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1 Elastostatics

• A wooden ruler, a concrete building/bridge, a stretched string, a steel bar or wooden beam
behave as elastic materials when subjected to any sufficiently small stress (‘stress’ = force/area).
We say that an object behaves elastically if it tends to retain its original shape and size when any
such applied force is withdrawn. By contrast, a fluid is permanently deformed under a small,
say shearing, force (it ‘flows’). Elasticity is a property both of the material and the applied
forces. The same material (e.g. the Earth’s crust) may behave elastically for certain small
stresses (seismic waves in an earthquake) but suffer non-elastic deformations (rupture/fracture
to form a crack/rift (e.g. the great rift valley in East Africa)) when subject to other stresses.
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A material suffers plastic deformation if the change in shape is permanent, not reversed when
applied stresses are removed, e.g. a thin metal spoon that is beaten or bent into a new shape.

• Elastic deformations are intermediate in complexity between vibrations in a stretched string
and fluid flows. Unlike a rigid body, the parts of an elastic body are not rigidly interconnected
but suffer small relative displacements due to applied stresses. As in a stretched string, a certain
‘ordering’ (relative arrangement) of material elements (molecules) is maintained in elastic defor-
mations of a steel beam. But unlike transverse vibrations of a string, elastic seismic waves can
have both transverse and longitudinal components associated to ‘shearing’ and ‘compressional’
motions. Fluid flows as in air or water can in general mix up the molecules in a much more
complicated way.

A material behaves elastically if it retains its shape and size after applied stresses are removed.
If the applied force is small enough, the displacements of material elements is proportional to the
applied stress. This linear regime continues to hold till the proportionality limit, beyond which
the material is still elastic but the resulting strains are not proportional the applied stresses.
Many materials (e.g. cemented tungsten carbide) cease to behave elastically for strains greater
than 10−3 . Beyond the elastic limit, plastic flow sets in and the body does not return to its
original shape and size when the stress is removed. At still larger stresses (from the yield point),
a small increase in stress can produce a very large strain (it is as if E → ∞). At even larger
stresses we reach the rupture point at which the material cracks or breaks.

1.1 Hooke’s law of elastic behavior for a cuboid

• We roughly follow Feynman’s treatment in Vol 2, Chapt 38 of his Lectures on Physics.

• Consider a cuboid shaped bar of wood/steel with length l , width w and height h . If a tensile
(tending to elongate) force F is applied lengthwise at either end of the bar1, then the increase in
length ∆l is found to be proportional to the applied force, ∆l ∝ F . What is more, if the force
is withdrawn, the bar feels a restoring compressional force of the same magnitude F , which
is proportional to the elongation F ∝ ∆l , with the same constant of proportionality. This is
Hooke’s law, it can be viewed either way: force producing elongation or elongation producing
restoring force. Further, the elongation ∆l is proportional to the length of the bar, if we attached
two such bars lengthwise, and applied the same force at the ends, the elongation would double.
So ∆l ∝ lF . In addition, the force needed to produce a given elongation is proportional to the
cross sectional area A of the bar. Indeed, if we had two such bars side by side, then we would
need to apply twice the force to produce the same elongation in both bars. So Hooke’s law
becomes

F = EA
∆l

l
. (1)

where the constant of proportionality E is called Young’s modulus of elasticity (some authors
denote it by Y , though we will use Y for the tensor of elasticity to be introduced later). E
has dimensions of force per unit area, or pressure. It is the analogue of a spring constant. This
normal force per unit area F/A is called a (normal) stress. And elongation per unit length ∆l/l
is called strain. So Hooke’s law says that stress equals Young’s modulus times strain.

1If unequal forces are applied on opposite faces, the unbalanced force will accelerate the bar as a rigid body,
leaving the balanced part of the forces to cause elastic deformation.
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• We will deal primarily with homogeneous and isotropic elastic materials whose properties do
not change with location in the material nor with direction. A crystalline material is anisotropic,
the same stresses in different directions may produce different strains. For such materials, we
need more than one modulus of elasticity to express Hooke’s law.

• As one might expect, when a bar is stretched lengthwise by a tensile stress, its dimensions in
transverse directions contract. The transverse contractions are proportional to the lengthwise
strain and also to the original transverse dimensions. Thus the fractional increase in width and
height are negative and equal

∆w

w
=

∆h

h
= −ν∆l

l
. (2)

In other words, the ‘secondary strains’ ∆w/w and ∆h/h are proportional to the ‘primary
strain’ ∆l/l with proportionality constant ν . Poisson’s ratio ν (sometimes denoted σ ) is a
dimensionless constant within the limits where Hooke’s law holds. It is found to be positive and
we will see that ν ≤ 1

2 , to ensure that an elastic material does not increase in volume when
compressed. It turns out that E and ν are independent material constants that completely
specify the elastic properties of homogeneous isotropic materials. In particular, we will see that
the bulk modulus (or compressibility) and shear modulus which are other elastic constants can
be expressed in terms of E and ν .

• Within the range of validity of Hooke’s and Poisson’s laws, elastic forces satisfy the superpo-
sition principle. The displacements produced by the sum of two forces is the vector sum of the
individual displacements.

• Elastic forces, as a consequence of Hooke’s law, can have two qualitatively distinct and striking
effects on a body, compression and shearing, which we introduce now through examples.

1.2 Hydrostatic compression: bulk modulus

• Suppose our cuboid is placed in water. Assume the hydrostatic pressure p due to the collision
of water molecules on all faces is equal (so we ignore the increase in pressure with depth due
to gravity). Since hydrostatic pressure is the normal force exerted per unit area, the stress on
all faces is equal to p . Let us find the changes in the dimensions l, w, h of the bar and in the
volume of the bar.

• By superposition, the lengthwise strain ∆l/l is the sum of three contributions, contraction
−p/E due to lengthwise stress (stresses on the two faces perpendicular to the lengthwise axis),
elongation νp/E due to breadthwise stresses and elongation νp/E due to vertical stresses. Thus
∆l/l = −(p/E)(1− 2ν). By symmetry, we have

∆l

l
=

∆w

w
=

∆h

h
= − p

E
(1− 2ν) (3)

The volume strain is

∆V

V
=

∆(lwh)

lwh
=

∆l

l
+

∆w

w
+

∆h

h
= −3p

E
(1− 2ν) (4)

The ‘volume stress’ is just the pressure p , and this formula says it is ∝ to the volume strain

p = − E

3(1− 2ν)

∆V

V
≡ −K∆V

V
. (5)
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The constant of proportionality K = E
3(1−2ν) is called the bulk modulus, by analogy with

the elastic modulus appearing in Hooke’s law. The reciprocal of the bulk modulus is called
compressibility κ = 1/K , which in general is defined as the fractional decrease in volume due
to an increase in pressure. In our case, the increase in pressure is p :

κ = − 1

V

∂V

∂p
=

3(1− 2ν)

E
(6)

When the Poisson ratio ν = 1
2 , we see that the compressibility vanishes, the material is in-

compressible, it resists a change in volume in the face of compressional stresses. If ν > 1
2

the compressibility would be negative, indicating an instability, the block would keep expand-
ing under air pressure! Such spontaneous expansion is not observed in ordinary materials, so
ν < 1

2 . However, observations indicate that the universe on a large scale may behave like an
unusual material that expands ‘by itself’ (it seems to have a negative pressure associated to the
cosmological constant or conjectured ‘dark energy’).

1.3 Shearing of a block: shear modulus

• So far we only considered forces that act orthogonal to faces of the block. It is also interesting
to consider shearing stresses, forces that act tangential to the faces. We will formulate Hooke’s
law for general stresses and strains in a later section. For now, let us examine the effect of
shearing stresses on a cube by converting it to a problem of normal stresses on a different body,
using a clever argument given in Feynman’s lectures.

Figure 1: Shear forces on a cube, scanned from Feynman Lectures Vol 2, Chapter 38.

• Consider a cube of side l viewed normal to a face. It is subjected to ‘pure shear’ forces of
magnitude G acting tangential to the faces of area l2 as shown in Fig 38-6 of Feynman lectures
Vol 2. The shear forces act to the right on the top face and to the left on the bottom face,
upwards on the right face and downwards on the left face. They are balanced so that the cube
as a whole does not feel any force or torque. The effect of the shearing forces is to deform the
cube so that its visible face goes from being a square of diagonal D = l

√
2 to a rhombus with

smaller diagonal D −∆D . We aim to find the strains produced by these stresses. Let us focus
on the force acting on two diagonal faces (of depth l into the plane of the paper) obtained by
slicing through the cube: A (North West-SE) and B (SW-NE). The above shearing stresses
act normal to these diagonals: (1) stretching/tensile forces of magnitude

√
2G (the resultant
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of G on top and G on right) across the NW-SE diagonal face A , acting over an area
√

2l2

and (2) compressional forces of size
√

2G acting normal to the SW-NE diagonal face B , again
of area

√
2l2 . The pure shear stresses G and strains on the original cube will be obtained

from the normal stresses
√

2G and resulting strains on a hypothetical larger cuboid with sides
l
√

2 × l
√

2 × l , shown in Fig 38-6 (b) (the depth l of the fictitious cuboid is the same as that
of the original one). Since we have not yet formulated Hooke’s law for non-normal stresses, the
correctness of this approach could then be determined by comparing the answers obtained with
experiment.

• Let us determine the strains due to compressional and tensile normal stresses of size G
√

2
acting on the faces of area

√
2l2 of the new cuboid with visible square cross section of side

D = l
√

2. One side of the new cuboid (say the one parallel to face B) is elongated by

∆D

D
=

1

E

√
2G√
2l2

+ ν
1

E

√
2G√
2l2

=
(1 + ν)

E

G

l2
≡ (1 + ν)

E
g. (7)

The first term is due to the tensile stress acting normal to the face A while the second is due
to the compressional stress acting on the face B orthogonal to it. The other side is contracted
by the same amount. Thus, the result of the pure shear stresses on the original cube is to turn
its visible cross section into a rhombus with diagonals D ±∆D .

• To identify the shear modulus, we first note that g = G
√

2/
√

2l2 = G/l2 is the shear stress.
It is tempting to define ∆D/D as the shear strain, but it it conventional to define the shear
strain as the angle θ by which the cube is sheared, so that its cross section looks like a rhombus.
θ = δ/l where δ is the tangential displacement of any face. Fig 38-7 shows that δ =

√
2∆D

(consider the small isosceles right triangle with sides ∆D,∆D and δ ) where D =
√

2l . So the
shear stress g = G/l2 may be expressed as a multiple of the shear strain

g =
E

1 + ν

∆D

D
=

E

1 + ν

δ√
2×
√

2l
=

E

2(1 + ν)

δ

l
≡ µθ where µ =

E

2(1 + ν)
. (8)

µ is called the shear modulus or coefficient of rigidity or Lamé’s first elastic constant. Like
Young’s modulus, it must be positive, since elastic forces are restoring forces.

1.4 Stress tensor

• More generally, forces need not act either normal or tangential to surfaces2 of the material,
and they could vary in magnitude and direction with location in the material. A device that
encodes the force per unit area acting across an element of surface is called the stress tensor.
Let n δA be a small surface element of area δA , with unit normal n , centered at x . Let
F(nδA,x) be the force that acts across the surface. (Feynman works with the force per unit
area Σ(n̂,x) = F/δA) Precisely, it is the force on the material on the side to which n points,
due to the material on the other side.

• In general F and n point in different directions and are related by a linear transformation,
the transformation of stress. If we choose to write all vectors in some basis, e.g. resolve them
according to cartesian components, then this linear relation may be written as

Fi(nδA,x) =
∑
j

Tij(x)nj δA. (9)

2These surfaces may be external surfaces or, more frequently, hypothetical internal surfaces in the material.
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The 3× 3 matrix Tij(x) is called the stress tensor field. It depends only on the location x and
not on the surface or n . By choosing a surface whose normal n points in the j direction, we see
that Tij is then the ith component of the force acting on the material towards the jth direction
of a surface of unit area whose normal points in the jth direction. Alternately, suppose δA is
a small surface with normal n̂ , then

∑
j Tijnj(δA) is the ith component of the force acting on

the material on the side to which the normal n̂ points.

Remark: Consider a small sphere enclosing a volume of material with outward normal n̂ . If
F points in the same direction as n , then it is a tensile stress, tending to pull the surface in the
‘outward’ direction and thereby expand the sphere. If F points anti-parallel to n , then it is a
compressional stress tending to compress the sphere.

• Stress tensor due to hydrostatic pressure at a point in water. By definition, hydrostatic
pressure acts normal to any surface considered. So consider a small cuboid with axes along the
cartesian axes, it follows that Tij = 0 for i 6= j since there are no tangential stresses. Moreover,
T33 = p since the force across the top surface, whose normal points in ẑ direction due to the fluid
below is pẑ . We get the same answer T33 = p by considering the bottom surface. Proceeding
in this way Tij = pδij due to hydrostatic pressure. This formula for the stress tensor due to
hydrostatic pressure is independent of basis, multiples of the identity matrix have the same
components in any basis.

• Stress tensor for tensile elongation of a rectangular bar: Consider the tensile elonga-
tion of a bar of length l and cross sectional area A by the application of a tensile stress F/A
in the x̂ direction on the right face and F/A in the −x̂ direction on the left face. So there is a
stress F/A in the same direction as the normal x̂ to the right face, due to the external agent
who is on the +x side of the face. So T11 = −F/A . We also obtain T11 = −F/A by considering
the left face. There is no force in the y, z directions anywhere. So T2j and T3j are all zero.
There is no force on the remaining faces, so Ti2 = 0 and Ti3 = 0.

So the stress tensor is Tij = −F
A

1 0 0
0 0 0
0 0 0

 . (10)

This stress tensor is clearly anisotropic unlike that for hydrostatic pressure. The difference in
sign is due to the tensile force on the bar, unlike the compressional force of hydrostatic pressure.

• ‘Pure shear’ stress tensor: Suppose we have a material subject to pure shear forces g per
unit area, acting on any small cube. More precisely, an external agent applies a force g per
unit area on the top, bottom, right and left faces of an elementary cube, in the x,−x, y,−y
directions, as in Feynman’s example considered in the previous section. Let us find the stress
tensor. Since there is no force in the z direction, T3j = 0 for j = 1, 2, 3. Further, the diagonal
components Tii = 0 since there are no normal stresses. To find T12 , consider the top surface.
T12 is the x component of the stress on the top surface due to the material inside the cube, this
is a restoring force and is just −g . We get the same answer by considering the bottom surface:
T12 is the x-component of stress on the bottom surface due to material outside the cube and it
is equal to −gx̂ . It is the negative of the x-component of the stress on the bottom surface due
to material inside the cube. So we get T12 = −g by considering either the top or bottom face.
By considering the right face we find T21 is the y -component of the stress on the right face due
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to material inside the cube. Thus T21 = −g . Thus we find

T = −g

0 1 0
1 0 0
0 0 0

 . (11)

To say that this stress tensor is ‘pure shear’ or purely off-diagonal, is a basis-dependent state-
ment. As Feynman did in the above example, we may write the stress tensor in a different basis,
by π/4 rotation. In the rotated basis it is diagonal and looks like a combination of normal

tension and compression in two orthogonal eigen-directions T̃ = −g

1 0 0
0 −1 0
0 0 0

 .

1.4.1 Symmetry of the stress tensor

• In the above examples, we notice that the stress tensor is a symmetric matrix at each point.
We argue now, that this must always be true. Consider a volume V of material surrounded by
a surface A = ∂V . The ith component of the force per unit area acting on the material inside
across any point of this surface is −Tijnj where n̂ is the unit outward normal. Let us consider
the rate of change of angular momentum of the fluid in V about an origin located inside V . It
must equal the torque due to surface forces acting on the fluid inside V plus those due to body
forces (fb per unit volume, e.g. ρ~g in the case of gravity where ~g is the acceleration due to
gravity)

d

dt

∫
V

(r× v)i ρ dV =

∫
(r× fb)idV −

∫
A
εijkrjTklnldA =

∫
V

[
(r× fb)i − εijk∂l(rjTkl)

]
dV

=

∫
V

[
(r× fb)i − εijkTkj − εijkrj∂lTkl

]
dV (12)

Here ρ is the mass density and v the velocity of the material at the position r . εijk is the
Levi-civita symbol, it is anti-symmetric under exchange of any pair of indices with ε123 = 1,
so that ε132 = −1 and ε112 = 0 for instance, it gives a convenient way of writing the cross
product. The second equality is a consequence of Gauss’ divergence theorem which states∫
∂V vlnldA =

∫
V ∂lvldV . Now we let V shrink to zero, thinking of it as a spherical volume

so that its linear dimension is of order V 1/3 and |r| . V 1/3 (here it where it helps to have
the origin inside the volume). ρ,v , fb , Tkj and ∂lTkl all have finite limits independent of the
volume V , they approach their limiting values at the ‘central’ location to which the volume
shrinks. The lhs scales like V 4/3 due to the r and dV factors. The body force term and the
last term on the rhs also scale like V 4/3 due to the factors of r and dV . On the other hand,
the middle term on the rhs scales like V . For small V , V is larger than V 4/3 . For the equation
to hold, the un-balanced middle torque term must vanish identically for any i and for a small
volume of any shape located anywhere in the fluid. So εijkTjk must be zero for all i . When
written out, this implies T12 = −T21, T13 = −T31 and T23 = −T32 . So the stress tensor is a
symmetric tensor field Tij(x) = Tji(x), it has only 6 independent components at any point. The
diagonal elements represent normal stresses while the off diagonal components are tangential
(or shearing) stresses.
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1.5 Tensor of strain

• Just as the stresses in a material are encoded in a symmetric tensor field, so also with the
resulting strains. Let us consider an infinitesimal distortion in a material, with each material
point originally located at r = (x1, x2, x3) = (x, y, z) moving to a nearby point r + ξ(r). We
call ξ(r) the displacement field, it gives the infinitesimal displacement as a function of original
location. Now if ξ(r) were independent of location, then all points in the body would be
uniformly translated. This is simply the center of mass motion of a rigid body, and is not related
to elastic properties. In straining motion, the displacement field must depend non-trivially on
r .

• However, if the infinitesimal displacements are rotations ξ = r × δ~φ (rotation of r by angle
δφ clockwise about an axis along δ~φ), then again, we do not classify it as a strain. On the other
hand, a displacement field such as ξ = (x∆l/l, 0, 0) describes a strain due to stretching of a bar
of length l by ∆l in the x-direction (ignoring possible contraction in other directions). It turns
out that the symmetric tensor

eij =
1

2

(
∂ξi
∂xj

+
∂ξj
∂xi

)
(13)

encodes the local strains. Let us see why. Consider a small region and place the origin inside
it. Assuming the displacements are small, we expand the displacement field in a Taylor series
around r = 0 (the same could be done around any point)

ξ = ξ0 + (r · ∇)ξ +O(r)2 or ξi = ξ0
i + xj

∂ξi
∂xj

+ · · · (14)

Here and elsewhere, repeated indices are summed from one to three. ξ0 represents uniform
translation of material in the whole region. Here partial derivatives are evaluated at the origin
r = 0. By adding and subtracting, we re-write this as

ξ = ξ0 + xj
[

(∂jξi + ∂iξj)

2
+
∂jξi − ∂iξj

2

]
+ · · · = ξ0 + eijx

j + ωijx
j + · · · (15)

Here we defined the symmetric strain tensor eij as advertised before, and the anti-symmetric
rotation (or vortex/vorticity) tensor ωij . The components ωij appear in the curl ∇ × ξ , in
fact verify that (∇× ξ)i = εijk∂jξk = −2εijkωjk . ωijx

j represents an infinitesimal rotation of r

about the vector δ~φ = (δφ1, δφ2, δφ3) = (ω23, ω31, ω12)

ωijxj = (ω12x2 + ω13x3, ω21x1 + ω23x3, ω31x1 + ω32x2)

= (x2δφ3 − x3δφ2, x3δφ1 − x1δφ3, x1δφ2 − x2δφ1) = (~r × δ~φ)i (16)

This decomposition of a general displacement field into a translation, rotation and strain was
introduced by Helmholtz in the context of fluid mechanics. Proceeding as above in each elemental
region of the material, one defines the rotation and strain tensor fields eij , ωij all over the
material.

• It is also convenient to define the 2nd rank tensor field S = ∇ξ or Sij = ∂jξi which may be
decomposed into its symmetric and anti-symmetric parts

Sij = eij + ωij where eij =
1

2
(Sij + Sji), ω =

1

2
(Sij − Sji). (17)
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The symmetric part eij may be further decomposed into its trace and trace-free parts:

eij = Σij +
1

3
δij tr e where Σij =

1

2
(∂jξi + ∂iξj)−

1

3
δij∇ · ξ. (18)

Θ = tr e = Sii = ∇ · ξ is a scalar field called the expansion. The traceless tensor field Σ is
called the shear tensor.

• These formulae are valid in Cartesian coordinates on Euclidean space. In curvilinear coordi-
nates (or more generally, on curved manifolds) we would need to replace partial derivatives with
covariant derivatives and replace δij with the components of the metric tensor field.

• In an elastic material under given stresses, our aim is often to calculate the resulting dis-
placement field ξ(r, t), just as we wish to find the displacement u(x, t) (from equilibrium), of
a vibrating stretched string. In general, the displacement field may involve rigid translations,
(local) rotations (with ∇× ξ 6= 0), as well as straining motions. But it is only the strain tensor
eij that will appear in the tensorial formulation of Hooke’s law, which eventually leads to the
equations of elastostatics and elastodynamics.

• Strain tensor for hydrostatic pressure: Consider a cuboid with one vertex fixed at the
origin and under hydrostatic compression. The length, breadth and height are compressed by
∆l,∆w,∆h . We know that ∆l

l = ∆w
w = ∆h

h = −p(1−2ν)
E . Thus, the displacement field is ξ =

∆l
l (x, y, z). The resulting strain tensor is a multiple of the identity eij = ∆l

l δij = −p(1−2ν)
E δij .

• Strain tensor for a bar under tensile stress: Consider the elongation of a bar of length
l and cross sectional area A by the application of a tensile stress F/A in the x̂ direction on
the right face. The left end of the bar does not move horizontally with one of its corners held
fixed at the origin. The tensile force elongates the bar in the x direction and contracts it in the
orthogonal directions. By Hooke’s law we found

∆l

l
=

F

AE
, and

∆w

w
=

∆h

h
= −ν∆l

l
= − νF

AE
. (19)

Thus the displacement field is

ξ =

(
x

∆l

l
, y

∆w

w
, z

∆h

h

)
=

(
xF

AE
,−yνF

AE
,
−zνF
AE

)
=

F

AE
(x,−yν,−zν) (20)

It follows that the strain tensor eij = 1
2(∂iξj + ∂jξi) is diagonal

eij =
F

AE

1 0 0
0 −ν 0
0 0 −ν

 , Σ =
F

3AE

2(1 + 2ν) 0 0
0 −ν − 1 0
0 0 −ν − 1

 and Θ =
F

AE
(1− 2ν).

(21)

• ‘Pure shear’ strain tensor: The strain tensor eij = ε

0 1 0
1 0 0
0 0 0

 represents an infinitesimal

shearing strain corresponding to the displacement field ξ = ε(y, x, 0). When plotted we see that
this corresponds to a local pure shear of the sort caused by the pure shear stress studied in
Feynman’s example. Note that this ξ is curl-free ∇× ξ = 0.
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1.5.1 Volume strain, divergence of displacement field and trace of strain tensor

• The volume strain ∆V/V for a small volume V located near r is encoded in the trace of
the strain tensor tr e = eii , which is the same as the divergence of the displacement field
∇ · ξ = ∂iξi = Θ. Let us see why. Consider a small cuboid with a vertex at r and edges along
δ~x, δ~y, δ~z . The volume of this cuboid is the determinant of a matrix whose rows are these three
vectors det(δ~x, δ~y, δ~z). Now suppose the material is deformed with a displacement field ξ(r).
It maps the vertex r→ r + ξ and the vertex

r + δ~x 7→ r + δ~x+ ξ(r + δ~x) = r + δ~x+ ξ(r) + δ~x · ∇ξ (22)

So edge vector δ~x is transformed into

r + δ~x+ ξ(r) + δ~x · ∇ξ − r− ξ = δ~x+ δ~x · ∇ξ (23)

So the volume of the deformed cube is

New vol ≈ det

δ~x+ δ~x · ∇ξ
δ~y + δ~y · ∇ξ
δ~z + δ~z · ∇ξ

 = det

δ~xδ~y
δ~z

+ det

δ~x · ∇ξδ~y
δ~z

+ det

 δ~x
δ~y · ∇ξ
δ~z

+ det

 δ~x
δ~y

δ~z · ∇ξ


(24)

Here we repeatedly used the fact that the determinant is linear in each row and dropped terms
quadratic and higher order in small quantities. The first term is the old volume. To find the
change in volume per unit volume, let us choose the edges of the original cube to lie along the
Cartesian axes: δ~x = δx x̂, δ~y = δy ŷ, δ~z = δz ẑ . Then the old volume is V = δxδyδz and the
change in volume is

∆V = det

δx ∂1ξ1 0 0
0 δy 0
0 0 δz

+ det

δx 0 0
0 δy ∂2ξ2 0
0 0 δz

+ det

δx 0 0
0 δy 0
0 0 δz ∂3ξ3


= (δx δy δz)(∂1ξ1 + ∂2ξ2 + ∂3ξ3) = V ∇ · ξ. (25)

Recalling that eij = 1
2(∂iξj +∂jξi), we see that the change in volume per unit volume, or volume

strain, equals the trace of the strain tensor ∆V
V = ∇·ξ = tr e = Θ. In particular, if the material

is incompressible to elastic deformations, then the strain tensor must be traceless.

• For example, let us find the volume strain due to hydrostatic pressure. Consider a cuboid
with sides l, w, h subject to hydrostatic pressure p on all faces. Earlier we used superposition
to find

∆l

l
=

∆w

w
=

∆h

h
= −p(1− 2ν)

E
(26)

It follows that the volume strain is

∆V

V
=

∆l

l
+

∆w

w
+

∆h

h
= −3p(1− 2ν)

E
(27)

This agrees with the trace of the strain tensor eij = − p
E (1− 2ν)δij , tr e = −3p

E (1− 2ν).

10



1.6 Tensorial form of Hooke’s law

• Thus in general, both the local stresses and strains in an elastic material are specified by
second rank symmetric tensors Tij and eij . Hooke’s law then says that the components of the
stress tensor are linear in the components of the strain tensor

Tij(r) = −
∑
kl

Yijkl(r)ekl(r) (28)

The minus sign is conventional and signifies that the stress is a restoring one. The coefficients
Yijkl(r) that relate the two tensors is a fourth rank tensor field called the tensor of elasticity. It
is symmetric in the first pair of indices (as Tij is) and may be taken symmetric in the second
pair as well (as ekl is symmetric and any part of Y anti-symmetric in the last pair would not
contribute). When this is done, we may also write Tij = −YijklSkl as the anti-symmetric rotation
part of S does not contribute. This leaves Yijkl with 6×6 = 36 independent components. Thus
we may regard Y as a linear transformation from one space of symmetric 3 × 3 matrices to
another such space, i.e., a map from R6 → R6 . We will see later that Y is also symmetric under
the exchange of the 1st and 2nd pairs of indices (in other words, Y is a symmetric operator
from R6 → R6 ) leaving only 21 independent components at each location r . To see this, we
regard ij and kl each as a single index which can take 6 values. A 2nd rank symmetric tensor
on a six dimensional space has 6× 7/2 = 21 components.

• If the material is homogeneous, then Yijkl are independent of location. Particular components
of Y are related to Young’s modulus of elasticity and Poisson’s ratio in various directions. When
stresses Tij are applied, strains develop so as to satisfy the above equation, and the body acquires
a corresponding distorted shape and reaches a new equilibrium. Alternatively, if an elastic body
is deformed by the displacement field ξ , then restoring stresses in the amount Tij = −Yijklekl
develop in the material.

• For isotropic materials (whose elastic properties are independent of direction at any point), the
tensor of elasticity is an isotropic tensor with only two independent components. To understand
this we need some definitions and facts about Cartesian tensors.

1.6.1 Isotropic Cartesian Tensors

• Consider the vector space R3 with an ordered orthonormal basis. By rotations we may
obtain other orthonormal bases with the same orientation. These rotations form the special
orthogonal group SO(3) consisting of 3× 3 matrices R satisfying RtR = I and detR = 1. An
orthogonal matrix with detR = −1 would reverse the orientation of the basis. A scalar is a
real-valued quantity that has the same value in all bases. A tensor of rank one (or a vector)
under rotations is a triple (v1, v2, v3) whose components transform to v′i =

∑
j Rijvj under

rotations. A tensor of rank two is a set of nine quantities tij whose values in different o.n. bases
are related by t′ij =

∑
klRikRjltkl . A simple example of such a tensor is the outer or tensor

product of two vectors v and w : tij = viwj . More generally we define Cartesian tensors of
rank n as a set of 3n real quantities ti1···in whose values in different o.n. bases are related by
t′i1···in =

∑
j1···jn Ri1j1 · · ·Rinjntj1···jn . A simple way fo constructing such tensors is by taking the

tensor product of tensors of lower rank: the tensor product of tensors of ranks p and q gives us
a tensor of rank p+ q : ti1···ip+q = ri1···ipsip+1···ip+q .

11



A Cartesian tensor is said to be isotropic or rotation-inavariant if its components have the
same numerical values in all o.n. coordinate frames. In other words,

ti1···in =
∑
j1···jn

Ri1j1 · · ·Rinjntj1···jn (29)

for all i1 · · · in and all rotations R . A scalar is, by definition, an isotropic tensor. The only
isotropic tensor of rank one is the zero vector. After all, the components of a non-zero vector do
change under a rotation about an axis that does not point along the vector. The only isotropic
tensors of rank two are scalar multiples of the identity matrix: δij . The only isotropic tensors
or rank three are scalar multiples of the Levi-Civita tensor εijk . To show this, notice that

ε′123 = R1iR2jR3kεijk = detR = 1 (30)

and similarly ε′132 = −detR = −1 etc.

• A simple way of obtaining isotropic tensors of higher rank is by taking the tensor products
of isotropic tensors of lower rank. In particular, products of Kronecker deltas and Levi-Civita
tensors may be used to construct interesting isotropic tensors. In fact, it may be shown that
every such tensor is a linear combination of such products.

• The space of isotropic tensors of rank four is three dimensional. Any such tensor is a linear
combination of a product of two Kronecker deltas with all possible choices of indices:

Yijkl = λδijδkl + µ1δikδjl + µ2δilδjk. (31)

1.6.2 Tensor of elasticity for an isotropic material and Lamé’s constants

• For an isotropic material, Yijkl must be an isotropic tensor of rank four that is symmetric in
the first pair and last pair of indices and also under the exchange of the firs pair with the last
pair. These conditions require that µ1 = µ2 ≡ µ above, so that

Yijkl = λδijδkl + µ(δikδjl + δilδkj). (32)

Hooke’s law now reads

Tij = −Yijklekl = −λδijekk− 2µeij = −λδij∇· ξ−µ(∂iξj + ∂jξi) = −
(
λ+

2

3
µ

)
δij∇· ξ− 2µΣij .

(33)
Since ekl is dimensionless, Yijkl and µ, λ have dimensions of stress ML−1T−2 . µ and λ are
the first and second of Lamé’s elastic constants.

On physical grounds, we might expect the coefficient of the expansion term to be proportional
to the bulk modulus K and and that of the shear tensor Σij to be proportional to the shear
modulus. It turns out that µ is in fact the shear modulus introduced earlier and that

Tij = −KΘδij − 2µΣij . (34)

We may show this by considering an example which allows us to express µ and λ in terms of
Young’s modulus E and Poisson’s ratio ν which were in turn related to the bulk and shear
moduli.

12



1.6.3 Relation between Lamé’s constants and Young’s modulus and Poisson ratio

• Let us try to relate λ, µ to E, ν . Consider the stress and strain due to hydrostatic pressure
on a cuboid. We found

Tij = pδij and eij = −p(1− 2ν)

E
δij ⇒ tr e = −3p(1− 2ν)

E
(35)

Inserting in the above stress vs strain relation Tij = −λδij tr e− 2µeij we get

pδij = λδij
3p(1− 2ν)

E
+ 2µ

p(1− 2ν)

E
δij ⇒ E = (3λ+ 2µ)(1− 2ν) (36)

Due to the isotropy of hydrostatic pressure, we get only one relation between λ, µ and E, ν . To
get another relation we must consider a situation where stress and strain aren’t both proportional
to the identity.

• Relation between λ, µ and E, ν via elongation of a rectangular bar: Let us relate
λ, µ to E, ν by looking at the example of elongation of a bar of length l and cross sectional
area w × h by the application of a tensile stress g in the x̂ direction on the right face. The
left end of the bar is held fixed, in fact, a corner of the bar that is located at the origin is held
fixed. The tensile force elongates the bar in the x direction and contracts it in the orthogonal
directions. By Hooke’s law we found

∆l

l
=

g

E
, and

∆w

w
=

∆h

h
= −ν∆l

l
= −νg

E
. (37)

Thus the displacement field is

ξ =

(
x

∆l

l
, y

∆w

w
, z

∆h

h

)
=

(
xg

E
,−yνg

E
,
−zνg
E

)
=

g

E
(x,−yν,−zν) (38)

It follows that the strain tensor eij = 1
2(∂iξj + ∂jξi) is diagonal

eij =
g

E

1 0 0
0 −ν 0
0 0 −ν

 (39)

What about the stress tensor? The only stress is g in the x̂ direction by the right face. So T2j

and T3j are all zero. By symmetry, T11 is the only non-vanishing component. So, the stress
tensor is

Tij = −g

1 0 0
0 0 0
0 0 0

 . (40)

Now Hooke’s law Tij = −λδijekk − 2µeij says

−g

1 0 0
0 0 0
0 0 0

 = − g
E

λ(1− 2ν) + 2µ 0 0
0 λ(1− 2ν)− 2µν 0
0 0 λ(1− 2ν)− 2µν

 (41)

Comparing diagonal entries, we read off two relations

E = 2µ+ λ(1− 2ν) and 0 =
g

E
(λ(1− 2ν)− 2µν) (42)
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We use these to express E, ν in terms of Lamé’s constants

E =
µ(2µ+ 3λ)

λ+ µ
and ν =

λ

2(λ+ µ)
(43)

Or conversely, we may express Lame’s constants in terms of E, ν

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
(44)

We argued that E ≥ 0 and 0 ≤ ν ≤ 1
2 so λ ≥ 0 and µ ≥ 0.

• In some treatments, one works with the bulk modulus K and the shear modulus µ instead
of the pair (λ, µ) or (E, ν). Recall that K = E

3(1−2ν) so that

K = λ+
2

3
µ. (45)

1.6.4 Eigenvalue problem for Yijkl for an isotropic material

• The tensor of elasticity Yijkl is a linear operator on the space of symmetric second rank
(strain) tensors: ekl 7→ Yijklekl . Since the space of strain tensors is six dimensional, Y may be
regarded as a 6× 6 matrix once we choose a suitable basis for symmetric tensors. It must have
six eigenvalues. Moreover, it is a symmetric operator as Yijkl = Yklij . Thus its eigenvalues must
be real and it must be diagonalizable. We wish to find its eigenvalues and eigenvectors in the
case when the material is isotropic, so that Yijkl = λδijδkl + µ(δikδjl + δilδjk).

• The only isotropic matrices are multiples of the identity. So it is natural to check if the
Kronecker delta is an eigenvector of Y :

Yijklδkl = λδijδklδkl + µ(δikδjlδkl + δilδjkδkl) = (3λ+ 2µ)δij , (46)

using δkk = 3. Thus scalar strain tensors ekl = 1
3Θδkl are eigenvectors of Y with eigenvalue

3λ + 2µ = 3K . Physically, this is very reasonable: it says that every pure expansion is an
eigenvector of Y with eigenvalue given by thrice the bulk modulus.

To get some insight into the remaining eigenvalues, let us compute the trace of Y :

tr Y = Yijij = λδijδij + µ(δiiδjj + δijδji) = 3λ+ 12µ. (47)

Thus the sum of the remaining five eigenvalues must be 10µ . We might even guess that all five
of these are equal to 2µ . But how will we find out?

• Since there are no more isotropic second rank tensors, we wonder what the remaining eigen-
vectors may be. To find them it will be convenient to choose a basis for symmetric 3× 3 strain
tensors consisting of the following six ‘elementary’ matrices. Three span the diagonal subspace

w11 =

1 0 0
0 0 0
0 0 0

 , w22 =

0 0 0
0 1 0
0 0 0

 , w33 =

0 0 0
0 0 0
0 0 1

 (48)
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and the remaining three span the space of off diagonal symmetric tensors

w12 + w21 =

0 1 0
1 0 0
0 0 0

 , w23 + w32 =

0 0 0
0 0 1
0 1 0

 , w31 + w13 =

0 0 1
0 0 0
1 0 0

 . (49)

In particular δ = w11 + w22 + w33 . Here the matrix elements of wij are

(wij)kl = δikδjl. (50)

Now we find the images of these basis vectors under the application of Y . Begin with w11 :

(Y w11)ij = Yijkl(w11)kl = (λδijδkl + µ(δikδjl + δilδjk))δk1δl1 = λδij + 2µδ1iδj1 (51)

Thus we get

Y w11 = (λ+ 2µ)w11 + λ(w22 + w33), Y w22 = (λ+ 2µ)w22 + λ(w11 + w33),
and Y w33 = (λ+ 2µ)w33 + λ(w11 + w22). (52)

In other words, the diagonal matrices w11, w22, w33 span an invariant subspace though none of
them is an eigenvector. However, it follows that traceless diagonal matrices are eigenvectors of
Y with eigenvalue 2µ . Indeed, for example, subtracting we have

Y (w11 − w22) = 2µ(w11 − w22) and Y (w22 − w33) = 2µ(w22 − w33). (53)

This accounts for the diagonal strain tensors. Next let us compute the action of Y on the
off-diagonal basis elements. For instance,

Y (w12 + w21)ij = [λδijδkl + µ(δikδjl + δilδjk)] (δk1δl2 + δk2δl1)
= λδij · 0 + µ [δi1δj2 + δi2δj1 + δi2δj1 + δi1δj2] . (54)

Hence,

Y (w12+w21) = 2µ(w12+w21), Y (w23+w32) = 2µ(w23+w32) & Y (w31+w13) = 2µ(w31+w13).
(55)

Thus we find that every symmetric off-diagonal matrix is an eigenvector of Y with eigenvalue 2µ .
Combining, we find that any traceless symmetric matrix has eigenvalue 2µ . There are five such
linearly independent matrices, say w12 + w21, w23 + w32, w31 + w13, w11 − w22 and w22 − w33 .
Thus the 2µ-eigenspace has dimension five and consists of all shear tensors. Moreover, the
corresponding eigenvalue is just twice the shear modulus. Exercise: Write out Y as a 6 × 6
matrix in the above basis, find its characteristic polynomial and thence its eigenvalues.

1.7 Elastic force density & Navier-Cauchy equations of elastostatics

Let us compute the force acting on a surface enclosing a finite volume V due to the material
lying outside by integrating the stress over the surface ∂V . The ith component of the force is

Fi = −
∫
∂V
Tij nj dA. (56)
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Here dA is a small surface element on ∂V with normal vector nj . Using Gauss’ divergence
theorem we can convert the surface integral to a volume integral to get

F = −
∫
V

(∇ ·T) dV (57)

Since the above expression holds for an arbitrary volume, we may express the elastic force density
f in terms of the divergence of the stress tensor:

f = −∇ ·T. (58)

For an isotropic medium f takes a simple form in terms of the divergence and Laplacian of the
displacement field. Indeed, recall that the stress tensor for such a medium is given by (33).
Taking its divergence we get the elastic force density

fi = −∂jTij = (λ+ µ) ∂i(∂jξj) + µ∂2
j ξi =

(
K +

µ

3

)
∂i(∂jξj) + µ∂2

j ξi. (59)

The condition for elastostatic equilibrium in the presence of gravity (represented through the
acceleration due to gravity g) is

f + ρg = 0 or ∇ ·T = ρg. (60)

Here the elastostatic force density for an isotropic material is given by

f =
(
K +

µ

3

)
∇(∇ · ξ) + µ∇2ξ. (61)

Thus, we arrive at the Navier-Cauchy equation for elastostatic equilibrium of an isotropic ma-
terial (

K +
µ

3

)
∇(∇ · ξ) + µ∇2ξ + ρg = 0. (62)

This is a second order PDE for the displacement field ξ . It may be simplified in the absence of
external forces.

1.8 Harmonic and bi-harmonic equations for expansion and displacement fields

• Ignoring body forces in the NC equation, the elastic force density must vanish in elastostatic
equilibrium:

f = −∇ ·T =
(
K +

µ

3

)
∇(∇ · ξ) + µ∇2ξ = 0. (63)

Re-expressing K = E/(3(1 − 2ν)) and µ = E/(2(1 + ν)) in terms of Young’s modulus E and
Poisson’s ratio ν we get

∇(∇ · ξ) + (1− 2ν)∇2ξ = 0. (64)

Now writing ∇2ξ = ∇(∇ · ξ)−∇× (∇× ξ) we get

2(1− ν)∇(∇ · ξ)− (1− 2ν)∇× (∇× ξ) = 0. (65)

Taking the divergence of this equation and identifying the expansion Θ = ∇ · ξ we get

∇2Θ = 0. (66)

• To obtain the bi-harmonic equation for ξ , we take the Laplacian of (64) which eliminates the
first term since ∇2Θ = 0 to get

∇2∇2ξ = 0. (67)
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1.9 Energy of deformation and Elastic potential energy

• The elastic potential energy density is the work done per unit volume, in distorting an elastic
material so that it acquires the strain tensor eij . We will see that it is given by u = 1

2Yijkleijekl
and that the total elastic potential energy stored in the material is U =

∫
u d3r . This formula

shows that Y can be taken symmetric under ij ↔ kl . In other words, Y is a symmetric operator
on the 6-dimensional linear space of symmetric strain tensors e . In elasto-static equilibrium,
the strains in the body must be such that the elastic potential energy is an extremum.

• Recall from thermodynamics, that in general, the work done to take a system from an initial
to final state depends on the process and not just the initial and final states. This is due to the
possibility of heat transfer. However, we shall assume that the work done in deforming the solid
is done slowly (reversibly and quasi-statically) with no heat exchange in such a way that the
solid is in approximate elastostatic equilibrium at all intermediate times. This ensures that the
work done depends only on the final state (defined by a displacement field ξ and strain e) as
the initial state is assumed to be an undeformed solid. Now we may build up the displacement
field ξ over, say, a unit time, in a particularly convenient way, by supposing the instantaneous
displacement field is given by ξ′(r, t) = tξ(r) for 0 ≤ t ≤ 1.

• To compute the work done in deforming an elastic solid, it is convenient to have a formula for
the work done by a force that is linear in the displacement, as elastic forces are of this sort.

• Thus, consider first the work done in elongating a wire by a length ξ within the range of validity
of Hooke’s law. The work done by the external force, (which must be equal and opposite to
the restoring force by the assumption of quasi-staticity) F = kξ′ which is proportional to the
extension may be expressed in a convenient way

W =

∫ ξ

0
F (ξ′)dξ′ =

∫ ξ

0
kξ′dξ′ =

1

2
kξ2 =

1

2
F (ξ)ξ. (68)

• More generally, if a force Fi(~ξ
′) linear in the vectorial displacement ξ′ produces a displacement

that goes from 0 to ~ξ along the curve ~ξ′(t) = t~ξ for 0 ≤ t ≤ 1, then the work done by the force
is given by W = Fi(ξ)ξi/2. To see this, we take Fi(ξ

′) = kijξ
′
j so that

W =

∫ ξ

0
Fi(ξ

′)dξ′i =

∫ 1

0
kijtξjξidt = kijξiξj

1

2
=

1

2
Fi(ξ)ξi. (69)

This formula will be useful to us in what follows, we can apply it to any force that is linear in
displacement, even if the force and displacement are vectors.

• To compute the work done in deforming an elastic body of general shape, we break it up into
small cubes and add up the work done in deforming each cube.

• Thus consider a small cube of side L centered at (0, 0, 0) such that the faces are normal to
x, y and z axes of the coordinate system. The work done in deforming this cube is the sum of
the work done by surface and body forces.

• The ith component of the force exerted by the external agent on the surface whose normal
points along x̂ is −Ti1L2 . Suppose the displacement produced by this force is ~ξ , then by
applying (69) the work done by this surface force is −ξi(L/2)Ti1(L/2)L2/2. Similarly the work
done by the external agent on the left face is ξi(−L/2)Ti1(−L/2)L2/2. To add these, it is
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convenient to express each of these as a Taylor expansion around x = 0 for small L/2. Thus
the sum of the work done on the left and right faces is

WL +WR =
1

2
L2

(
ξi(0)Ti1(0) +

∂(Ti1ξi)

∂x1

(
−L

2

)
− ξi(0)Ti1(0)− ∂(Ti1ξi)

∂x1

L

2

)
. (70)

Evidently the lowest order terms cancel. Identifying L3 as the volume of the cube we get

1

L2
(WL +WR) = −1

2
∂1(Ti1ξi) (71)

The contributions of the top, bottom, fore and aft faces are

1

L2
(WT +WB) = −1

2
∂3(Ti3ξi) and

1

L2
(WF +WA) = −1

2
∂2(Ti2ξi). (72)

Adding the contributions of all faces, the total work done per unit volume by surface forces is

ws = −1

2

∑
i,j

∂(Tijξi)

∂xj
. (73)

To compute the work done by body forces such as gravity we note that by the condition for
elastostatic equilibrium (60) we have f b = −f = ∇ · T . Again using (69), the work done per
unit volume by body forces is wb = 1

2(∇ · T )iξi = 1
2ξi∂jTij . Adding the work done by surface

and body forces we get the total work done per unit volume, which is the energy density

u = ws + wb = −1

2
∂j(ξiTij) +

1

2
ξi∂jTij = −1

2
(∂jξi)Tij = −1

2
SijTij = −1

2
eijTij . (74)

We replaced S by its symmetric part e since only the symmetric part can contribute on con-
traction with the symmetric tensor Tij .

• Adding up the work done on all the elementary cubes, the elastic potential energy stored in
a medium is given by

U = −1

2

∫
Tijeij d

3r =
1

2

∫
Yijkleijekld

3 r. (75)

From this expression it is clear that only the part of Yijkl that is symmetric under the exchange
ij ↔ kl contributes to U .

• Interestingly, the tensorial form of Hooke’s law can be regarded as the statement that the
stress tensor is the negative gradient of the elastic potential energy U regarded as a function of
the strain e : Indeed

Tij = − δU
δeij

= −Yijklekl. (76)

• Elastic potential energy of an isotropic material: For a homogeneous isotropic medium
the elastic potential energy can be expressed in terms of two elastic moduli

U [e] =
1

2

∫
Yijkleijekl d

3r =
1

2

∫
[λδijδkleijekl + µ (δikδjl + δilδjk) eijekl] d

3r

=
1

2

∫ [
λ( tr e)2 + 2µ tr e2

]
d3r. (77)
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This may also be expressed as

U [e] =

∫ [
1

2
KΘ2 + µΣijΣij

]
d3r (78)

by using the decomposition eij = Σij + 1
3Θδij which allows us to write

eijeij = ΣijΣij +
1

3
Θ2 as Σii = 0. (79)

1.10 Tensor of elasticity and potential energy for a cubic crystal

A crystal is an anisotropic material and we would expect the tensor of elasticity to have more
than two linearly independent components. Let us consider an infinite cubic crystal (simple
cubic or primitive cubic, e.g. Pyrite FeS2 ). A cubic crystal has a discrete group of translational
symmetries Z⊕ Z⊕ Z generated by shifts by the lattice spacing along each of the crystal axes,
taken along the x , y and z axes. This is a discrete subgroup of the group of translation
symmetries R⊕R⊕R of a homogeneous material. If the crystal is large compared to the lattice
spacing and we are only interested in phenomena on a scale large compared to the spacing,
then we have approximate homogeneity, so Yijkl may be taken independent of position. A
priori, the tensor of elasticity Yijkl has 81 components of which we have already argued at
most 21 can be independent. We expect the discrete symmetries of the crystal to relate various
components Yijkl to each other. Suppose we situate ourselves at a crystal vertex. A cubic
crystal is symmetric under rotations by right angles about the three lattice vectors, which we
take along x̂, ŷ, ẑ . A rotation by 2π is the identity. So the rotational symmetries about the x
axis form the cyclic group C4 as do the rotational symmetries about the y and z axes. Each
of these cyclic groups C4 is a discrete subgroup of the corresponding SO(2) rotation symmetry
group of an isotropic material about the various axes. We may compose such rotations about
possibly different axes to get more general rotational symmetries of the cubic crystal. In addition,
the crystal is symmetric under reflections in the three crystal xy, yz, zx-planes, which form the
group C2×C2×C2 . Physical properties of the crystal must be unchanged under these symmetry
transformations.

• The components of the tensor of elasticity may be segregated into those having 4 same indices,
like Yxxxx , those having precisely three identical indices, like Yxyyy , those with precisely two
repeated indices, like Yxxyz , and those with two pairs of distinct repeated indices, like Yxxyy .
Let us see what the symmetries imply for all these components.

• Invariance by right angle rotations imply that Young’s moduli for elongation in the three
cardinal directions must be equal. Now Txx = −Yxxxxexx+ · · · while Tyy = −Yyyyyeyy+ · · · etc.
Suppose we set up an elongation in the x direction with exx alone non-zero, it would result in
a certain Txx . If instead, we had a deformation with eyy alone non-zero and having the same
value, then the resulting Tyy must be the same as the previously determined Txx . Thus we
must have Yxxxx = Yyyyy = Yzzzz .

• We can show using reflection symmetry that all Yijkl , where an index appears an odd number
of times (e.g. Yxyyz or Yxyyy ) must vanish.

• Recall that the elastic potential energy density u = 1
2Yijkleijekl must be reflection invariant.

Consider for example the term Yxyyyexyeyy . Under a reflection in the yz plane, exy → −exy
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while eyy is unchanged. For the energy to remain unchanged, Yxyyy must go to −Yxyyy . But
the reflected crystal has the same properties as the original one, so Yxyyy must equal −Yxyyy ,
so it must be zero. Similarly, all components with precisely one lone index (e.g. Yyzyy , there
are 3× 2× 4 = 24 of these) or precisely two lone indices (e.g. Yxyzz , there are 3×

(
4
2

)
× 2 = 36

of these) must be zero. Thus 60 of the 81 components must vanish.

• The remaining 18 components have two distinct indices each repeated twice, like Yxxyy and
Yxyxy . But by 90 degree rotation + reflection invariance we conclude that replacement of all x ’s
by y ’s and vice versa should not change the value of elastic constants. Thus Yxxyy = Yyyxx =
Yzzxx = Yzzyy = Yyyzz etc. and Yxyxy = Yzyzy = Yzxzx etc.

• Combining, we have only 3 classes of non-zero components, Yxxxx = Yyyyy = Yzzzz ,

Yxxyy = Yyyxx = Yzzxx = Yzzyy = Yyyzz = . . . , and Yxyxy = Yzyzy = Yzxzx = . . . . (80)

Thus for a cubic crystal, the tensor of elasticity has three independent components, to be
contrasted with the two independent components for a homogeneous isotropic solid.

1.11 Bending of a beam - Cantilever bridge

Out treatment is based on the discussion in Blandford and Thorn §11.5.

Here we consider a beam of rectangular cross section with length l , width w and height
(thickness) t clamped rigidly at one end and extending horizontally in the absence of gravity.
We work with a coordinate system attached to the beam with x̂ along the length of the beam,
ŷ along the width and ẑ = x̂ × ŷ ( ẑ is vertically upwards when the beam is horizontal). The
origin is located at center of the clamped end. When the beam bends under its weight, this
coordinate system is not cartesian. In a curvilinear coordinate system, we need to use covariant
rather than partial derivatives in evaluating the strain tensor or the divergence of the stress
tensor etc. However, for small deformations, the difference can be shown to be of higher order
in small quantities, so we do not worry about this issue here.

• When the beam is allowed to sag due to gravity each elemental volume is displaced by ~ξ(x, z)
(we have translation invariance in the y direction along the width of the beam). The upper part
of the beam stretches while the lower part is compressed. Thus, there must be a neutral surface
on which the longitudinal strain ξx,x = ∂xξx is zero. This neutral surface is of course curved
downwards. x and y are the longitudinal and transverse coordinates on the neutral surface. We
will suppose that the neutral surface is in the middle of the beam (z = 0) so that the top and
bottom surfaces are at z = ±t/2. Let the angle the neutral surface makes with the horizontal
be θ(x) and its drop from the horizontal (through the undisturbed neutral surface) be η(x) ≥ 0
(η always vanishes at the clamped end x = 0) (see Fig. 1.11). We wish to find the shape of the
bent beam which is encoded in the profile η(x) and thereby determine the sag η(l) at the right
extreme.

• Consider a portion of the beam extending from the longitudinal position x with length dx
that is elongated by a small amount ε � dx measured at height z above the neutral surface.
The arc length of this extended beam segment is given by dx + ε which subtends angle θ at
the center of a circle of radius R where R is the radius of curvature. Consider the small right
triangle in Fig.1.11 with small angle θ , adjacent side of length z and opposite side of length
ε . This triangle is similar to the big right triangle with side opposite to angle θ having length
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dx+ ε and adjacent side of length R . Thus from the two similar triangles (see Fig.1.11)

tan θ =
ε

z
=
dx+ ε

R
. (81)

Thus the longitudinal strain (for ε� dx) is given by

ξx,x =
ε

dx
≈ ε

dx+ ε
=
z

R
= z

dθ

dx
. (82)

In the last equality, we have used the formula for curvature κ = 1
R = dθ

ds where the infinitesimal
arc length ds ≈ dx . Now (from the ‘horizontal’ right triangle with adjacent and opposite sides
dx and dη to the angle θ ) sin θ ≈ θ = dη

dx for small angle θ and so we get

1

R
= η′′(x) and ξx,x = z

d2η

dx2
. (83)

Figure 2: Bending of a cantilever bridge due to gravity: coordinates and similar triangles

• We may regard the beam as made of a bundle of long parallel fibres extending lengthwise to
compute the longitudinal stress using Hooke’s law:

Txx = −Eξx,x = −Ez d
2η

dx2
. (84)

Here, E is Young’s modulus. By the Navier-Cauchy equation the horizontal component of the
elastostatic force density must be balanced by the horizontal component of gravity in equilibrium.
Using (58) and (60) it is given by

fx = −Txi,i = −Txx,x − Txz,z = Ez
d3η

dx3
− Txz,z = −ρg sin θ. (85)

Due to translational invariance in y , Txy,y = 0.
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• Multiplying by z and integrating over the thickness (−t/2 ≤ z ≤ t/2) of the beam we get

Et3

12

d3η

dx3
=

∫ t/2

−t/2
z∂zTxzdz + ρg sin θ

∫ t/2

−t/2
zdz = [zTxz]

t/2
−t/2 −

∫ t/2

−t/2
Txzdz = −

∫ t/2

−t/2
Txzdz. (86)

Here, the gravity integral vanishes while in the first term we integrated by parts and assumed
that the shear stress vanishes on the upper and lower surfaces. This is true to the extent that
we ignore the force of the air above and below the beam on the top and bottom layers of the
beam - this is a good approximation for a heavy beam where air pressure is much smaller than
elastic and gravitational forces.

• We may use this result to find a simple expression (in terms of η ) for the ‘vertical’ shearing
force S(x) (normal to the neutral surface) which may be regarded as the restoring force exerted
by an element at x on the element to its immediate right (see shear force Fig. 3). By definition,
the vertical shearing force normal to the neutral surface is

S(x) =

∫ t/2

−t/2

∫ w/2

−w/2
Tzxdzdy = w

∫ t/2

−t/2
Txzdz = −Ewt

3

12

d3η

dx3
= −Dd3η

dx3
. (87)

• Here we used the symmetry Txz = Tzx . The proportionality factor

D = E

∫ t/2

−t/2

∫ w/2

−w/2
z2dzdy = Ew

t3

12
(88)

is called the flexural rigidity.

• We are interested in balancing the torque on any segment of the beam. The part of the beam
above the neutral surface has been expanded due to the bending and wishes to contract while
the lower part is compressed and wishes to expand. The combination of these two tendencies
is to produce a counterclockwise ‘bending torque’ M(x) due to the bending of the beam. The
ŷ component of this bending torque due to the force Txxdydz exerted by an element A on its
neighbour B to the right is given by (see Fig. 4)

M(x) =
∑

r× F =

∫
zTxxdydz. (89)

Here we have added up the torques (all pointing along ŷ ) computed about the points (x, y, z =
0), (holding x fixed) for each longitudinal section of the beam by integrating over all values of
y along its width.

• Since there is no longitudinal stress at the right extreme of the beam (no force on air),
Txx(x = l) = 0 so that M(l) = 0. We may express M(x) in terms of η by using (84) and the
expression for flexural rigidity (88). Indeed, we have

M(x) = −Eη′′(x)

∫∫
z2dydz = −Dη′′(x) or M = −D

R
. (90)

It follows that η′′(l) = 0. Moreover, we expect η′′ ≥ 0 due to the convex shape of the bent
beam as seen from above. Thus M ≤ 0 and contributes a net counterclockwise torque.

• From (87) we also deduce that the vertical shear force is the derivative of the bending torque

S(x) =
dM

dx
or Sdx = dM. (91)
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Figure 3: Vertical shearing force, and its torque.

This may be regarded as a torque balance equation where Sdx is the torque due to the vertical
restoring stress Tzx (see Fig. 3) and dM is the bending torque due to the horizontal stress Txx .

• In equilibrium the z (‘upward’) component of the Navier-Cauchy force balance equation must
also be satisfied:

fz − ρg cos θ = 0 or − Tzx,x − Tzz,z − ρg cos θ = 0. (92)

Integrating over thickness and width of the beam we get∫ t/2

−t/2

∫ w/2

−w/2
(Tzx,x + Tzz,z)dzdy = −ρgwt cos θ = −W cos θ, (93)

where W is the weight per unit length. From (87) we get

dS

dx
+ Tzz(z = t/2)− Tzz(z = −t/2) = −W cos θ (94)

As before, assuming the stress vanishes on the upper and lower surfaces of the beam we get

dS

dx
= −W cos θ. (95)
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Figure 4: Bending torque

Using (87) and approximating cos θ ≈ 1 for small θ we get a fourth order differential equation
for the vertical displacement field η(x):

d4η

dx4
=
W

D
. (96)

We may solve this fourth order differential equation using four appropriate boundary conditions.
Since the beam is clamped at x = 0 we have η(0) = η′(0) = 0. On the other hand, the bending
torque (M ∝ η′′ ) and shear force (S ∝ η′′′ ) vanish at the free end giving η′′(l) = η′′′(l) = 0.

• Thus we get

η(x) =
W

D

(
x4

24
− lx3

6
+
l2x2

4

)
for 0 ≤ x ≤ l. (97)

Thus the right extreme of the beam drops down a height η(l) = Wl4

8D . Notice that η′′(x) =
(W/2D)(x− l)2 > 0.

• For a beam of fixed length, the deflection η(l) is inversely proportional to the flexural rigidity
D . A simple illustration of the effect of this scaling may be found in joists that support floors.
Joists are several long cuboid shaped wooden beams going between walls and on top of which
the upper floor rests. According to Blandford and Thorne, joists are typically w = 2′′ wide
and t = 6′′ tall (‘tall and thin’) and of much greater length and may be treated as cantilevers
supported by walls at either end. However, if the joists are flipped so that they are short and
wide, i.e., of height t′ = 2′′ and w′ = 6′′ then the flexural rigidity reduces by a factor of
D/D′ = wt3/w′t′3 = 2× 63/(6× 23) = 9 and the floor may be expected to sag 9 times as much!

1.12 Buckling bifurcation

• See also §11.6 of Blandford and Thorne and §38-5 of Feynman Lectures Vol 2.

• Consider a playing card or visiting card of small thickness t width w and length l (t� w . l)
held with its length horizontal. It is subject to compressional forces F acting parallel to its length
on the left and right edges of width w which are held fixed (see Fig. 1.12).
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• Empirically we find that for small compressive stresses, the card remains with its face hor-
izontal and unbent. The card of course contracts lengthwise by ∆l ≈ Fl/Ewt . However, for
larger forces, we find that the horizontal flat face configuration is unstable to buckling. The
card bends or buckles as shown in the figure. It may buckle either upwards or downwards with
roughly equal probability. Since the card is light, gravity plays a negligible role. The main forces
acting on the card are the external forces F and the internal stresses Tij . Euler was perhaps
the first to study the buckling of a beam quantitatively and he found the critical minimal force
Fcrit for buckling to take place.

• Let us try to understand this buckling by a simple analysis of the forces and torques acting
on the card. We suppose that the card has a flexural rigidity D = Ewt3/12. Since the card is
very thin, we expect it to have a smaller D and be more susceptible to bending than a beam of
the same material with greater thickness but comparable width.

• Unlike for in the cantilever, we use Cartesian coordinates with x along the undisturbed length
of the card and z the vertical transverse coordinate while the card is translation invariant along
its width which is in the y direction.

Figure 5: Lengthwise cross section of buckled card subjected to compressive force F .

• Let us consider the portion of the card that extends from the horizontal coordinate x to the
right extreme x = l . The total torque about the point (x, y, z = η(x)) (for each fixed y along
the width of the card) acting on this portion of the card must vanish. It is the sum of the
bending torque M(x)ŷ due to the stress exerted by the section of the card to its immediate left
and the torque due to the external force at x = l . The torque due to the external force F is
Fηŷ . On the other hand, the bending torque Mŷ may be read off from Eq. (90) of §1.11. Since
here η is measured from below the card while in the cantilever it was measured from above, we
have M(x) = Dη′′(x) where D is the flexural rigidity. We will neglect the small differences that
arise from measuring x horizontally rather than along the card. Balancing the torques we get

(M + Fη)ŷ = 0 or D
d2η

dx2
+ Fη = 0. (98)

Clearly, an unbent card η ≡ 0 is a solution for any force F . Remarkably, there are forces for
which there are other solutions as well. Indeed, if the force is unspecified, we may view this as
an eigenvalue problem for η(x) with eigenvalue −F/D . The solutions satisfying the boundary
conditions η(0) = η(l) = 0 (here we ignore the fact that the ends of the card move in slightly
from their undisturbed locations x = 0 and x = l) are

ηn(x) = An sin knx with kn =

(
F

D

)1/2

=
nπ

l
for n = 0, 1, 2, 3 . . . . (99)
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Therefore, there is a critical ‘Euler’ force

Fcritical =
π2D

l
(100)

below which there is no solution other than η ≡ 0 corresponding to n = 0 (an unbent card).
At F = Fcritical the unbent card is still a solution but there is another solution corresponding
to n = 1 which looks like an arched card. This is an example of a bifurcation where there is
more than one solution of the equations for the same external conditions. Here the unbent card
is the unstable solution while the buckled cards are the stable ones. In fact, within this linear
approximation, the amplitude of A1 of the buckled card is not determined and can be arbitrary
(but small).

• With a card it is difficult to realize the higher modes n ≥ 2. However, these may be seen in
mountain folding. When tectonic plates are compressed in one direction, mountains (such as the
Jura mountains in France or even the Himalayas) can form by folding. These roughly parallel
rows of mountain chains may be regarded as a higher mode in the above model.

• This system gives us a simple example of spontaneous symmetry breaking. The original
card and the forces F are symmetric under up-down reflection. So we may expect to find the
card in a state that is up-down symmetric even in the presence of the force. However, this is not
the case for sufficiently large F . We say that the up-down symmetry is spontaneously broken
by the bent state in which the card is found. However, the symmetry is not altogether lost.
Rather, the symmetry transformation permutes states in which the card may be found. Indeed,
application of the vertical reflection converts an upward bent card to a card bent downwards. It
of course takes a flat card to itself. When the equations of a system possess a symmetry that is
not manifested in its state of lowest energy, we say that the symmetry is spontaneously broken.

• Effective potential for buckling bifurcation: Even though the card is a system with
infinitely many degrees of freedom we may try to model the above bifurcation by focussing
on just one coordinate η0 which is the maximum deflection of the card. We will model the
system using an effective potential or free energy V (η0) whose extrema represent the equilibrium
configurations. The minima of V should correspond to stable card configurations while its
maxima should correspond to unstable configurations. Let us enumerate some desirable features
that this potential could possess.

1. Since the card could equally well bend upwards or downwards, we wants the set of extrema
of V to be closed under reversal of sign. If V is even then it will guarantee that its extrema
come in pairs ±η∗0 .

2. V (η0) should depend parametrically on the external force F .

3. For F < Fcrit , V must have only one extremum. It should be a minimum at η0 = 0
corresponding to an unbent card. As F grows, the minimum should get flatter as its
stability gets weakened.

4. For F > Fcrit , V must have 3 extrema: a local maximum at η0 = 0 (as the flat card is
unstable to small perturbations) and a pair of global minima at η0 = ±η∗0 with V (η∗0) =
V (−η∗0), as the card bent in either direction is stable to small perturbations.
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The simplest effective potential with these properties is a quartic (bi-quadratic) function of
η0 , V (η0) = λ(F )(η2

0 − (η∗0(F ))2)2 where η∗0 is a function of F with the property that |η∗0| > 0
for F > Fcritical and zero for F ≤ Fcritical . To model the bifurcation we observe that as F
increases, V (η0) must become become flatter at η0 = 0. For F > Fcritical , the minimum at
η0 = 0 becomes a maximum surrounded by two minima on either side (a double well potential).
The maximum at η0 = 0 is unstable while the minima on either side (±η∗0 ) are stable equilibria
(see Fig 6). These two minima of V correspond to a card that has buckled either upwards or
downwards relative to the flat card.

Figure 6: Effective potential of a card that buckles as a function of the maximum deflection η0 for
various values of external force F .

2 Elastodynamics

2.1 Equations of elastodynamics

• In an elastic body in stable static equilibrium, the stresses (both internal and external) and
strains adjust themselves so that Hooke’s law Tij = −Yijklekl is satisfied, the elastic potential
energy is a minimum and the Navier-Cauchy equation is satisfied. But out of equilibrium,
when there are unbalanced external or internal forces, parts of the material may move a bit, so
that the displacement field ξ(r, t) is a function of time. We are interested for example in the
situation resulting from strains due to the application of external stresses on a body, which are
subsequently withdrawn. Restoring stresses should develop resulting in deformation and relative
motion of parts of the body. We assume the motions are small displacements about equilibrium
locations, so ξ is small, and Hooke’s law should still relate the stress and strain tensors at
any instant of time. Here r labels material elements by specifying their equilibrium locations.
So ξ(r, t) is a Lagrangian variable since it refers to the displacement of a particular material
element. The instantaneous location of this material element is r + ξ(r, t). Its instantaneous

velocity is ∂ξ
∂t and its acceleration is ∂2ξ

∂t2
. Suppose its mass is dm = ρdV where dV is its

volume, which is an elemental volume located around r + ξ . ρ therefore is the density at the
location r + ξ . Now dV could change and move around as the element vibrates, and ρ could
also change, but dm remains fixed by conservation of mass.

The mass × acceleration of this element is ρdV ∂2ξ
∂t2

. Here ξ is assumed small. Any departure
of ρ(r + ξ) from ρ(r) would be of order ξ . So if we work to lowest order in infinitesimals, we

may evaluate ρ at r in the expression ρ dV ∂2ξ
∂t2

. This mass × acceleration must equal the
force acting on the element whose undisturbed location is r . This force is usually comprised of
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two parts, (a) external body forces that can be described as a force per unit volume fbody (e.g.
gravity fbody = ρg where g is the acceleration due to gravity) and (b) surface forces that act
across area elements in the material and are due to neighboring material. If we ignore surface
forces, then Newton’s force equation per unit volume says that ρξ̈ = ρg . To find the surface
force on the small element that is centered at r+ξ , we recall that the small force acting across a
small surface n̂dA is F(n̂dA, r + ξ), due to the material on the side from which n̂ points on the
material on the side to which n̂ points. We may approximate F(n̂dA, r + ξ) ≈ F(n̂dA, r) since
the difference is second order in infinitesimals. Moreover, by the definition of the stress tensor,
Fi = Tijn̂jdA . So let n̂ denote the outward pointing normal to the surface ∂dV enclosing an
element contained in volume dV . Then the ith component of the surface force acting on this
element may be expressed as a volume integral using the divergence theorem

ithcomponent of surface force = −
∫
∂dV

TijnjdA = −
∫
dV
∂jTijdV. (101)

Using Hooke’s law Tij = −Yijklekl Newton’s equation for ξ becomes

ρξ̈i = ρgi + ∂jYijklekl. (102)

• The case of a homogeneous isotropic material is particularly interesting. In this case, the
surface force on an element occupying small volume dV is (61)

fidV = −∂jTijdV =
[
(λ+ µ)∂i∇ · ξ + µ∇2ξi

]
dV. (103)

This plus the body force must equal ρdV ξ̈ . Canceling out dV , the equation of motion of linear
elastodynamics for a homogeneous isotropic material is (λ+ µ = K + µ/3)

ρ
∂2ξ

∂t2
= (λ+ µ)∇(∇ · ξ) + µ∇2ξ + ρg. (104)

If the material is isotropic but inhomogeneous, λ, µ would (in general) be functions of location
r and the equations would involve derivatives of λ, µ as well. The difference between ρ(r +
ξ) ≈ ρ(r) + ξ · ∇ρ(r) and ρ(r) is first order in the infinitesimal displacements ξ . So to first
order in infinitesimals we may take ρ(r + ξ) ≈ ρ(r) in the acceleration term. Aside from the
inhomogeneous body force, which is like a source, this is a homogeneous linear PDE, second
order in both space and time derivatives of the displacement field ξ .

2.2 Material derivative

• In the Eulerian description, we are interested in the time development of various variables like
velocity, pressure, density and temperature at a given location (point of observation) ~r = (x, y, z)

in the material. The change in say, density, at a fixed location is ∂ρ(~r)
∂t . However, different

material particles will arrive at the point ~r as time elapses. It is also of interest to know how the
corresponding dynamical variables evolve, not at a fixed location but for a fixed small material
element, as in a Lagrangian description3. This is especially important since the dynamical laws

3By a small material element, we mean a collection of molecules that is sufficiently numerous so that concepts
such as ‘volume occupied by the element’ make sense and yet small by macroscopic standards so that the velocity,
density e.t.c., are roughly constant over its extent. For instance, we may divide a container with 1023 molecules
into 10000 fluid elements, each containing 1019 molecules.
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of mechanics apply directly to the material particles, not to the point of observation. So we may
ask how a variable changes along the ‘flow’, so that the observer is always attached to a fixed
material element. For instance, the change in density of a fixed element in a small time dt as it
moves from location r to the displaced location r + dr is

dρ = ρ(r + dr, t+ dt)− ρ(r, t) ≈ dr · ∇ρ+
∂ρ

∂t
dt (105)

We divide by dt and take the limit dt → 0 and observe that v = dr
dt is the velocity of the

material. Thus the instantaneous rate of change of density of a material element that is located
at r at time t is

Dρ

Dt
≡ dρ

dt
=
∂ρ

∂t
+ ~v · ∇ρ = (∂t + vx∂x + vy∂y + vz∂z) ρ (106)

D
Dt = d

dt ≡
∂
∂t + ~v · ∇ is called the material (sometimes total, substantial or convective or

fisherman’s) derivative. It is related to the Lie derivative along a vector field. It can be used to
express the rate of change of a physical quantity (velocity, pressure, temperature etc.) associated
to a fixed fluid element, i.e., along the flow specified by the velocity field ~v . This formula for the
material derivative bears a resemblance to the rigid body formula relating the time derivatives
of a vector (e.g. momentum or angular momentum) relative to the lab and co-rotating frames:(
dA
dt

)
lab

=
(
dA
dt

)
co−mov

+ Ω×A , where Ω is the angular velocity of the rigid body. A quantity
f (could be a scalar or a vector) is said to be conserved along the flow or dragged by the flow
if its material derivative vanishes Df

Dt = 0.

• Similarly, the material derivative of velocity Dv
Dt = ∂tv + v · ∇v gives us the instantaneous

acceleration of the material element that is at r at the time t .

• Since D
Dt is a first order partial differential operator, Leibnitz’s product rule of differentiation

holds Dfg
Dt = f DgDt + Df

Dt g for scalar functions f, g . Similarly for a scalar f and vector field ~w ,
we check that the Leibnitz rule holds

D(f ~w)

Dt
=
Df

Dt
~w + f

D~w

Dt
. (107)

2.3 Conservation of mass and momentum in elastodynamics

In this section we derive the equations of elastodynamics for the displacement field ξ from an
Eulerian viewpoint (by contrast with the Lagrangian description of §2.1) using conservation of
mass and momentum. When linearized, the resulting equations reduce to those of §2.1.

• Conservation of mass: Consider material of mass density ρ(x, t) occupying a region. Now
consider a small sub-volume V fixed in space. Let us assume that there are no sources or sinks
of material in V . Suppose v(r, t) is the instantaneous Eulerian velocity of the material that
occupies the location r at time t . Then the flux i.e., rate at which the mass moves across a
unit area on the boundary ∂V of V is ρv · n̂ where n̂ is the outward pointing normal. Mass
conservation then requires

∂

∂t

∫
ρdV = −

∫
∂V
ρv · dΣ or

∂

∂t

∫
ρdV = −

∫
V
∇ · (ρv)dV (108)
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by Gauss’ divergence theorem. Here, d~Σ is the elemental outward-pointing surface area vector
on the boundary ∂V . Since this must be true for an arbitrary volume dV we get the continuity
equation

∂ρ

∂t
+∇ · (ρv) = 0. (109)

We say that mass is locally conserved and that the mass density ρ and mass current ρv satisfy
a local conservation law, which is also called the continuity equation.

• In elasticity, it is often convenient to work with the displacement ξ(x, t) rather than velocity
field v(x, t). v(r, t) is the instantaneous velocity of the material at the location r , thus it is
given by the partial derivative v = ∂ξ

∂t of the instantaneous displacement of the material at r .

• Conservation of momentum: Each component of momentum density ρvi , just like mass
density ρ is locally conserved. The ith component of momentum dpi crossing an area element
d~Σ per unit time is given by ρviv · d~Σ = ρvivjdΣj . This is a vector linear in the vector d~Σ.
By ‘peeling off’ dΣj , we may define the second rank mechanical momentum flux density (or
current) tensor Tmij :

dpi = Tmij dΣj where Tmij = ρvivj . (110)

In more detail, Tij is the ith component of the momentum crossing a unit surface in the direction
of its normal which is assumed to point in the jth direction. Consequently, Tijnj is the ith

component of the momentum crossing a unit surface in the direction of its normal n̂ . The
mechanical momentum flux tensor Tm

ij is manifestly symmetric and quadratic in velocities. In
the absence of momentum sources or sinks we have

∂t

∫
V
ρvi dV = −

∫
∂V
Tij dΣj = −

∫
V
∂jTij dV. (111)

As this is true for any fixed volume V we obtain a local conservation law for momentum:

∂t(ρvi) + ∂jT
m
ij = 0 or ∂t(ρv) +∇ ·Tm = 0. (112)

This equation ignores momentum transport due to elastic forces. More generally, when an elastic
medium is deformed, there is an elastic restoring force per unit volume f(r) = −∇ ·Tel on the
material element at r . Thus in an elastic medium the local conservation of momentum takes
the form

∂(ρv)

∂t
+∇ · (Tel + Tm) = 0. (113)

By Hooke’s law the elastic stress tensor is given in terms of the displacement field by T el
ij =

−Yijklekl so that this may be viewed as a PDE for the density and displacement fields along
with the continuity equation. Notice that the equation is quadratically non-linear in velocities
through the mechanical stress tensor.

• Equation of elastodynamics: We may combine mass and momentum conservation to
obtain a first order (in time) evolution equation for the velocity field v(r, t). When expressed
in terms of the displacement field ξ this becomes a second order non-linear evolution equation
called the equation of elastodynamics. It is obtained by multiplying the continuity equation
ρt +∇ · (ρv) = 0 by v and subtracting it from the momentum conservation equation

ρtvi + vi∂j(ρvj) = 0 and viρt + ρ
∂vi
∂t

+ ∂j(ρvivj) + ∂jT
el
ij = 0 (114)
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to get

ρ

[
∂vi
∂t

+ vj∂jvi

]
= −∂jT el

ij or ρ(∂tv + v · ∇v) = −∇ · T el. (115)

This is a quadratically non-linear equation for v = ∂ξ
∂t . Including external body forces and

expressing the LHS in terms of the material derivative we get

ρ
Dv

Dt
= −∇ · T el + fbody. (116)

Recalling that the material derivative of the Eulerian velocity v is the acceleration of the material
element at r at time t , we see that this is Newton’s second law per unit volume.

• For typical elastic deformations, the non-linear advection term may be ignored. To see why,
suppose L and T are characteristic length and time scales associated to the system. Then the
ratio of the second term ρv · ∇v to the first term ρ∂tv is of the order the strain (ξ/L) where
ξ is the magnitude of the displacement field. For typical materials the strain O(ξ/L) ≤ 10−3 .
Thus we may ignore the second term to get a linearized equation for the displacement field ξ :

ρ
∂2ξ

∂t2
= −∇ ·Tel. (117)

For a homogeneous isotropic medium with constant elastic moduli this becomes

ρ
∂2ξ

∂t2
= (λ+ µ)∇(∇ · ξ) + µ∇2ξ. (118)

This equation (which coincides with (104) upon inclusion of body forces) is to be solved in
conjunction with the continuity equation. However, for most elastic deformations, ρ may be
treated constant. This is because the fractional change in density has the same magnitude as
the expansion Θ which is small in many circumstances. To see this, consider a small material
volume of fixed mass M and density ρ = M/V . If the mass density ρ changes by a small
amount δρ producing a change δv in the specific volume v = 1/ρ (volume per unit mass) then

v + δv =
1

ρ+ δρ
or v

(
1 +

δv

v

)
=

1

ρ

(
1

1 + δρ
ρ

)
≈ 1

ρ

(
1− δρ

ρ

)
. (119)

Since the mass of the material element does not change, δv
v = ∆V

V = ∇ · ξ = Θ, we get

δρ

ρ
= −∇ · ξ = −Θ with |Θ| . 10−3. (120)

2.4 Comparison between elastodynamic and electromagnetic wave equations

The equation of motion of elastodynamics (104) bears a resemblance to the vector wave equation
in electrodynamics, for the vector potential. To see this, we begin with Maxwell’s equations (in
cgs un-rationalized Heaviside-Lorentz units)

∇ ·B = 0, ∇×E = −1

c

∂B

∂t

∇ ·E = ρ and ∇×B = j +
1

c

∂E

∂t
. (121)
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The homogeneous equations on the first line state the absence of magnetic monopoles, and
Faraday’s law of induction. The inhomogeneous equations on the second line are Gauss’ law
and Ampere’s law with Maxwell’s correction term involving the time derivative of the electric
field (the displacement current). The electric charge and current densities must in addition
satisfy the continuity equation (1/c)∂tρ+∇ · j = 0.

• The first pair of homogeneous Maxwell equations are identically satisfied if the fields are
expressed in terms of scalar and vector potentials (φ,A)

E = −∇φ− 1

c

∂A

∂t
and B = ∇×A. (122)

However, the gauge potentials (φ,A) are not uniquely determined by the E and B fields, more
on this momentarily. In terms of the gauge potentials, the Ampere-Maxwell equation becomes
(use ∇× (∇×A) = −∇2A +∇(∇ ·A))

−∇2A +∇(∇ ·A) = j− 1

c
∂t∇φ−

1

c2

∂2A

∂t2
. (123)

This equation bears some resemblance to the equation of elastodynamics for a homogeneous
isotropic material. The body force per unit volume ρg = f plays the role of the current
density. Though there is no elastic analogue for the scalar potential term, A plays the role of ξ .
However, while ξ is the directly measurable displacement field, A is not uniquely determined
by the measurable electric and magnetic fields. Two gauge potentials (φ,A) and (φ′,A′) which
differ by a gauge transformation (here χ(r, t) is an arbitrary scalar function)

A′ = A +∇χ, φ′ = φ− 1

c

∂χ

∂t
. (124)

correspond to the same electromagnetic fields. Gauge transformations form a group G which
acts on the space of gauge potentials A = {(φ,A)} . Each orbit (equivalence class of gauge
potentials) corresponds to an electromagnetic field (E,B) and the space of electromagnetic
fields is the quotient A/G . A choice of orbit representatives is called a gauge choice. It is
obtained by imposing condition(s) on the gauge potentials which are satisfied by one set of
gauge potentials from each equivalence class.

• A convenient gauge choice is Coulomb gauge ∇ ·A = 0. Given a vector potential A′ we find
its representative in Coulomb gauge by making the gauge transformation A = A′−∇χ with χ
chosen to satisfy Poisson’s equation ∇2χ = ∇ ·A′ .
• Gauss’ law simplifies in Coulomb gauge: ∇ · E = −∇2φ − 1

c
∂∇·A
∂t = 0 becomes −∇2φ = ρ ,

whose solution involves the Coulomb potential (this is why ∇ · A = 0 is called the Coulomb

gauge!) φ(r, t) = 1
4π

∫
d3r′ ρ(r′,t)

|r−r′| . In particular, in Coulomb gauge, the scalar potential φ(r, t)
is not a dynamical quantity, it is entirely fixed by the instantaneous charge density. Now let
us specialize to the case where there are no charges present in the interior and boundary of
the region of interest, so that ρ = 0. Then φ = 0. In the absence of charges, Coulomb gauge
is called radiation gauge (φ = 0, ∇ · A = 0), since electromagnetic radiation is most easily
described in this gauge. In radiation gauge, the Ampere-Maxwell equation becomes

1

c2

∂2A

∂t2
= ∇2A + j, (provided ∇ ·A = 0, φ = ρ = 0). (125)
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This is the vector wave equation in the presence of a current source j . One is often interested in
EM waves in vacuum, in which case j = 0 and we get the homogeneous vector wave equation.

• The Coulomb/radiation gauge condition ∇·A is often called the transversality condition. To
see why, let us consider a monochromatic plane wave that propagates along the wave vector k

A(r, t) = Ãke
i(k·r−ωt). (126)

The direction of the Fourier amplitude Ãk of this mode is called the direction of polarization.
Check that ∇ · A = 0 implies k · Ãk = 0. This means the polarization must be orthogonal
to the direction of propagation. Thus there can be only two linearly independent (transverse)
propagating components of the vector potential. These correspond to the two independent
polarizations of electromagnetic radiation. For the above plane wave to satisfy the vector wave
equation, ω and k must satisfy the dispersion relation ω2 = c2k2 . Since the wave equation is
linear, both the real and imaginary parts of this plane wave are solutions and we may restrict
to them when seeking real physical solutions.

• The equations of elastodynamics

ρ
∂2ξ

∂t2
= (λ+ µ)∇(∇ · ξ) + µ∇2ξ + fb (127)

reduce to the vector wave equation if λ + µ = 0. Comparing, the speed of transverse elastic
waves should be c =

√
µ/ρ . λ, µ are both non-negative for typical materials, so we expect

waves in elastic media to be a superposition of transverse and longitudinal disturbances, as we
will see below.

2.5 Compressional and shear waves in a homogeneous isotropic elastic medium

• Here we investigate solutions of the equations of elastodynamics, especially in unbounded
media in the absence of body forces. We use the Helmholtz decomposition theorem4 of vector
calculus to write the displacement field as a sum of a divergence-free and a curl-free part

ξ = ξT + ξL where ∇ · ξT = 0 and ∇× ξL = 0. (128)

We will show that ξT and ξL each satisfies a vector wave equation (assuming the density
variations ∇ρ may be ignored). ξT being divergence-free is a transverse wave (k · ξ̃T = 0 in
Fourier space). It does not cause any change in volume or density, it is called a shear wave.
On the other hand ξL is not divergence free and describes a longitudinal compressional wave
(a sound wave). These two waves have distinct characteristic speeds of propagation. To begin
with, the equation of elastodynamics is

ρ(ξ̈T + ξ̈L) = (λ+ µ)∇(∇ · ξL) + µ∇2(ξT + ξL). (129)

We may try to eliminate ξT by taking the divergence of this equation and using ∇ · ξT = 0 and
∇ρ = 0. We get

∇ · (ρξ̈L) = (λ+ µ)∇2∇ · ξL + µ∇2∇ · ξL = (λ+ 2µ)∇ · (∇2ξL) (130)

4Helmholtz’s theorem says that a smooth vector field in R3 that vanishes faster than 1/r at infinity can be
uniquely decomposed as a sum of divergence-free and curl-free parts.
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So we have
∇ ·
(
ρξ̈L − (λ+ 2µ)∇2ξL

)
= 0. (131)

Thus we have

∇ ·
(
ρξ̈L − (λ+ 2µ)∇2ξL

)
= 0 and ∇×

(
ρξ̈L − (λ+ 2µ)∇2ξL

)
= 0. (132)

The second equation follows since ξL is curl-free. Thus the vector field in parentheses is both
curl free and divergence-free. By Helmholtz’s theorem on the uniqueness of vector fields with
specified divergence and curl, it must be the zero vector field (assuming it vanishes sufficiently
fast at infinity). Thus ξL satisfies a vector wave equation

ρ
∂2ξL
∂t2

= (λ+ 2µ)∇2ξL (133)

It describes curl-free ‘sound’ waves of expansion/compression, since ∇ · ξL 6= 0. These waves

propagate at the speed csound =
√

λ+2µ
ρ .

• On the other hand, we may try to eliminate ξL by taking the curl of the equation of elasto-
dynamics assuming ρ to be constant. We get

∇× (ρξ̈T − µ∇2ξT ) = 0 and ∇ · (ρξ̈T − µ∇2ξT ) = 0 (134)

The second equation follows from ∇ · ξT = 0. Thus the vector field in parentheses is both curl
free and divergence-free and must be identically zero by Helmholtz’s uniqueness theorem. Hence
ξT satisfies a vector wave equation

ρξ̈T = µ∇2ξT (135)

describing non-compressional waves (∇ · ξT = 0) that propagate with a speed cshear =
√
µ/ρ .

These are called shear waves, they are a bit like electromagnetic waves in the sense that they are
transverse waves, since ∇· ξT = 0. They travel at a lower speed than the sound waves described
by ξL above.

• The ratio of the speeds of sound and shear waves is independent of the density of the medium

csound

cshear
=

√
2µ+ λ

µ
(136)

Measurement of this ratio in seismic waves during an earth quake can give information about
the elastic constants of the region (of the Earth’s crust) through which the waves propagated.

2.6 Plane wave solutions for shear and compressional waves

We seek monochromatic plane wave solutions ξ(x, t) ∝ ξke
i(k·x−ωt) (for constant density) to

the linear elastodynamic wave equation (127) without body forces. The substitutions ∂t →
−iω,∇2 → −k2,∇ → ik,∇· → ik· and ∇× → ik× turn the PDE into a system of decoupled
algebraic equations for the Fourier modes ξk :

ρω2ξk = µk2ξk + (λ+ µ) k(k · ξk) = µk2ξk +

(
K +

1

3
µ

)
k(k · ξk) (137)
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Using the Helmholtz decomposition and monochromatic, plane wave ansatz for the displacement
field ξ we see that ξL is the longitudinal component of the oscillation along k̂ and ξT is the
transverse component of the oscillation perpendicular to k̂ :

∇× ξL = 0 and ∇ · ξT = 0 ⇒ k× ξ̃L = 0 and ξ̃T · k̂ = 0 (138)

where K = λ + 2µ/3. Longitudinal waves have only one degree of freedom ξ̃L = ξ̃Lk̂ and
are completely describable by the single polarization component ξ̃L . On the other hand, ξ̃T can
have two independent polarizations since it can point in any of the two directions perpendicular
to the direction of propagation k̂ . Thus an elastodynamic wave, unlike a EM wave in vacuum can
have a total of three possible polarizations. Interestingly, even EM waves can have a longitudinal
polarization component when light travels through a plasma or a superconductor.

• The dispersion relations for longitudinal and transverse waves follow from the algebraic equa-
tion (137)

ω2
L = (λ+ 2µ)k2/ρ =

(
K +

4

3
µ

)
k2/ρ and ω2

T = µk2/ρ. (139)

2.7 Energy of elastodynamic waves in an isotropic homogeneous medium

Just like electromagnetic waves or waves on a string, elastodynamic waves also transport en-
ergy. The energy density of such waves in an isotropic, homogenous medium includes a kinetic
contribution (ρξ̇2)/2 in addition to the elastic potential energy of Eq. (78) leading to the total
energy

E =

∫ (
1

2
ρξ̇2 +

1

2
KΘ2 + µΣijΣij

)
dr. (140)

Let us derive the analogue of this formula for energy stored in the longitudinal waves and
compute it in a polychromatic example. Dotting (133) with ξ̇L and integrating we get∫ [

ρξ̇L ·
∂2ξL
∂t2

− (λ+ 2µ)ξ̇L · ∇2ξL

]
dr =

∫ [
d

dt

(
ρξ̇2
L

2

)
+ (λ+ 2µ)(∂j ˙ξLi)(∂jξLi)

]
dr = 0

or
d

dt

∫
1

2

(
ρξ̇2
L + (λ+ 2µ)(∂jξLi)(∂jξLi)

)
dr =

d

dt

∫
1

2

(
ρξ̇2
L + (λ+ 2µ)SLijS

L
ij

)
dr = 0 (141)

upon integrating by parts.

• To calculate the potential energy we take k̂ along ẑ so that the longitudinal displacement
may be written as a Fourier integral:

~ξL(z) = ξL,z ẑ =

∫ [
ξ̃L,ke

i(kz−ωL(k)t) + ξ̃∗L,ke
−i(kz−ωL(k)t)

]
[dk] ẑ. (142)

Here [dk] = dk/2π and ωL(k) = |k|
√

(K + 4µ/3)/ρ . The second term is the complex conjugate

of the first and ensures that ~ξL(z) is real. Moreover the first term includes both right- and
left-moving waves as k takes both positive and negative values though ωL(k) ≥ 0 by definition.
It follows that ∂xξx = ∂yξy = 0 so that the expansion becomes Θ = ∇ · ξ = ∂zξz = Szz . All
other components of Sij vanish. Thus, the total energy of the longitudinal wave becomes

EL =

∫
1

2

(
ρξ̇2
L + (λ+ 2µ)Θ2

)
dr =

∫
1

2

(
ρξ̇2
L +

(
K +

4

3
µ

)
Θ2

)
dr. (143)
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We compute the KE and PE by going to Fourier space

KEL =
ρ

2

∫
[dk1dk2](−iωL(k1))(−iωL(k2))ξ̃L,k1 ξ̃L,k2

∫
dzei(k1+k2)ze−i(ωL(k1)+ωL(k2))t

∫
dxdy

+
ρ

2

∫
[dk1dk2](−iωL(k1))(iωL(k2))ξ̃L,k1 ξ̃

∗
L,k2

∫
dzei(k1−k2)ze−i(ωL(k1)−ωL(k2))t

∫
dxdy

+
ρ

2

∫
[dk1dk2](iωL(k1))(iωL(k2))ξ̃∗L,k1

ξ̃∗L,k2

∫
dze−i(k1+k2)zei(ωL(k1)+ωL(k2))t

∫
dxdy

=
ρA

2

∫
[dk]ωL(k)2

[
2|ξ̃L,k|2 − ξ̃L,kξ̃L,−ke−2iωL(k)t − ξ̃∗L,kξ̃∗L,−ke2iωL(k)t

]
. (144)

Despite appearances, KEL is a positive quantity. Here A =
∫
dxdy is the transverse area of the

region and
∫
dzei(k1+k2)z = 2πδ(k1 + k2). Similarly, we compute the potential energy by going

to Fourier space,

PEL =
A

2

(
K +

4µ

3

)∫
[dk1dk2](ik1)(ik2)ξ̃L,k1 ξ̃L,k2

∫
dzei(k1+k2)ze−i(ωL(k1)+ωL(k2))t

+
A

2

(
K +

4µ

3

)∫
[dk1dk2](−ik1)(−ik2)ξ̃∗L,k1

ξ̃∗L,k2

∫
dze−i(k1+k2)zei(ωL(k1)+ωL(k2))t

+A

(
K +

4µ

3

)∫
[dk1dk2](ik1)(−ik2)ξ̃L,k1 ξ̃

∗
L,k2

∫
dzei(k1−k2)ze−i(ωL(k1)−ωL(k2))t

=
A

2

(
K +

4µ

3

)∫
[dk]k2

[
2|ξ̃L,k|2 + ξ̃L,kξ̃L,−ke

−2iωL(k)t + ξ̃∗L,kξ̃
∗
L,−ke

2iωL(k)t
]
. (145)

Using the dispersion relation ρω2
L = (K + 4

3µ)k2 (139) we see that the first terms in KEL and
PEL are the same while the last two terms are equal in magnitude but opposite in sign. Though
neither the KEL nor PEL is separately conserved the total energy is conserved and is given by
the simple and manifestly time-independent formula

EL = 2A

(
K +

4µ

3

)∫
[dk]k2|ξ̃L,k|2 = 2ρA

∫
[dk]ωL(k)2|ξ̃L,k|2. (146)

• For a monochromatic wave (only one wave number k,−k ) ξ is periodic in time with period
Tk = 2π/ωL(k) so that it is natural to average the PE and KE over the time period (〈f〉 =
1
T

∫ T
0 fdt). Then the oscillatory terms in KEL and PEL average to zero and we see that the

time-averaged KEL and PEL are equal:

EL = 2〈KEL〉 = 2〈PEL〉 = 2A

(
K +

4µ

3

)∫
[dk]k2|ξ̃L,k|2. (147)

We say that on average the energy is equally partitioned between kinetic and potential energies.
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