, tsunami,
@ shock, sonic boom, compressible, incompressible,

@ surface, surface tension, splash,

@ solar flares, aurorae, plasmas
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Clouds from plumes

Plume of ash and gas from Mt. Etna, Sicily, 26 Oct, 2013. NASA.



Water water every where ...

@ Some of the best scientists have worked on fluid mechanics: | Newton, D
Bernoulli, L Euler, J L Lagrange, Lord Kelvin, H Helmholtz, C L Navier, G G
Stokes, N 'Y Zhukovsky, M W Kutta, O Reynolds, L Prandil, T von Karman,
G | Taylor, J Leray, L F Richardson, A N Kolmogorov, L Onsager, R P
Feynman, L D Landau, S Chandrasekhar, O Ladyzhenskaya, etc.

@ Fluid dynamics finds application in numerous areas: flight of airplanes and
birds, weather prediction, blood flow in the heart and blood vessels, waves
on the beach, ocean currents and tsunamis, controlled nuclear fusion in a
tokamak, jet engines in rockets, motion of charged particles in the solar
corona and astrophysical jets, accretion disks around active galactic nuclei,
formation of clouds, melting of glaciers, climate change, sea level rise, traffic
flow, building pumps and dams etc.

@ Fluid motion can be appealing to the senses and also present us with
mysteries and challenges.

@ Fluid flows can range from regular and predictable (laminar) to seemingly
disorganized and chaotic (turbulent) while displaying remarkable patterns.
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Splashes from a drop of milk

@ Arthur Worthington (1879) and Harold Edgerton (1935) took photos of
splashes of milk. One sees a remarkable undulating corona in such a
splash.

@ Symmetry breaking - initially we have circular symmetry in the liquid
annulus, but as the splash develops, segmentation occurs and spikes
emerge at regular intervals reducing the symmetry to a discrete one.

@ How did Worthington take such a photograph?

Worthington’s and Edgerton’s milk splashes
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Mathematical modelling of fluid phenomena

@ “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” —
article published in 1960 by the physicist Eugene Wigner.

@ His concluding paragraph: The miracle of the appropriateness of the
language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure, even though perhaps
also to our bafflement, to wide branches of learning.

@ Relationships between physical quantities in a flow are fruitfully expressed
using differential equations. Before discussing these equations, we will
introduce fluid phenomena through pictures and mention some of the
physical concepts and approximations developed to understand them.
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Language of fluid mechanics: pictures and calculus

@ Leonardo da Vinci (1452-1519) wanted to understand the flow of water. He
had neither the laws of Newton nor the tools of calculus at his disposal.
Nevertheless he made much progress by observing flows and trying to
understand and use them. His notebook Codex Leicester contains detailed
accounts of his observations, discoveries, questions and reflections on the
subject.

@ It was not until the time of | Newton (1687), D Bernoulli (1738) and L Euler
(1757) that our understanding of the laws of fluid mechanics began to take
shape and mathematical modelling became possible.

@ Mathematical modelling of natural/behavioral phenomena is not always very
successful. Sometimes the phenomena do not match the predictions of the
models we propose. Sometimes we do not even know the laws to formulate
appropriate models.

@ We believe we know the physical laws governing fluid motion. However,
despite much progress since the time of Euler, it is still a challenge to
predict and understand many features of the flows around us.
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Leonardo da Vinci
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Continuum, Fluid element, Fields

@ In fluid mechanics we are not interested in microscopic positions and
velocities of individual molecules. Focus instead on macroscopic fluid
variables like velocity, pressure, density, energy and temperature that we
can assign to a fluid element by averaging over it.

@ By a fluid element, we mean a sufficiently large collection of molecules so
that concepts such as ‘volume occupied’ make sense and yet small by
macroscopic standards so that the velocity, density, pressure etc. are
roughly constant over its extent. E.g.: divide a container with 10?3
molecules into 10000 cells, each containing 10'° molecules.

@ Thus, we model a fluid as a continuum system with an essentially infinite
number of degrees of freedom. A point particle has 3 translational degrees
of freedom. On the other hand, to specify the pattern of a flow, we must
specify the velocity at each point!

@ Fluid description applies to phenomena on length-scale >> mean free path.
On shorter length-scales, fluid description breaks down, but Boltzmann’s
kinetic theory of molecules applies.
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Concept of a field: a gift from fluid flow

@ The concept of a point particle is familiar and of enormous utility.

@ We imagine a particle to be somewhere at any given time. By contrast, a
field is everywhere at any given instant!

@ Fluid and solid mechanics are perhaps the first places where the concept of
a field emerged in a concrete manner.

@ At all points of a fluid we have its density. It could of course vary from point
to point p(r). It could also vary with time: p(r,) is a dynamical field.

@ Similarly, we have the pressure and velocity fields p(r, ), v(r,). Unlike p
and p which are scalars, v is a vector. At each point r it is represented by a
little arrow that conveys the magnitude and direction of velocity.

@ Fields also arose elsewhere: the gravitational field of Issac Newton and the
electric and magnetic fields introduced by Michael Faraday. However, these
fields are somewhat harder to grasp. They were introduced to explain the
transmission of gravitational, electric and magnetic forces between masses,

charged particles and magnets.
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Flow visualization: Streamlines

@ Streamlines encode the instantaneous velocity pattern. They are curves
that are everywhere tangent to v.

@ If v(r,t) = v(r) is time-independent
everywhere, then the flow is steady and the
streamlines are frozen. In unsteady flow,
the stream lines continuously deform.
Streamlines at a given time cannot

intersect.
@ A flow that is regular is called laminar. This happens in slow steady pipe

flow, where streamlines are parallel. Another example is given in this movie
of water flowing from a nozzle.

instantaneous local
velocity vectors
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Stream line flow of a liquid in a capillary tube
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Flow visualization: Path-lines

@ In practice, how do we observe a flow pattern?

@ Leonardo suspended fine sawdust in water and observed the motion of the
saw dust (which reflects light) as it was carried by the flow.

@ This leads to the concept of path-lines.

@ Path-lines are trajectories of individual fluid ® ® ®© "“"“'est .
‘particles’ (e.g. speck of dust stuck to fluid). & ¢ &
At a point P on a path-line, it is tangent to

v(P) at the time the particle passed
through P. Pathlines can (self)intersect at

I3 75 .

Patblines
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Flow visualization: streak-lines

@ Another approach is to continuously introduce a dye into the flow at some
point and watch the pattern it creates.

@ Streak-line: Dye is continuously injected into a flow
at a fixed point P. Dye particle sticks to the first fluid
particle it encounters and flows with it. Resulting
high-lighted curve is the streak-line through P. So
at a given time of observation s, a streak-line is
the locus of all current locations of particles that
passed through P at some time ¢ < £ in the past.

@ Video of numerical simulation of streaklines in
cigarette plume.

@ Streamlines, path-lines and streak-lines all coincide for steady flow, but not
for unsteady flow.
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Bernoulli’s principle

@ Among the earliest quantitative observations about fluid flows is Bernoulli's
principle: the pressure drops where a flow speeds up.

@ In its simplest form, it applies to steady flow of a fluid of uniform density p

and says that
1 p
B=—vV+=
2 + P +8z
is constant along streamlines. Here g is the acceleration due to gravity and

z the vertical height on the streamline.

@ For roughly horizontal flow, pressure is lower where velocity is higher.
@ Pressure drops as flow speeds
up at constrictions in a pipe.

@ Try to separate two sheets of

paper by blowing air between « A, <A, :V,>V,
| * According to Bernoulli's Law, pressure at
them! A, is Iow%r'. 7
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Daniel Bernoulli

Daniel Bernoulli
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Eulerian and Lagrangian viewpoints

@ In the Eulerian description, we are interested in the time development of
fluid variables at a given point of observation 7 = (x,y,z). Interesting if we
want to know how density changes, say, above my head. However, different
fluid particles will arrive at the point 7 as time elapses.

@ ltis also of interest to know how the corresponding fluid variables evolve,
not at a fixed location but for a fixed fluid element, as in a Lagrangian
description.

@ This is especially important since Newton’s second law applies directly to
fluid particles, not to the point of observation!
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Leonhard Euler and Joseph Louis Lagrange

Leonhard Euler (left) and Joseph Louis Lagrange (right).
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Conservation of mass

@ There are two primary laws of fluid motion.

@ The conservation of mass states the obvious: the mass of a fluid element
remains constant as the element moves around. The same collection of
molecules reside in the element but the shape and size of the element can
change with time.

@ Said differently, the rate of increase in mass of fluid in a fixed volume must
be due to the influx of material across its boundary.

@ If the volume of a fluid element changes with time, we say the fluid is
compressible. Typical flows in water are incompressible, while high speed
flows in air tend to be compressible.

@ To formulate mass conservation via an equation, we need to use the
concept of a material derivative: it measures how the density p(r,?) of a
fluid element changes as it moves around.
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Material derivative measures rate of change along flow

@ Change in density of a fluid element in time dt as it moves fromr to r+-dr is
d
dp=p(l‘+dl',t+dt)—p(r,t)%a—’;dtnLdr-Vp. (1)

@ Divide by dt, let dt — 0 and use v = % to get instantaneous rate of change
of density of a fluid element located at r at time #:

=8[+v-Vp. @)

e Dp /Dt measures rate of change of density of a fluid element as it moves
around. Material derivative of any quantity (scalar or vector) s in a flow field
vis defined as 2 = g5+ v+ Vs.

@ Material derivative of velocity % = d,v+v- Vv gives the instantaneous
acceleration of a fluid element with velocity v located at r at time .

@ As a 1% order differential operator it satisfies Leibnitz’ product rule

D(f) Dg. Df . Dlpv) DV _ Dp
Dt _th+th and Dt _th+th. ®)
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Continuity equation and incompressibility

@ Rate of increase of mass in a fixed vol V is equal to the influx of mass. Now,
pv-ndS is the mass of fluid leaving a volume V through a surface element
dS per unit time. Here 71 is the outward pointing normal. Thus,

d
—/ pdr = —/ pv-adS = —/ V-(pv)dr é/ [P+ V- (pv)]dr=0.
dt Jv v 14 1%
@ As V is arbitrary, we get continuity equation for local mass conservation:
ap+V-(pv)=0 or Ip+v-Vp+pV-v=0. (4)
@ In terms of material derivative, % +pV-v=0.
@ Flow is incompressible if % = 0: density of a fluid element is constant.

Since mass of a fluid element is constant, incompressible flow preserves
volume of fluid element.

@ Alternatively incompressible means V-v = 0, i.e., v is divergence-free or
solenoidal. V-v =limy 5,9 é%‘/ measures fractional rate of change of
volume of a small fluid element.

@ Most important incompressible flow is constant p in space and time.
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Sound speed, Mach number

Incompressibility is a property of the flow and not just the fluid! For instance,
air can support both compressible and incompressible flows.

Flow may be approximated as incompressible in regions where flow speed
is small (subsonic) compared to local sound speed ¢ = 4 /g—g ~\/yp/p for
adiabatic flow of an ideal gas with ¥ = ¢, /c,. Sound is a disturbance by
which density variations propagate in a fluid.

Compressibility = g—g measures increase in density with pressure.
Incompressible fluid has B = 0, so ¢> = 1 /8 = . An approximately
incompressible flow is one with very large sound speed (¢, > |v|).

Common flows in water are incompressible. So study of incompressible flow
is called hydrodynamics. High speed flows in air/gases tend to be
compressible. Compressible flow is called aerodynamics/ gas dynamics.

Incompressible hydrodynamics may be derived from compressible gas
dynamic equations in the limit of small Mach number M = |v|/c; < 1.

When M > 1 we have super-sonic flow and phenomena like shocks.
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Newton’s second law for a fluid

@ Newton’s second law of motion for a particle says ma = F. Its mass times
its acceleration is equal to the force acting on it. In other words, forces
cause the velocity to change.

@ The precise mathematical form of Newton’s 2nd law for a fluid (ignoring
viscous dissipation) was derived by Leonhard Euler (1757).

@ What does Newton’s law say for a small fluid element of volume V? If p is
the density of fluid then its mass is pdV. The acceleration is the rate of

. . .Dv _ 2
change of its velocity along the flow: 77 = 57 +v- Vv.

@ To apply Newton’s law to a fluid element we need to know the forces that act
onit.

@ There are three main forces: gravity, pressure and frictional/viscous forces
exerted by neighboring elements. Thus:

D
p(5V)F: = p(8V)g+ pressure and viscous forces.

e Here g is the acceleration due to gravity, 9.8 m/s* acting downwards.
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Isaac Newton

Isaac Newton

26/76



What are pressure and viscous forces?

@ Consider a small element E, of fluid and its Pae= b Bs= b
neighbouring elements, E; to the left and E5 to the E, b E- b E3
right. The elements are separated by imaginary b Pu
surfaces/membranes X;;: E1X12E2X03E3. . s

@ The molecules in E; collide with those of E; in the vicinity of the surface
Y12. The normal component of this surface force (per unit area) is called the
pressure pi> due to E| on E,.

@ Pressure provides a nice illustration of Newton 3rd law: the force exerted by
E| on E; is equal and opposite to the force E; exerts on E;. Thus the
pressure p1o = py1 does not depend on which element one focuses on.

@ On the other hand, the normal surface force p3, exerted by E3 on E, need
not be exactly opposite to that exerted by E| on E;. Such a pressure
imbalance (p12 = p21 # p32 = pa3) or pressure gradient can cause the fluid
element E, to accelerate and generate a flow.

@ Viscous forces are also surface forces, they are the tangential components

of the forces between elements.
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Newton’s 2™ |aw for fluid element: Inviscid Euler equation

e Consider a fluid element of volume 8V. Mass x acceleration is p(8V) 3.
@ Force on fluid element includes ‘body force’ like gravity F = p(dV)g.

@ Also have surface force on a volume element, due to pressure exerted on it
by neighbouring elements

Fsurface:—/ pﬁdS:—/VpdV; if V=36V then Fy~—Vp(SV).
'A% \%4

@ Newton’s 2" law then gives the celebrated (inviscid) Euler equation

d \Y
a—: +v-Vv= —Fp +g; v- Vv — ‘advection term’ (5)
@ Continuity (d;p + V- (pv) = 0) & Euler are 1% order in time: to solve initial

value problem, must specify p(r,z =0) and v(r,t = 0).

@ Boundary conditions: Euler equation is 1st order in space derivatives;
impose BC on v, not d;v. On solid boundaries normal component of velocity
vanishes v-7i = 0. As |r| — o, typically v — 0 and p — po.
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Consequence of Euler equation: Sound waves

@ Sound waves are excitations of the p or p fields. Arise in compressible
flows, where regions of compression and rarefaction can form.

@ Notice first that a fluid at rest (v = 0) with constant pressure and density
(p = po, p = po) is a static solution to the continuity and Euler equations

ap+V-(pv)=0 and p(dv+v-Vv)=—-Vp. (6)

@ Now suppose the stationary fluid suffers a small disturbance resulting in
small variations dv, dp and 8p in velocity, pressure and density

V:0+V1(r7t)7 P:PO‘i'Pl(r»t) and P:PO"H?l(rat)- (7)

What can the perturbations v, (r,?),p;(r,7) and p;(r,t) be? They must be
such that v,p and p satisfy the continuity and Euler equations with v, p1, p1
treated to linear order (as they are assumed small).

@ lItis found empirically that the small pressure and density variations are
proportional i.e., p; = c2p;. We will derive the simplest equation for sound
waves by linearizing the continuity and Euler egns around the static

solution. It will be possible to interpret ¢ as the speed of sound.
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Sound waves in static fluid with constant pg, po

@ Ignoring products of small quantities vy, p; and py, the continuity equation
d:(po+p1)+ V- ((po+p1)vi) =0 becomes d;p; + poV - vy = 0.

@ Similarly, the Euler equation (pg+ p1)(dvi +vy-Vvy) ==V (po+p1)
becomes pyd;v; = —Vp; upon ignoring products of small quantities.

@ Now we assume pressure variations are linear in density variations
(p1 = c?py) and take a divergence to get  ppd;(V - vi) = —c*V2py.

@ Eliminating V - v using continuity egn we get the wave equation for density
variations d°p; = c>V?pj.

@ Why is ¢ called the sound speed? Notice that any function of & = x — ¢t
solves the 1D wave equation: 92p| = c¢?d2p; for p; (x,t) = f(x — ct)

opr=—cf', 3*py=cf" whie dp;=f and 9’pi=f". (8)

f(x—ct) is a traveling wave that retains its shape as it travels at speed ¢ to
the right. Plot f(x —ct) vsxatt=0and r = 1 for f(§) =% and ¢ = 1.

@ For incompressible flow (p = pg, p; = 0) ¢ = 2L = % _ o0 as the density

Rt a pr — 6p T
variation is vanishingly small evensggg large pressure variations.



Including viscosity: Navier-Stokes equations

@ Claude Navier (1822) and George Stokes (1845) figured out how to include
the viscous force. The resulting equation for incompressible (constant p)
hydrodynamics is called the Navier-Stokes (NS) equation.

ﬁ+V-VV: —@-I-VVZV, with V-v=0.

dt p

@ Here v with dimensions of area per unit time is the coefficient of kinematic
viscosity. NS needs to be supplemented with boundary conditions. At a
solid boundary, the velocity must vanish, due to friction: this is the no-slip
condition. Running a fan does not remove the dust accumulated on the
blades.

@ ltis one of the important equations of physics, along with Newton’s
equations of celestial mechanics, Maxwell’s equations of electromagnetism,
Einstein’s equations for gravity and Schrédinger’s equation for an atom.
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Claude Louis Navier, Saint Venant and George Stokes

Claude Louis Navier (left), Saint Venant (middle) and George Gabriel Stokes (right).
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Motivating Navier Stokes: Heat diffusion equation

@ Empirically it is found that the heat flux between bodies grows with the
temperature difference. Fourier’s law of heat diffusion states that the heat
flux density vector (energy crossing unit area per unit time) is proportional to
the negative gradient in temperature

q= —kVT where k= thermal conductivity. 9)

@ Consider gas in a fixed volume V. The increase in internal energy
U = [, pc,Tdr must be due to the influx of heat across its surface S.

/8,(pch)a’r: —/q-ﬁdS:/kVT-ﬁdS:k/ V.VTdr.  (10)
1% s s 1%
¢, = specific heat/mass (at constant volume, no work) and p = density.

@ Vs arbitrary, so integrands must be equal. Heat equation follows:

aT

— =aV?’T where o=

ot pcy
@ Heat diffusion is dissipative, temperature differences even out and heat flow

stops at equilibrium temperature. It is not time-reversal invariant.
21/76
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Including viscosity: Navier-Stokes equation

@ Heat equation 9,7 = a V2T describes diffusion from hot — cold regions.

@ (Shear) viscosity causes diffusion of velocity from a fast layer to a
neighbouring slow layer of fluid. The viscous stress is o velocity gradient. If
a fluid is stirred and left, viscosity brings it to rest.

@ By analogy with heat diffusion, velocity diffusion is described by vV?v.
@ Kinematic viscosity v has dimensions of diffusivity (areal velocity L?/T).

@ Postulate the Navier-Stokes equation for viscous incompressible flow:
1
v,+v.vV:—EVp+vv2v (NS). (12)

@ NS has not been derived from molecular dynamics except for dilute gases.
It is the simplest equation consistent with physical requirements and
symmetries. It's validity is restricted by experiment.

@ NS is second order in space derivatives unlike the inviscid Euler eqgn.
Experimentally relevant boundary condition is impenetrability v-7 = 0 and

‘no-slip’ v = 0 on fixed solid surfaces.
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Navier-Stokes equation: challenges

@ Though simple to write down, the Navier-Stokes (NS) equation
1
Vi+v-Vv= —EVp—l—szv (NS). (13)

is notoriously hard to solve in most physically interesting situations.

@ A key issue is that the equation is non-linear in v. Roughly, it is like the
difference between trying to solve 2x+3 = 0 and 2x’ +3x° +4x* +9 = 0.

@ The conditions at boundaries and interfaces encode important physical
effects, but can add to the complications. Ludwig Prandtl (1904) developed
boundary layer theory for this.

@ In fact, there is a million dollar Clay millenium prize attached to
understanding some features of solutions to the NS equation.

@ The challenge lies in deducing the observed, often complex, patterns of flow
from the known laws governing fluid motion. This often requires a mix of
physical insight, experimental data, mathematical techniques and

computational methods.
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Exact solutions: Creeping or Stokes flow

@ Though the NS equation is very hard to solve in general, there are a few
situations where exact solutions are available.

@ This happens especially when the viscous force of dissipation is very large
relative to inertial forces, as for instance in ‘creeping flow’ at very low flow
speed. We recall two famous results.

@ Poiseuille flow through a cylindrical pipe of length / and /L—g\
radius a due to a pressure drop Ap. The velocity profile is ., %v’ \
parabolic and the mass flowing through the pipe per unit time
s 0= fifa"

@ Stokes studied steady constant density flow around a sphere of radius a
moving at velocity U through a fluid with viscosity v. He found the drag force
on the sphere: Fy,s = —67pvaU. Viscous drag is proportional to speed at
low speeds. At higher speeds, there are deviations (the drag can be
quadratic in velocity) as the flow ceases to be laminar.
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Eddies and Vorticity

@ \orticity is a measure of local rotation/angular
momentum in a flow. A flow without vorticity is
called irrotational.

@ Vortices are manifestations of vorticity in a flow.

@ Vortices are ubiquitous in flows.

@ We have many names for bananas: Vazhai, Kela,
Puvan, Malapazham, Mondhan, Rasthali,
Nendran, Yelakki, Karpuravalli, Chevvazhai, Musa,
Virupakshi, Robusta, Udhayam etc.

@ Similarly, there are many names for vortex-like structures: swirls, eddies,
vortices, whirlpools, whorls, cyclones, hurricanes, tornadoes, typhoons,
maelstroms etc.

@ Vortices can be created easily and put to good used, as this video by Walter
Lewin indicates.
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Leonardo da Vinci and vortices

@ da Vinci was fascinated by vortices: many of his sketches contain detailed
illustrations of eddies in fluids.
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Leonardo da Vinci and vortices

@ He even noticed similarities between vortices in the wake behind a flat plate
and braided hair!
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Vorticity and circulation

o \Vorticity is a vector field, defined as w =V x v. It
measures local rotation/angular momentumin a
flow.

@ Vorticity has dimensions of a frequency [w] = 1/T.

@ Given a closed contour C in a fluid, the circulation
around the contour I'(C) = §. v -dl measures how
much v ‘goes round’ C. By Stokes’ theorem, it
equals the flux of vorticity across a surface that
spans C.

F(C):?{V-dlz/(va)-dS:/w-dS where 9S—C.
C S N

@ Enstrophy [ w2 dr measures global vorticity. It is conserved in ideal 2d
flows, but not in 3d: it can grow due to ‘vortex stretching’ (see below).
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Examples of flow with vorticity w =V x v

@ Shear flow with horizontal streamlines is an
example of flow with vorticity:
v(x,y,2) = (U(y),0,0). Vorticity
w=Vxv=-U(y)z

@ A bucket of fluid rigidly rotating at small angular
velocity Q2 has v(r,0,z) = Q2 xr = Qrf. The
corresponding vorticity w = V x v = 19, (rvg)z is
constant over the bucket, w = 2Qz.

@ The planar azimuthal velocity profile v(r,0) = %é
has circular streamlines. It has no vorticity v =0ve=c/r
w=10,(r)z =0 except at r = 0: %

w = 27tc82(r)2. The constant 27zc comes from
requiring the flux of w to equal the circulation of v

around any contour enclosing the origin

%V'dl = j{(c/r)rdﬂ =2rmec.
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Vortex rings and tubes

@ Vortices can take the shape of tubes and rings. Kelvin and Helmholtz
discovered many interesting properties of vortex tubes.

@ Smoke rings are examples of vortex tubes. Dolphins blow vortex rings in
water and chase them.

rée,t) = r( )
gw, A ds :‘rﬁlrﬁldg
c, ¢

@ Fluid flow tends to stretch and bend vortex tubes while carrying them along.
They survive in the absence of viscosity but dissipate due to friction as seen
in this video.
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Lord Kelvin and Hermann von Helmholiz

Lord Kelvin (left) and Hermann von Helmholtz (right).
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Evolution of vorticity and Kelvin’s theorem

e Taking the curl of the Euler equation 9,v+ (V x v) x v=—V (h+ 1v?)
allows us to eliminate the pressure term in barotropic flow to get

W+ V x (wxv)=0. (14)
@ This may be interpreted as saying that vorticity is ‘frozen’ into v.

@ The flux of w through a surface moving with the flow is constant in time:

d dr
7 w dS =0 orby Stokes’ theorem 7 CtVodl: i 0. (15)

@ Here C;isa cIosed material contour moving with the flow and S, is a surface
moving with the flow that spans C;.
@ The proof uses the Leibnitz rule for material derivatives D, = d;, +v-V
ﬁ]f v-dl= ¢ Dyv-di+ ¢ v-Dadl (16)
dt Jc, fe G

Using the Euler equation D;v = —Vh and D,dl = dv we get

d 1
—¢ vedl=¢ d( zv*—h)=0. 17
=1, (2V > .
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Kelvin & Helmholtz theorems on vorticity

° %fq" -dl = 0 is Kelvin’s theorem: circulation around a material contour is
constant in time. In particular, in the absence of viscosity, eddies and

vortices cannot develop in an initially irrotational flow (i.e. w =0 at t = 0).
@ Vortex tubes are cylindrical surfaces everywhere tangent

to w. So on a vortex tube, w-dS = 0.

@ The circulation I" around a vortex tube is independent of
the choice of encircling contour. Consider part of a vortex $
tube S between two encircling contours C; and C,
spanned by surfaces S; and §,.

@ Applying Stokes’ theorem to the closed surface Q = S; USU S, we get

/w-dS = / v-dl=0 as JdQ isempty,

0 0

:>/w-dS— w-dS = 0 or I'(C;)=TI(C,) sincew-dS=0o0nS
S S

@ As aresult, a vortex tube cannot abruptly end, it must close on itself to form
aring (e.g. a smoke ring) or end on a boundary.
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Helmholtz’s theorem: inviscid flow preserves vortex tubes

@ Suppose we have a vortex tube at initial time 7. _ o
Let the material on the tube be carried by flow
till time #;. We must show that the new tube is a é
vortex tube, i.e., that vorticity is everywhere t
tangent to it, or w-dS = 0.
t=t. t-4
@ Consider a contractible closed curve C(ty) lying on the initial vortex tube,
the flow maps it to a contractible closed curve C(#;) lying on the new tube.
By Kelvin's theorem, I'(C(p)) = 0 =T(C(t;)). Now suppose S is the
surface on the new vortex tube enclosed by C(t;), dS = C(t;), then

0=T(C(t)) = /Sw-dS.

@ This is true for any contractible closed curve C(t;) on the new tube.
Considering an infinitesimal closed curve, we conclude that w-dS = 0 at
every point of the new tube, i.e., it must be a vortex tube.

46/76



Vorticity: Creation, diffusion, stretching and cascade

@ If there is no vorticity initially in a flow, then it cannot develop in the absence
of viscosity.

@ Viscous forces, especially in a layer near solid boundaries, can generate
vorticity.

@ Vorticity can diffuse through a flow and spread out.

@ Vortex tubes tend to stretch and become narrower. As the flow develops,
energy in larger vortices cascades to smaller ones. Vortices are finally
destroyed by viscosity at the Taylor microscale.

@ This was nicely captured in a poem by L F Richardson in Weather
Prediction by Numerical Process (1922):
Big whorls have little whorls that feed on their velocity,
and little whorls have lesser whorls and so on to viscosity.
@ Video of vortex ring collisions.
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Lewis Fry Richardson

Big whorls have little whorls that feed on their velocity,
and little whorls have lesser whorls and so on to viscosity.

— L F Richardson, Weather Prediction by Numerical Process (1922).
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Reynolds number % and similarity principle
@ Suppose we consider water with uniform velocity Ux
flowing down a broad and deep channel. It meets a
cylindrical obstacle of diameter L and flows round it
creating a pattern.

Won
LI B

o
"

@ It turns out that if we double the speed U and halve the radius a, then the
same flow pattern results. This is the ‘similarity’ principle named after
Osborne Reynolds who did careful experiments with fluids flowing down a
pipe in the late 1800s.

@ Incompressible flows with the same Reynold’s number Z# look the same
(the flows need not be laminar). Z = LU/ v is a dimensionless parameter
that is a measure of the ratio of inertial to viscous forces.

@ Flow around an aircraft is simulated in wind tunnels using a scaled down
aircraft with the same Z.

@ When & is small (e.g. in slow creeping flow), viscous forces dominate and
the flow is regular. Interesting things happen as the flow speeds up and %

increases!
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Osbourne Reynolds

Osbourne Reynolds
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Flow past a cylinder

@ Consider flow with asymptotic velocity Ux past a fixed cylinder of diameter L

and axis along 2. The components of velocity are (u,v,w).
o Atvery low Z ~ .16, the symmetries of the

(steady) flow are (a) y — —y (reflection in z — x

plane), (b) time and z translation-invariance (c)

left-right symmetry w.r.t. center of cylinder

(x = —xand (u,v,w) — (u,—v, —w)).
@ All these are symmetries of Stokes

flow (ignoring the non-linear

advection term).

o At Z ~ 1.5 a marked left-right
asymmetry develops.

o At Z = 4, change in topology of flow: flow separates and recirculating
standing eddies (from diffusion of vorticity) form downstream of cylinder.

o At Z ~ 40, flow ceases to be steady, but is periodic: undulating wake.
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von Karman vortex street

e At Z 2 50, recirculating eddies are periodically
(alternatively) shed to form the celebrated von
Karman vortex street as shown in this video.




Theodore von Karm

DR. YOM KARMAN

von Karman
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Transition to turbulence in flow past a cylinder

e At Z 2 40, the vortex street develops with paired
vortices being shed alternatively.

The z-translation invariance is spontaneously
broken when % ~ 40 —75.

As Z increases, some vortices lose their identity,
vortex street is interspersed by turbulent patches.

At Z ~ 200, flow becomes chaotic with turbulent
boundary layer with vortex street persisting only
close to the cylinder.

At Z ~ 1800, only about two vortices in the von g
Karman vortex street are distinct before merging #
into a quasi uniform turbulent wake.

At much higher %, many of the symmetries of === -
NS are restored in a statistical sense and
turbulence is called fuIIy-deveIoped./
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Practical consequences: Drag on a sphere in creeping flow

@ Flow past a cylinder can be used to model drag force on car/plane/ship.

@ Stokes studied incompressible (constant p) flow around a sphere of radius
a moving through a viscous fluid with velocity U

1 1
V;—i—vl 'V/ ! = —EV/p—I— QVZV,
@ For steady flow d,v' = 0. For creeping flow (# < 1) we may ignore

advection term and take a curl to eliminate pressure to get

1 \%

%" aU 18

V2w =0. (19)
@ By integrating the stress over the surface Stokes found the drag force
Fi=— / O'ijl’lde = Fdrag = —6mpval. (20)

@ Upto 67 factor, this follows from dimensional analysis! Magnitude of drag

force is Fp = 22 x 17a’p U?. For Stokes flow, drag coefficient is 12/4: this

is experimentally verified.
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Ua
\%

@ At higher speeds (Z > 1), naively expect viscous term to be negligible.
However, experimental flow is far from ideal (inviscid) flow!

Drag on a sphere at higher Reynolds number % =

@ At higher #, flow becomes unsteady, vortices N C\
develop and a turbulent wake is generated. P, e
@ Dimensional analysis implies drag force on a AT ——

sphere is expressible as Fpp = 1Cp(#) na® pU?, ont= ==
where Cp = Cp(Z) is the dimensionless drag
coefficient, determined by NS equation.

@ F canonly depend on p,U,a,Vv. To get mass
dimension correctly, F o< pU”v¢a“. Dimensional
analysis=b=dandc=2-—d, so
Focp (Y9)!v2. Thus, F = Cp) (%) (pa? U2) | R
= 1Cp(#) na® pU>.

@ Comparing with Stokes’ formula for creeping flow
F =6mapvU we get Cp ~ 12/% as # — 0.

@ Significant experimental deviations from Stokes’ law: enhancement of Cp at
higher 1 < % < 10°, then drag force drops with increasing U!
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Drag crisis clarified by Prandtl’'s boundary layers

@ Ininviscid flow (Euler equation) tangential velocity on solid surfaces is
unconstrained, can be large.

@ For viscous Navier-Stokes flow, no slip boundary condition implies
tangential v = 0 on solid surfaces.

@ Even for low viscosity, there is a thin boundary = 3 | Frosnam
layer where tangential velocity drops rapidly to :::;i"j";f -
zero. In the boundary layer, cannot ignore vV?2v. ~ 5 Bounday Loy

== &

@ Though upstream flow is irrotational, vortices are generated in the boundary
layer due to viscosity. These vortices are carried downstream in a
(turbulent) wake.

@ Larger vortices break into smaller ones and so on, due to inertial forces.
Small vortices (at the Taylor microscale) dissipate energy due to viscosity
increasing the drag for moderate %.
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Ludwig Prandil

Ludwig Prandtl (1875-1953)
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Kelvin Helmholtz instability

@ Why does a regular laminar flow become turbulent when the Reynolds
number is increased?

@ The laminar flow pattern is unstable to perturbations. Instabilities lead to the
growth of perturbations resulting in an alteration of the flow pattern.

@ The Kelvin-Helmholtz shear flow instability is a prototype. It occurs when
two neighbouring layers of fluid travel at different speeds. The flat interface
becomes wavy, leading to the generation of eddies as seen in this video.

(v ! Lv
Pressure 1Y )

) bé Hf
W I W

Development of KH instability (Flow, P. Ball)
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Kelvin-Helmholtz instability: Roll-up of vortex sheet

a

Fig. 2.11: A Kelvin—Helmholtz instability in atmospheric clouds (a),
and in the atmosphere of Saturn (b). (Photos: a, Brooks Martner, NOAA/
Forecast Systems Laboratory; b, NASA.)

slelels

\) @

Left: KH instability development made visible by injecting dye into the interface and
photographed by K R Sreenivasan.
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What is turbulence? Key features.

@ Slow flow or very viscous fluid flow tends to be regular & smooth (laminar).
If viscosity is low or speed sufficiently high (Z large enough),
irregular/chaotic motion sets in: streamlines get convoluted as in this video.

@ Turbulence is chaos in a driven dissipative system with many degrees of
freedom. Without a driving force (say stirring), the turbulence decays.

@ v(ry,t) appears random in time and highly disordered in space.

@ Turbulent flows exhibit a wide range of length scales: from the system size,
size of obstacles, through large vortices down to the smallest ones at the

Taylor microscale (where dissipation occurs).
@ v(ro,t) are very different in distinct experiments

with approximately the same ICs/BCs. But the time
average v(ro) is the same in all realizations.
@ Unlike individual flow realizations, statistical properties of turbulent flow are
reproducible and determined by ICs and BCs.
@ As Z is increased, symmetries (rotation/reflection/translation) are broken,
but can be restored in a statistical sense in fully developed turbulence.
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Andrei Kolmogorov and Lars Onsager

Andrei Kolmogorov (L) and Lars Onsager (R).
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Taylor experiment: flow between rotating cylinders

@ Oil with Al powder between concentric cylinders a < r < b. Inner cylinder
rotates slowly at @, with outer cylinder fixed. Oil flows steadily with
azimuthal vy dropping radially outward from w,r, to zero at r = b.

@ Shear viscosity transmits vy from inner cylinder to
successive layers of fluid. Centrifugal force tends to _
push inner layers outwards, but inward pressure due
to wall and outer layers balance it. So pure
azimuthal flow is stable.

@ When @, =~ ®isicai, flow is unstable to formation of toroidal Taylor vortices
superimposed on the circumferetial flow. Translation invariance with z is lost.

Fluid elements trace helical paths.
@ Above ®@isical, inward pressure and

viscous forces can no longer keep
centrifugal forces in check. The outer layer
of oil prevents the whole inner layer from
moving outward, so the flow breaks up into
horizontal Taylor bands.

IMMER CYLINDER
WALL
OUTER CYLIMDER
WALL
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Taylor experiment: flow between rotating cylinders

o If w, is further increased, keeping w;, = 0 then #
of bands increases, they become wavy and go
round at &~ @, /3. Rotational symmetry is further
broken though flow remains laminar.

@ At sufficiently high w,, flow becomes fully turbulent but time average flow
displays approximate Taylor vortices and cells.

@ There are 3 convenient dimensionless combinations in this problem:
(b—a)/a, L/a and the Taylor number Tz = w2a(b —a)?/v>.

@ For small annular gap and tall cylinders (L >> a), Taylor number alone

determines the onset of Taylor vortices at Ta = 1.7 x 10*.
@ If the outer cylinder is rotated at @y, holding inner cylinder o

fixed (w, = 0), no Taylor vortices appear even for high @j,.
Pure azimuthal flow is stable.

(c)

/
@ When outer layers rotate faster than inner ones, ceyreieyoas

centrifugal forces build up a pressure gradient that

maintains equilibrium.
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Geoffrey Ingram Taylor

Geoffrey Ingram Taylor
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Reynolds’ expt (1883): Pipe flow transition to turbulence

@ Consider flow in a pipe with a simple, straight inlet. Define the Reynolds
number % = Ud /v where pipe diameter is d and U is flow speed.

@ At very low Z flow is laminar: steady Poiseuille flow (parabolic veI profile).
@ In general, turbulence in the pipe seems to
originate in the boundary layer near the inlet or

from imperfections in the inlet.

< e -
o If # < 2000, any turbulent patches \/:m R — %ﬁﬁ‘
‘ bl

formed near the inlet decay. .

InitiationFormation of tubulent slug  Laminar region  Turbulent shug

e When Z 2 10* turbulence first begins to appear in the annular boundary
layer near the inlet. Small chaotic patches develop and merge until turbulent
‘slugs’ are interspersed with laminar flow regions.

@ For 2000 < Z < 10,000, the boundary layer is stable to small
perturbations. But finite amplitude perturbations in the boundary layer are
unstable and tend to grow along the pipe to form fully turbulent flow.
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Lift on an airfoil

@ Consider an infinite airfoil of uniform cross section
(axis along z). Airflow around it can be treated as
2-dimensional, i.e. on x,y plane.

@ Airfoil starts from rest moves left with zero initial
circulation. Ignoring vV?v, Kelvin's theorem
precludes any circulation developing around wing.
Streamlines of potential flow have a singularity as
shown in Fig 1.

@ Viscosity at rearmost point due to large V?v
regularizes flow pattern as shown in Fig.2.

@ In fact, circulation I" develops around airfoil (Fig.
3). In frame of wing, we have an infinite airfoil with
circulation I' placed perpendicularly in a rightward

velocity field veoX.
@ Situation is analogous to infinite wire carrying current I placed

perpendicularly in a B field!
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Circulation around and airfoil

@ Current j in B field feels Lorentz force/Vol. j x B /%

where j =V x B/ by Ampere’s law. Analogue of

Lorentz force is vorticity force in Euler equation 0 mom s
PO+ pwxv=—pVo+pvViy
e B&pv,jew, < p, I I Current carrying ) st o

wire feels transverse force Bl/length. Expect airfoil
to feel force pv..I7length upwards (9).

(¢) Flow with circulation.

@ Outside the boundary layer flow can be approximated as ideal irrotational
flow which can be represented by a complex velocity g = u — iv. Since g is
analytic outside the airfoil, we can expand it in a Laurent series,
8=Vt Th+F A+

@ Circulation around a closed streamline enclosing airfoil just outside
boundary layeris I' = § v-dl = § gdz = § (udx+ vdy) + i(udy — vdx) since
(udy — vdx) = 0 along a streamline. Thus by Cauchy’s residue theorem,
I'= 27‘L’ia,1 .
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Kutta-Zhukowski lift formula for incompressible flow
@ Force exerted by flow on airfoil is F = ¢ padl %\?

where p is the air pressure along the boundary and n Q
71 is the inward normal. By Bernoulli’s theorem, \>

$padl=—1p $v*idl.

@ If the line element dl along the streamline makes an angle 6 with X then
(dx,dy) = (dlcos 8,dlsin 0) and the inward normal /i = (—sin0,cos 6).
Thus, F, = 1p §v? sin@dl = 1p §v*dy and
Fy=—3p §v*cosOdl=—1p §v*dx.

@ The complex force Z = Fy + iF, = —5 § v?(dx — idy) may be expressed in
terms of the circulation I" using the complex velocity g. As udy —vdx =0,

zZ = —%f [Vz(dx—idy)+2i(udy—vdx)(u—iv)] = %7{(\/2 — u® = 2iuv)(dx + idy)
z = _Bfgzdz: —3?4 vi+(2vwa_1)/z+-~-] dz = —(p/2)[27i(2vea_1)] = —pvec)

by Cauchy’s theorem. So F, =0 and F, = —pv..I. B
@ F) > 0 and generates lift if the counter- clockW|se R ey

C|rculat|on I' is negative, which is the case if speed —

above airfoil is more than below. e . (i ey
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Nikolay Yegorovich Zhukovsky and Martin Wilhelm Kutta

Nikolay Yegorovich Zhukovsky (left) and Martin Wilhelm Kutta (right).
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Shocks in compressible flow

@ A shock is usually a surface of small thickness across which v,p, p change
significantly: shock front modelled as a surface of discontinuity.

@ Shock moves faster than sound. Roughly, if shock propagates sub-sonically,
it could emit sound waves ahead of the shock eliminating the discontinuity.

@ Sudden localized explosions like supernovae or bombs often produce
spherical shocks called blast waves. Nature of spherical blast wave from
atom bomb was worked out by Sedov and Taylor in the 1940s.

@ Suppose shock moves to the right in lab frame. In shock frame, shock front
is at rest and material to the right rushes towards it at vi > c;. Material from
undisturbed pre-shock medium in front of shock (p;) moves behind the
shock to the post-shock medium to the left and gets compressed to p> > p;.

@ Fluxes of mass, momentum and energy are equal pre- and post-shock,
relating p1,v1,p1 10 P2, v2,p2 leading to Rankine-Hugoniot ‘jump’ conditions.

@ Viscous term vV?v is often important in the shock layer since v changes

rapidly. Leads to heating of the gas in shock layer and entropy production.
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Existence & Regularity: Clay Millenium Problem

@ Either prove the existence and regularity of solutions to incompressible NS
subject to smooth initial data [in R? or in a cube with periodic BCs] OR show
that a smooth solution could cease to exist after a finite time.

@ J Leray (1934) proved that weak solutions to Navier-Stokes exist, but need
not be unique and could not rule out singularities.

@ Hausdorff dim of set of space-time points where singularities can occur in
NS cannot exceed one. So hypothetical singularities are rare!

@ O Ladyzhenskaya (1969) showed existence and regularity of classical
solutions to NS regularized with hyperviscosity —u(—V?)%v with @ > 2. J-L
Lions (1969) extended it to o > 5/4.

@ A proof of existence/uniqueness/smoothness of solutions to NS or a
demonstration of finite time blow-up is mathematically important.

@ Physically, it is know that for large enough %, most laminar flows are
unstable, they become turbulent and seem irregular. Methods to

calculate/predict features of turbulent flows would also be very valuable.
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Jean Leray, Olga Ladyzhenskaya and Jacques Louis Lions

Jean Leray - Royal society (1991)

Jean Leray (left), Olga

Ladyzhenskaya Google doodle on her birth anniversary March 7, 2019.
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Prominent Indian fluid dynamicists

Subrahmanyan Chandrasekhar (left) and Satish Dhawan (right).
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Prominent Indian fluid dynamicists

Vishnu Madav Ghatage, Roddam Narasimha (left) and Katepalli Sreenivasan (right).
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von Karman vortex street in the clouds

von Karman vortex street in the clouds above Yakushima Island

Thank you!
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