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This paper concerns the classical dynamics of three coupled rotors: equal masses moving on a circle subject to attractive
cosine inter-particle potentials. It is a simpler variant of the gravitational three-body problem and also arises as the
classical limit of a model of coupled Josephson junctions. Unlike in the gravitational problem, there are no singularities
(neither collisional nor non-collisional), leading to global existence and uniqueness of solutions. In appropriate units,
the non-negative energy E of the relative motion is the only free parameter. We find analogues of the Euler-Lagrange
family of periodic solutions: pendulum and isosceles solutions at all energies and choreographies up to moderate
energies. The model displays order-chaos-order behavior: it is integrable at zero and infinitely high energies but
displays a fairly sharp transition from regular to chaotic behavior as E is increased beyond Ec ≈ 4 and a more gradual
return to regularity. The transition to chaos is manifested in a dramatic rise of the fraction of the area of the Hill
region of Poincaré surfaces occupied by chaotic sections and also in the spontaneous breaking of discrete symmetries
of Poincaré sections present at lower energies. Interestingly, the above pendulum solutions alternate between being
stable and unstable, with the transition energies cascading geometrically from either side at E = 4. The transition to
chaos is also reflected in the curvature of the Jacobi-Maupertuis metric that ceases to be everywhere positive when E
exceeds four. Examination of Poincaré sections also indicates global chaos in a band of energies (5.33 . E . 5.6)
slightly above this transition.

Keywords: Three rotors, coupled Josephson junctions, periodic orbits, stability, cascade of transitions, Jacobi-
Maupertuis curvature, onset of chaos, order-chaos-order transition, global chaos, choreographies.

We study the classical three rotor problem: three equal
point masses moving on a circle subject to attractive cosine
inter-particle potentials. It arises as the classical limit of a
chain of coupled Josephson junctions. Unlike in the grav-
itational problem, particles can pass through each other
without producing singularities. In center of mass vari-
ables, the relative energy E serves as a control parame-
ter. We discover classes of periodic solutions: choreogra-
phies up to moderate energies and pendula and breathers
at all energies. The system is integrable at zero and infi-
nite energies but displays a fairly sharp transition to chaos
around E ≈ 4, thus providing an instance of the order-
chaos-order transition. We find several manifestations of
this transition to chaos: (a) a geometric cascade of sta-
ble to unstable transition energies in pendula as E ap-
proaches four from either side; (b) a transition in the cur-
vature of the Jacobi-Maupertuis metric from being strictly
positive to having both signs as E increases beyond four,
implying widespread onset of instabilities; (c) a dramatic
rise in the fraction of the area of Poincaré surfaces occu-
pied by chaotic trajectories and (d) breakdown of discrete
symmetries in Poincaré sections present at lower energies.
Slightly above this transition, we also find numerical evi-
dence for a band of global chaos where we conjecture er-
godic behavior.

a)https://www.cmi.ac.in/~govind/; Electronic mail: govind@cmi.ac.in
b)Electronic mail: himalay@cmi.ac.in
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I. INTRODUCTION

The classical gravitational three-body problem1,2 is one of
the oldest problems in dynamics and was the place where
Poincaré discovered chaos. It continues to be a fertile
area of research with discovery of new phenomena such as
choreographies3 and Arnold diffusion4. In this paper, we
study the simpler problem of three rotors, where three par-
ticles of equal mass m move on a circle subject to attractive
cosine inter-particle potentials of strength g. The problem of
two rotors reduces to that of a simple pendulum while the
three rotor system bears some resemblance to a double pen-
dulum as well as to the planar restricted three-body problem.
However, unlike in the gravitational three-body problem, the
rotors can pass through each other so that there are no colli-
sional singularities. In fact, the boundedness of the potential
also ensures the absence of non-collisional singularities lead-
ing to global existence and uniqueness of solutions. Despite
these simplifications, the dynamics of three (or more) rotors is
rich and displays novel signatures of the transition from regu-
lar to chaotic motion as the coupling (or energy) is varied.

The quantum version of the n-rotor problem is also of in-
terest as it is used to model a chain of coupled Josephson
junctions5. Here, the rotor angles are the phases of the super-
conducting order parameters associated to the segments be-
tween junctions. It is well-known that this model for arrays
of coupled Josephson junctions is related to the XY model of
classical statistical mechanics5,6 (see also Appendix A where
we obtain the quantum n-rotor problem from the XY model
via a partial continuum limit and a Wick rotation). While in
the application to the insulator-to-superconductor transition in
arrays of Josephson junctions, one is typically interested in the
limit of large n, here we focus on the classical dynamics of the
n = 3 case.

The classical n-rotor problem also bears some resemblance
to the Frenkel-Kontorova (FK) model7. The latter describes
a chain of particles subject to nearest neighbor harmonic and
onsite cosine potentials. Despite having different potentials
and target spaces (R1 vs S1), the FK and n-rotor problems both
admit continuum limits described by the sine-Gordon field7,8.
Though quite different from our model, certain variants of the
three rotor problem have also been studied, e.g., (a) chaos
in the dynamics of three masses moving on a line segment
with periodic boundary conditions subject to harmonic and
1d-Coulombic inter-particle potentials9, (b) three free but col-
liding masses moving on a circle and indications of a lack of
ergodicity therein10, (c) coupled rotors with periodic driving
and damping, in connection with mode-locking phenomena11

and (d) an open chain of three coupled rotors with pinning
potentials and ends coupled to stochastic heat baths, in con-
nection to ergodicity12.

In §II, we begin by formulating the classical three-rotor

problem, show absence of singularities and eliminate the cen-
ter of mass motion to arrive at dynamics on a 2 dimensional
configuration torus parametrized by the relative angles ϕ1 and
ϕ2. In §III, we discuss the dynamics on the ϕ1-ϕ2 torus, find
all static solutions for the relative motion and discuss their
stability (see Fig. 1). The system is also shown to be inte-
grable at zero and infinitely high relative energies E (com-
pared to the coupling g) due to the emergence of additional
conserved quantities. Furthermore, using Morse theory, we
discover changes in the topology of the Hill region of the con-
figuration space at E = 0, 4g and 4.5g (see Fig. 2).

In §IV, we use consistent reductions of the equations of mo-
tion to one degree of freedom to find two families of periodic
solutions at all energies (pendula and isosceles breathers, see
Fig. 3). This is analogous to how the Euler and Lagrange
solutions of the 3 body problem arise from suitable Keple-
rian orbits. We investigate the stability of the pendula and
breathers by computing their monodromies. Notably, we find
that the stability index of pendula becomes periodic on a log
scale as E→ 4g± and shows an accumulation of stable to un-
stable transition energies at E = 4g (see Fig. 4). In other
words, the largest Lyapunov exponent switches from positive
to zero infinitely often with the width of the (un)stable win-
dows asymptotically approaching a geometric sequence as the
pendulum energy approaches 4g. This accumulation bears an
interesting resemblance to the Efimov effect13 as discussed in
§VIII and to the cascade of period doubling bifurcations in
unimodal maps14.

In §V, we reformulate the dynamics on the ϕ1-ϕ2 torus
as geodesic flow with respect to the Jacobi-Maupertuis met-
ric. We prove in Appendix B that the scalar curvature is
strictly positive on the Hill region for 0≤ E ≤ 4g but acquires
both signs above E = 4g (see Fig. 7) indicating widespread
geodesic instabilities as E crosses 4g. In §VI, we examine
Poincaré sections and observe a marked transition to chaos in
the neighborhood of E = 4g as manifested in a rapid rise of the
fraction of the area of the energetically allowed ‘Hill’ region
occupied by chaotic sections (see Fig. 12). This is accom-
panied by a spontaneous breaking of two discrete symmetries
present in Poincaré sections below this energy (see Figs. 9
and 10). This transition also coincides with the accumulation
of stable to unstable transition energies of the pendulum fam-
ily of periodic solutions at E = 4g. Slightly above this energy,
we find a band of global chaos 5.33g . E . 5.6g, where the
chaotic sections fill up the entire Hill region on all Poincaré
surfaces, suggesting ergodic behavior (see Fig. 13). In §VII,
we derive a system of delay differential and algebraic equa-
tions for periodic choreography solutions of the three rotor
problem. We discover three families of choreographies. The
first pair are uniformly rotating versions of two of the static
solutions for the relative motion. The third family is non-
rotating, stable and exists for all relative energies up to the
onset of global chaos (see Fig. 14). It is found by a care-
ful examination of Poincaré sections. Finally, we prove that
choreographies cannot exist for arbitrarily high relative ener-
gies. We conclude with a discussion in §VIII. Appendix C
summarizes the numerical method employed to estimate the
fraction of chaos on Poincaré surfaces. A preliminary version
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of this paper was presented at the Conference on Nonlinear
Systems and Dynamics, New Delhi, October 201815.

II. THREE COUPLED CLASSICAL ROTORS

We study a periodic chain of three identical rotors of mass
m interacting via cosine potentials. The Lagrangian is

L =
3

∑
i=1

{
1
2

mr2
θ̇

2
i −g[1− cos(θi−θi+1)]

}
(1)

with θ4 ≡ θ1. Here, θi are 2π-periodic coordinates on a circle
of radius r. Though we only have nearest neighbor interac-
tions, each pair interacts as there are only three rotors. We
consider the ‘ferromagnetic’ case where the coupling g > 0 so
that the rotors attract each other. Unlike in the gravitational
three-body problem, the inter-rotor forces vanish when a pair
of them coincide so that rotors can ‘pass’ through each other:
this is physically reasonable since they occupy distinct sites.
The equations of motion for i = 1, 2 and 3 (with θ0 ≡ θ3 and
θ1 ≡ θ4) are

mr2
θ̈i = gsin(θi−1−θi)−gsin(θi−θi+1). (2)

This is a system with three degrees of freedom, the configu-
ration space is a 3-torus 0 ≤ θi ≤ 2π . The conjugate angular
momenta are πi = mr2θ̇i and the Hamiltonian is

H =
3

∑
i=1

{
π2

i
2mr2 +g[1− cos(θi−θi+1)]

}
. (3)

Hamilton’s equations

θ̇i =
πi

mr2 and π̇i = g[sin(θi−1−θi)− sin(θi−θi+1)] (4)

define a smooth Hamiltonian vector field on the 6d phase
space of the three-rotor problem. The additive constant in H
is chosen so that the minimal value of energy is zero. This
system has three independent dimensionful physical parame-
ters m, r and g that can be scaled to one by a choice of units.
However, once such a choice of units has been made, all other
physical quantities (such as h̄) have definite numerical values.
This circumstance is similar to that in the Toda model2. As
discussed in Appendix A, the quantum n-rotor problem, which
models a chain of Josephson junctions, also arises by Wick-
rotating a partial continuum limit of the XY model on a lattice
with nearest neighbor ferromagnetic coupling J, n horizontal
sites and horizontal and vertical spacings a and b (A7). The
above parameters are related to those of the Wick-rotated XY
model via m = J/c2, r =

√
Lb2/a and g = JL/a where L = na

and c is a speed associated to the Wick rotation to time.
The Hamiltonian vector field (4) is non-singular every-

where on the phase space. In particular, particles may pass
through one another without encountering collisional singu-
larities. Though the phase space is not compact, the constant
energy (H = E) hypersurfaces are compact 5d submanifolds
without boundaries. Indeed, 0≤ θi ≤ 2π are periodic coordi-
nates on the compact configuration space T 3. Moreover, the

potential energy is non-negative so that π2
i ≤ 2mr2E. Thus,

the angular momenta too have finite ranges. Consequently, we
cannot have ‘non-collisional singularities’ where the (angular)
momentum or position diverges in finite time. Solutions to the
initial value problem (IVP) are therefore expected to exist and
be unique for all time.

Alternatively, the Hamiltonian vector field is globally Lip-
schitz since it is everywhere differentiable and its differen-
tial bounded in magnitude on account of energy conservation.
This means that there is a common Lipschitz constant on the
energy hypersurface, so that a unique solution to the IVP is
guaranteed to exist for 0≤ t ≤ t0 where t0 > 0 is independent
of initial condition (IC). Repeating this argument, the solution
can be extended for t0 ≤ t ≤ 2t0 and thus can be prolonged
indefinitely in time for any IC, implying global existence and
uniqueness16.

In §V, we will reformulate the dynamics as geodesic flow
on T 2 (or T 3 upon including center of mass motion, see be-
low), which must be geodesically complete as a consequence.
For E > 4.5g, this is expected on account of compactness and
lack of boundary of the energetically allowed Hill region. For
E < 4.5g, though the trajectories can (in finite time) reach the
Hill boundary, they simply turn around. Examples of such
trajectories are provided by the ϕ1 = 0 pendulum solutions
described in §IV A.

A. Center of Mass (CM) and relative coordinates

It is convenient to define the CM and relative angles

ϕ0 =
θ1 +θ2 +θ3

3
, ϕ1 = θ1−θ2 and ϕ2 = θ2−θ3 (5)

or equivalently,

θ1 = ϕ0 +
2ϕ1

3
+

ϕ2

3
, θ2 = ϕ0−

ϕ1

3
+

ϕ2

3
and

θ3 = ϕ0−
ϕ1

3
− 2ϕ2

3
. (6)

As a consequence of the 2π-periodicity of the θs, ϕ0 is 2π-
periodic while ϕ1,2 are 6π-periodic. However, the cuboid (0≤
ϕ0 ≤ 2π , 0≤ ϕ1,2 ≤ 6π) is a nine-fold cover of the fundamen-
tal cuboid 0 ≤ θ1,2,3 ≤ 2π . In fact, since the configurations
(ϕ0,ϕ1 − 2π,ϕ2), (ϕ0,ϕ1,ϕ2 + 2π) and (ϕ0 + 2π/3,ϕ1,ϕ2)
are physically identical, we may restrict ϕ1,2 to lie in [0,2π].
Here, the ϕi are not quite periodic coordinates on T 3 ≡
[0,2π]3. Rather, when ϕ1 7→ ϕ1± 2π or ϕ2 7→ ϕ2∓ 2π , the
CM variable ϕ0 7→ ϕ0± 2π/3. In these coordinates, the La-
grangian becomes L = T −V where

T =
3
2

mr2
ϕ̇

2
0 +

1
3

mr2 [
ϕ̇

2
1 + ϕ̇

2
2 + ϕ̇1ϕ̇2

]
and

V = g [3− cosϕ1− cosϕ2− cos(ϕ1 +ϕ2)] , (7)

with the equations of motion (EOM) 3mr2ϕ̈0 = 0,

mr2 (2ϕ̈1 + ϕ̈2) =−3g [sinϕ1 + sin(ϕ1 +ϕ2)] and 1↔ 2.
(8)
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The evolution equations for ϕ1 (and ϕ2 with 1↔ 2) may be
rewritten as

mr2
ϕ̈1 =−g [2sinϕ1− sinϕ2 + sin(ϕ1 +ϕ2)] . (9)

Notice that when written this way, the ‘force’ on the RHS isn’t
the gradient of any potential, as the equality of mixed partials
would be violated. The (angular) momenta conjugate to ϕ0,1,2
are p0 = 3mr2ϕ̇0,

p1 =
mr2

3
(2ϕ̇1 + ϕ̇2) and p2 =

mr2

3
(ϕ̇1 +2ϕ̇2). (10)

The remaining three EOM on phase space are ṗ0 = 0 (con-
served due to rotation invariance),

ṗ1 =−g [sinϕ1 + sin(ϕ1 +ϕ2)] and
ṗ2 =−g [sinϕ2 + sin(ϕ1 +ϕ2)] . (11)

The EOM admit a conserved energy which is a sum of CM,
relative kinetic and potential energies:

E =
3
2

mr2
ϕ̇

2
0 +

1
3

mr2 [
ϕ̇

2
1 + ϕ̇

2
2 + ϕ̇1ϕ̇2

]
+V (ϕ1,ϕ2). (12)

The above EOM are Hamilton’s equations ḟ = { f ,H} for
canonical Poisson brackets (PBs) {ϕi, p j} = δi j with the
Hamiltonian

H =
p2

0
6mr2 +

p2
1 + p2

2− p1 p2

mr2 +V (ϕ1,ϕ2). (13)

B. Analogue of Jacobi coordinates

Jacobi coordinates for the three rotor problem are ϕ0 and
ϕ± = (ϕ1±ϕ2)/2. Unlike in the CM and relative coordinates,
the kinetic energy as a quadratic form in velocities is diagonal.
Indeed, L = T −V where

T =
3
2

mr2
ϕ̇

2
0 +mr2

ϕ̇
2
++

1
3

mr2
ϕ̇

2
− and

V = g(3−2cosϕ− cosϕ+− cos2ϕ+) . (14)

The conjugate momenta p0 and p± = p1± p2 are proportional
to the velocities and the EOM are

ṗ0 = 0, ṗ+ =−2gsinϕ+ (cosϕ−+2cosϕ+)
and ṗ− =−2gcosϕ+ sinϕ−. (15)

The fundamental domain which was the cube 0 ≤ ϕ0,1,2 ≤
2π now becomes the cuboid (0 ≤ ϕ0 ≤ 2π , 0 ≤ ϕ+ ≤ 2π ,
0 ≤ ϕ− ≤ π). As before, though ϕ± are periodic coordinates
on a 2-torus, ϕ0,± are not quite periodic coordinates on T 3.
The transformation of the CM variable ϕ0 under 2π-shifts of
ϕ1,2 discussed above may be reformulated as follows. When
crossing the segments ϕ+ + ϕ− = 2π from left to right or
ϕ+− ϕ− = 0 from right to left, ϕ0 increases by 2π/3 [and
ϕ0 7→ ϕ0−2π/3 when the segments are crossed in the oppo-
site direction].

III. DYNAMICS ON THE ϕ1-ϕ2 TORUS

The dynamics of ϕ1 and ϕ2 (or equivalently that of ϕ±)
decouples from that of the CM coordinate ϕ0. The former may
be regarded as periodic coordinates on the 2-torus [0,2π]×
[0,2π]. On the other hand, ϕ0, which may be regarded as a
fibre coordinate over the ϕ1,2 base torus, evolves according to

ϕ0 =
p0t

3mr2 +ϕ0(0)+
2π

3
(n2−n1) mod 2π. (16)

Here, n1,2 are the ‘greatest integer winding numbers’ of the
trajectory around the cycles of the base torus. If a trajectory
goes continuously from ϕ i

1,2 to ϕ
f

1,2 (regarded as real rather
than modulo 2π), then the greatest integer winding numbers
are defined as n1,2 = [(ϕ f

1,2−ϕ i
1,2)/2π].

Consequently, we may restrict attention to the dynamics of
ϕ1 and ϕ2. The equations of motion on the corresponding 4d
phase space (the cotangent bundle of the 2-torus) are

ϕ̇1 = (2p1− p2)/mr2, ṗ1 =−g [sinϕ1 + sin(ϕ1 +ϕ2)] (17)

and 1↔ 2. These equations define a singularity-free vector
field on the phase space. They follow from the canonical PBs
with Hamiltonian given by the relative energy

Hrel =
p2

1 + p2
2− p1 p2

mr2 +V (ϕ1,ϕ2). (18)

These equations and Hamiltonian are reminiscent of those of
the planar double pendulum with the Hamiltonian

Hdp =
p2

1−2c12 p1 p2 +2p2
2

2ml2(2− c2
12)

−mgl(2cosθ1 + cosθ2) (19)

where θ1,2 are the angles between the upper and the lower rods
(each of length l) and the vertical and c12 = cos(θ1−θ2).

A. Static solutions and their stability

Static solutions for the relative motion correspond to zeros
of the vector field where the force components in (17) vanish:
p1 = p2 = 0 and

sinϕ1 + sin(ϕ1 +ϕ2) = sinϕ2 + sin(ϕ1 +ϕ2) = 0. (20)

In particular, we must have ϕ1 = ϕ2 or ϕ1 = π −ϕ2. When
ϕ1 = ϕ2, the force components are both equal to sinϕ1(1+
2cosϕ1) which vanishes at the following configurations:

(ϕ1,ϕ2) = (0,0), (π,π) and (±2π/3,±2π/3) . (21)

On the other hand, if ϕ1 = π − ϕ2, we must have sinϕ1 =
0 leading to two more static configurations (0,π) and (π,0).
Thus we have six static solutions which we list in increasing
order of (relative) energy:

GE=0 : (0,0), DE=4g : (0,π),(π,0),(π,π)
and TE=9g/2 : (±2π/3,±2π/3) . (22)
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(a) Contours of V . (b) Ground state G. (c) Diagonal states D. (d) Triangle states T.

FIG. 1: (a) Potential energy V in units of g on the ϕ1-ϕ2 configuration torus with its extrema (locations of static solutions G, D and T)
indicated. The contours also encode changes in topology of the Hill region (V ≤ E) when E crosses EG = 0, ED = 4g and ET = 4.5g. (b, c, d)
Uniformly rotating three-rotor solutions obtained from G, D and T. Here, i, j and k denote any permutation of the numerals 1, 2 and 3. (b) and
(d) are the simplest examples of choreographies discussed in §VII.

1. Uniformly rotating 3-rotor solutions from G, D and T

If we include the uniform rotation of the CM angle (ϕ̇0 = Ω

is arbitrary), these six solutions correspond to the following
uniformly rotating rigid configurations of 3-rotors (see Fig. 1):
(a) the ferromagnetic ground state G where the three parti-
cles coalesce (θ1 = θ2 = θ3), (b) the three ‘diagonal’ ‘anti
ferromagnetic Néel’ states D where two particles coincide
and the third is diametrically opposite (θ1 = θ2 = θ3 +π and
cyclic permutations thereof) and (c) the two ‘triangle’ ‘spin
wave’ states T where the three bodies are equally separated
(θ1 = θ2 +2π/3 = θ3 +4π/3 and θ2↔ θ3).

2. Stability of static solutions

The linearization of the EOM (9) for perturbations to G, D
and T (ϕ1,2 = ϕ̄1,2 +δϕ1,2(t)) take the form

mr2 d2

dt2

(
δϕ1
δϕ2

)
=−gA

(
δϕ1
δϕ2

)
where AG = 3I,

AD(0,π) =

(
1 0
−2 −3

)
, AD(π,0) =

(
−3 −2
0 1

)
,

AD(π,π) =

(
−1 2
2 −1

)
and AT =−3I/2. (23)

Here I is the 2× 2 identity matrix. Perturbations to G are
stable and lead to small oscillations with equal frequencies
ω0 =

√
3g/mr2. The saddles D have one stable direction

with frequency ω0/
√

3 and one unstable eigendirection with
growth rate ω0. On the other hand, both eigendirections
around T are unstable with growth rate ω0/

√
2.

B. Changes in topology of Hill region with growing energy

The Hill region HE at energy E is the subset V (ϕ1,ϕ2)≤ E
of the ϕ1-ϕ2 torus. To analyze the topology of HE we view
V as a real-valued Morse function since its critical points are
non-degenerate (non-singular Hessian). In fact, the critical
points of V are located at G (minimum with index 0), the
three Ds (saddles with indices 1) and the two Ts (maxima

with indices 2). From Morse theory17, the topology of HE
can change only at the critical values EG = 0,ED = 4g and
ET = 4.5g (see Fig. 2). In fact, we find that HE is topologi-
cally a disc for 0 < E < 4g. For 4g < E < 4.5g, HE acquires
the topology of a torus with a pair of discs removed (see Fig.
1a and also Fig. 7). Finally for E > 4.5g, the Hill region
extends over the whole configuration torus. The topological
transition from HE<4g (disc) to H4g<E<4.5g (torus with two
discs excised) can be achieved by the successive addition of
three 1-cells to the disc (proceeding either via a cylinder and
a pair of pants or a cylinder and a torus with one disc ex-
cised). Similarly, one arrives at the toroidal Hill region for
E > 4.5g by sewing two 2-cells to cover the excised discs of
H4g<E<4.5g as depicted in Fig. 2.

C. Low and high energy limits

In the CM frame, the three-rotor problem (17) has a 4-
dimensional phase space but possesses only one known con-
served quantity (18). However, an extra conserved quantity
emerges at zero and infinitely high energies:

(a) For E� g, the kinetic energy dominates and H ≈ (p2
1−

p1 p2 + p2
2)/mr2. Here ϕ1,2 become cyclic coordinates and

p1,2 are both approximately conserved.
(b) For E � g, the system executes small oscillations

around the ground state G (ϕ1,2 ≡ 0). The quadratic approxi-
mation to the Lagrangian (7) for relative motion is

Llow =
mr2

3
[
ϕ̇

2
1 + ϕ̇

2
2 + ϕ̇1ϕ̇2

]
−g
(
ϕ

2
1 +ϕ

2
2 +ϕ1ϕ2

)
. (24)

The linear equations of motion for ϕ1 and ϕ2 decouple,

mr2
ϕ̈1 =−3gϕ1 and mr2

ϕ̈2 =−3gϕ2 (25)

leading to the separately conserved normal mode energies
E1,2 =

(
mr2ϕ̇2

1,2 +3gϕ2
1,2

)
/2. The equality of frequencies

implies that any pair of independent linear combinations of
ϕ1 and ϕ2 are also normal modes. Of particular significance
are the Jacobi-like variables ϕ± = (ϕ1±ϕ2)/2 that diagonal-
ize the kinetic and potential energy quadratic forms:

Llow = mr2
ϕ̇

2
+−3gϕ

2
++mr2

ϕ̇
2
−/3−gϕ

2
−. (26)



Classical three rotor problem: periodic solutions, stability and chaos arXiv:1811.05807 6

Adding 
2 discs

E > 4.5g4g< E < 4.5g0< E < 4g

Adding 3 1-cells

FIG. 2: Topology of Hill region of configuration space (V (ϕ1,ϕ2)≤ E) showing transitions at E = 4g and 4.5g as implied by
Morse theory (see §III B).

Though (25) are simply the EOM for a pair of decoupled
oscillators, the Lagrangian and Poisson brackets {·, ·} inher-
ited from the non-linear theory are different from the standard
ones. With conjugate momenta p1,2 = (mr2/3)(2ϕ̇1,2 + ϕ̇2,1),
the Hamiltonian corresponding to (24) is

Hlow =
p2

1− p1 p2 + p2
2

mr2 +g
(
ϕ

2
1 +ϕ

2
2 +ϕ1ϕ2

)
. (27)

Note that p1,2 differ from the standard momenta ps
1,2 =

mr2ϕ̇1,2 whose PBs are now non-canonical, {ϕi, ps
j} = −1+

3δi j.

1. Three low-energy constants of motion

Hlow and the normal mode energies

H1,2 = (2p1,2− p2,1)
2 /2mr2 +3gϕ

2
1,2/2 (28)

are three independent constants of motion in the sense that
the corresponding 1-forms dH, dH1 and dH2 are generically
linearly independent (dH ∧ dH1 ∧ dH2 6≡ 0 on the 4d phase
space). On the other hand, we also have a conserved ‘angular
momentum’ Lz = mr2(ϕ1ϕ̇2−ϕ2ϕ̇1) corresponding to the ro-
tation invariance of the decoupled oscillators in (25). It turns
out that Hlow may be expressed as

Hlow =
2
3

[
H1 +H2 +

√
H1H2− (3g/4mr2)L2

z

]
. (29)

The low energy phase trajectories lie on the common level
curves of Hlow, H1 and H2. Though H1 and H2 are con-
served energies of the normal modes, they do not Poisson
commute. In fact, the Poisson algebra of conserved quanti-
ties is {H1,2,Hlow}= {Lz,Hlow}= 0,

{H1,H2}=−3gLz/mr2 and
{Lz,H1,2}=±2(3Hlow−2H1,2−H2,1). (30)

It is also noteworthy that the integrals H1 +H2 and H1H2−
3gL2

z/(4mr2) are in involution.

IV. REDUCTION TO ONE DEGREE OF FREEDOM

Recall that the Euler and Lagrange solutions of the planar
three-body problem arise through a reduction to the two body

CM

θi
θk

θj

(a) Pendula

θj θk

θi

(b) Isosceles ‘breathers’

FIG. 3: In pendula, θi and θ j form a molecule that along
with θk oscillates about their common CM. In breathers, θi
is at rest at the CM with θ j and θk oscillating symmetrically
about the CM. Here, i, j and k denote any permutation of the
numerals 1, 2 and 3.

Kepler problem. We find an analogue of this construction for
three rotors, where pendulum-like systems play the role of the
Kepler problem. We find two such families of periodic orbits,
the pendula and isosceles breathers (see Fig. 3). They exist at
all energies and go from librational to rotational motion as E
increases. They turn out to have remarkable stability proper-
ties which we deduce via their monodromy matrices.

A. Periodic pendulum solutions

We seek solutions where one pair of bodies form a ‘bound
state’ where their angular separation remains constant in time.
We show that consistency requires their separation to vanish
so that the two behave like a single body and the equations re-
duce to that of a two-rotor problem. There are three such fami-
lies of ‘pendulum’ solutions depending on which pair is bound
together (see Fig. 3a). For definiteness, we suppose that the
first two particles have a fixed separation ζ (θ1 = θ2 + ζ or
ϕ1 = ζ ). Putting this in (9), we get a consistency condition
and an evolution equation for ϕ2:

2sinζ − sinϕ2 + sin(ζ +ϕ2) = 0 and
mr2ϕ̈2 =−g [2sinϕ2− sinζ + sin(ζ +ϕ2)] . (31)

The consistency condition is satisfied only when the separa-
tion ζ = 0, i.e., rotors 1 and 2 must coincide so that ϕ1 = 0
and ϕ̇1 = 0 (or p2 = 2p1) at all times (the other two families
are defined by ϕ2 = ϕ̇2 = 0 and ϕ1 +ϕ2 = ϕ̇1 + ϕ̇2 = 0). The
evolution equation for ϕ2 reduces to that for a simple pendu-
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lum:

mr2
ϕ̈2 =−3gsinϕ2 with E =

mr2ϕ̇2
2

3
+2g(1−cosϕ2) (32)

being the conserved energy. The periodic solutions are either
librational (for 0≤ E < 4g) or rotational (for E > 4g) and may
be expressed in terms of the Jacobi elliptic function sn:

ϕ̄2(t) =

{
2arcsin(k sn(ω0t,k)) for 0≤ E ≤ 4g,
2arcsin(sn(ω0t/κ,κ)) for E ≥ 4g.

(33)

Here, ω0 =
√

3g/mr2 and the elliptic modulus k =
√

E/4g
with κ = 1/k. Thus 0 ≤ k < 1 for libration and 0 ≤ κ < 1
for rotation. The corresponding periods are τlib = 4K(k)/ω0
and τrot = 2κK(κ)/ω0, where K is the complete elliptic inte-
gral of the first kind. As E → 4g±, the period diverges and
we have the separatrix ϕ̄2(t) = 2arcsin(tanh(ω0t)). The con-
ditions ϕ1 = 0 and p2 = 2p1 define a 2d ‘pendulum subman-
ifold’ of the 4d phase space foliated by the above pendulum
orbits. Upon including the CM motion of ϕ0, each of these
periodic solutions may be promoted to a periodic orbit of the
three-rotor problem. There is a two-parameter family of such
periodic orbits, labelled for instance, by the relative energy E
and the CM angular momentum p0.

1. Stability of pendulum solutions via monodromy matrix

Introducing the dimensionless variables

p̃1,2 = p1,2/
√

mr2g and t̃ = t
√

g/mr2, (34)

the equations for small perturbations

ϕ1 = δϕ1, ϕ2 = ϕ̄2 +δϕ2 and p1,2 = p̄1,2 +δ p1,2 (35)

to the above pendulum solutions (33) to (17) are

d2

dt̃2

(
δϕ1
δϕ2

)
=−

(
2+ cos ϕ̄2 0
cos ϕ̄2−1 3cos ϕ̄2

)(
δϕ1
δϕ2

)
. (36)

This is a pair of coupled Lamé-type equations since ϕ̄2 is an
elliptic function. The analogous equation in the 2d anhar-
monic oscillator reduces to a single Lamé equation18,19. Our
case is a bit more involved and we will resort to a numerical
approach here. To do so, it is convenient to consider the first
order formulation

d
dt̃

δϕ1
δϕ2
δ p̃1
δ p̃2

=−

 0 0 −2 1
0 0 1 −2

1+ cos ϕ̄2 cos ϕ̄2 0 0
cos ϕ̄2 2cos ϕ̄2 0 0


δϕ1

δϕ2
δ p̃1
δ p̃2

 .

(37)
Since m,g and r have been scaled out, there is no loss of gener-
ality in working in units where m = g = r = 1, as we do in the
rest of this section. The solution is ψ(t) =U(t,0) ψ(0) where
the real time-evolution matrix is given by a time-ordered ex-
ponential U(t,0) = T exp{

∫ t
0 A(t)dt} where A(t) is the co-

efficient matrix in (37) and T denotes time ordering. The

tracelessness of A(t) implies detU(t,0) = 1 and preservation
of phase volume. Though A(t) is τ-periodic, ψ(t + τ) =
M(τ)ψ(t) where the monodromy matrix M(τ) =U(t+τ, t) is
independent of t. Thus, ψ(t +nτ) = Mnψ(t) for n = 1,2, . . .,
so that the long-time behavior of the perturbed solution may
be determined by studying the spectrum of M. In fact, the
eigenvalues λ of M may be related to the Lyapunov exponents
associated to the pendulum solutions

µ = lim
t→∞

1
t

ln
|ψ(t)|
|ψ(0)|

via µ =
log |λ |

τ
. (38)

Since ours is a Hamiltonian system with 2 degrees of freedom,
two of the eigenvalues of M must equal one and the other two
must be reciprocals20. On account of the reality of M, the
latter two (λ3,λ4) must be of the form (eiφ ,e−iφ ) or (λ ,1/λ )
where φ and λ are real. It follows that two of the Lyapunov
exponents must vanish while the other two must add up to
zero. The stability of the pendulum orbit is governed by the
stability index σ = tr M− 2. We have stability if |σ | ≤ 2
which corresponds to the eigenvalues e±iφ and instability if
|σ |= |λ +1/λ |> 2.

We now discuss the energy dependence of the stability in-
dex for pendula. In the limit of zero energy, (33) reduces to the
ground state G and A(t) becomes time-independent and simi-
lar to 2πi×diag(1,1,−1,−1). Consequently, M = exp(Aτ) is
the 4× 4 identity I. Thus G is stable and small perturbations
around it are periodic with period τ = 2π/ω0, as we know
from Eq. (23). For E > 0, we evaluate M numerically. We
find it more efficient to regard M as the fundamental matrix
solution to ψ̇ = A(t)ψ rather than as a path ordered exponen-
tial or as a product of infinitesimal time-evolution matrices.
Remarkably, as discussed below, we find that while the sys-
tem is stable for low energies 0 ≤ E ≤ E`

1 ≈ 3.99 and high
energies E ≥ Er1 ≈ 5.60, the neighborhood of E = 4 consists
of a doubly infinite sequence of intervals where the behavior
alternates between stable and unstable (see Fig. 4). This is
somewhat similar to the singly infinite sequence of transitions
found by Yoshida in a 2d anharmonic oscillator as the cou-
pling α goes from zero to infinity18:

Hanharm =
1
2
(

p2
1 + p2

2
)
+

1
4
(
q4

1 +q4
2
)
+α q2

1q2
2. (39)

This accumulation of stable-to-unstable transition energies at
the threshold for librational ‘bound’ trajectories is also remi-
niscent of the energy spectrum of Efimov trimers that form a
geometric sequence accumulating at the zero-energy thresh-
old corresponding to arbitrarily weak two-body bound states
with diverging S-wave scattering length13.

2. Stability of librational pendula (E < 4)

In the first stable phase 0 ≤ E ≤ E`
1, φ = argλ3 mono-

tonically increases from 0 to 2π with growing energy and
λ4 = e−iφ goes round the unit circle once clockwise. There is a
stable to unstable phase transition at E`

1. In the unstable phase
E`

1 < E < E`
2, σ > 2 corresponding to real positive λ4 increas-

ing from 1 to 1.9 and then dropping to 1 (see Fig. 4). There is
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FIG. 4: Numerically obtained stability index of pendulum solutions showing approach to periodic oscillations between stable
and unstable phases as E→ 4±. Equations (41) and (44) are seen to fit the data as E→ 4±.

then an unstable to stable transition at E`
2. This pattern repeats

so that the librational regime 0 < E < 4 is divided into an infi-
nite succession of progressively narrower stable and unstable
phases. Remarkably, we find that the stable phases asymptot-
ically have equal widths on a logarithmic energy scale just as
the unstable ones do. Indeed, if we let E`

2n+1 and E`
2n denote

the energies of the stable to unstable and unstable to stable
transitions for n = 1,2,3, . . ., then the widths wlu

n and wls
n+1 of

the nth unstable and n+1st stable phases are

wlu
n = E`

2n+2−E`
2n+1 ≈ (E`

2−E`
1)× e−Λn and

wls
n+1 = E`

2n+1−E`
2n ≈ (E`

3−E`
2)× e−Λ(n−1). (40)

Here, E`
2−E`

1 ≈ e−4.67(1− e−1.11) and E`
3−E`

2 ≈ e−5.78(1−
e−4.34) are the lengths of the first unstable and second stable
intervals while Λ≈ 1.11+4.34= 5.45 is the combined period
on a log scale. The first stable phase has a width E`

1 − 0 ≈
4− e−4.67 that does not scale like the rest. Our numerically
obtained stability index (see Fig. 4) is well approximated by

σ ≈ 2.22cos
[

2√
3

log(4−E)+ .24
]
+ .22 as E→ 4−. (41)

On the other hand, σ(E)∼ 2−O(E3) when E→ 0.

3. Stability of rotational pendula (E > 4)

For sufficiently high energies E ≥ Er1 , the rotational pendu-
lum solutions are stable. In fact, as E decreases from ∞ to Er1 ,
λ4 = e−iφ goes counterclockwise around the unit circle from
1 to −1. There is a stable to unstable transition at Er1 . As
E decreases from Er1 to Er2 , λ4 is real and negative, decreas-
ing from −1 to −1.5 and then returning to −1 (see Fig. 4).
This is followed by a stable phase for Er2 ≥ E ≥ Er3 where λ4
completes its passage counterclockwise around the unit circle
reaching 1 at Er3 . The last phase of this first cycle consists
of an unstable phase between Er3 and Er4 where λ4 is real and
positive, increasing from 1 to 1.4 and then going down to 1.
The structure of this cycle is to be contrasted with those in
the librational regime where λ4 made complete revolutions

around the unit circle in each stable phase and was always
positive in unstable phases. This is reflected in the stability
index overshooting both 2 and −2 for rotational solutions but
only exceeding 2 in the librational case. Furthermore, as in
the librational case, there is an infinite sequence of alternating
stable and unstable phases accumulating from above at E = 4,
given by

stable energies = [Er1 ,∞)
∞⋃

n=1

[
Er2n+1,E

r
2n
]

and unstable energies =
∞⋃

n=1

(
Er2n,E

r
2n−1

)
. (42)

As before, with the exception of the two stable and one un-
stable intervals of highest energy, the widths of the stable and
unstable energy intervals are approximately constant on a log
scale:

wru
n = Er2n−1−Er2n ≈ (Er3 −Er4)× e−Λ(n−2) and

wrs
n+1 = Er2n−Er2n+1 ≈ (Er4 −Er5)× e−Λ(n−2) (43)

for n = 2,3,4 · · · . Here, Er3 − Er4 ≈ e−4.7(1− e−1.1) and
Er4−Er5 ≈ e−5.8(1−e−4.3) are the lengths of the second unsta-
ble and third stable intervals while Λ≈ 1.1+4.3 = 5.4 is the
combined period. The three highest energy phases are anoma-
lous: (a) E ≥ Er1 ≈ 5.60 is a stable phase of infinite width, (b)
the unstable phase Er1 > E > Er2 ≈ 4.48 has width 1.2 > 1.1
on a log scale and manifests more acute instability and (c) the
stable phase Er2 ≥ E ≥ Er3 ≈ 4.01 has a less than typical width
3.9 < 4.3 (see Fig. 4). As before, we obtain the fit

σ ≈−2.11cos
[

1√
3

log(E−4)− .12
]

as E→ 4+ (44)

while σ(E)∼ 2−O(1/E) when E→ ∞.

4. Energy dependence of eigenvectors

Since the pendulum solutions form a one parameter fam-
ily of periodic orbits (0,ϕ2, p1,2p1) with continuously vary-
ing time periods, a perturbation tangent to this family takes
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a pendulum trajectory to a neighboring pendulum trajectory
and is therefore neutrally stable. These perturbations span the
1-eigenspace span(v1,v2) of the monodromy matrix, where
v1 = (0,1,0,0) = ∂ϕ2 and v2 = (0,0,1,2) = ∂p1 + 2∂p2 . The
other two eigenvectors of M have a simple dependence on en-
ergy and thus help in ordering the eigenvalues λ3 and λ4 away
from transitions. In the ‘unstable’ energy intervals

(E`
1,E

`
2)∪ (Er2 ,Er1)∪ (E`

3,E
`
4)∪ (Er4 ,Er3)∪ . . . , (45)

M = diag(1,1,λ3,1/λ3) in the basis (v1,v2,v+,v−) where
v± = (2a(E),−a(E),±b(E),0). In the same basis, M =
diag(1,1,Rφ ) in the complementary ‘stable’ energy intervals
(0,E`

1)∪ (Er1 ,∞)∪ ·· · . Here, Rφ is the 2× 2 rotation matrix
(cosφ ,sinφ |− sinφ ,cosφ). At the transition energies, either
a or b vanishes so that v+ and v− become collinear and conti-
nuity of eigenvectors with E cannot be used to unambiguously
order the corresponding eigenvalues across transitions. For in-
stance, the eigenvalue that went counterclockwise around the
unit circle for E < E`

1 could be chosen to continue as the real
eigenvalue of magnitude either greater or lesser than one when
E exceeds E`

1.

Pitfall in trigonometric and quadratic approximation at
low energies: Interestingly, if for low energies (0 ≤ E �
g), we use the simple harmonic/trigonometric approxima-
tion to (33), ϕ̄2 ≈

√
E/gsinω0t with ω0 =

√
3g/mr2 and

E ≈ (mr2/3) ˙̄ϕ2
2 + gϕ̄2

2 and approximate cos ϕ̄2 by 1− ϕ̄2
2/2

in (37), we find that the eigenvalues of the monodromy matrix
are of the form e±iθ and e±iφ where θ and φ monotonically
increase from zero with energy upto moderate energies. By
contrast, as we saw above, two of the eigenvalues λ1,2 are
always equal to one, a fact which is not captured by this ap-
proximation.

B. Periodic isosceles ‘breather’ solutions

We seek solutions where two of the separations remain
equal at all times: θi−θ j = θ j−θk where (i, j,k) is any per-
mutation of (1,2,3). Loosely, these are ‘breathers’ where one
rotor is always at rest midway between the other two (see Fig.
3b). For definiteness, suppose θ1− θ2 = θ2− θ3 or equiva-
lently ϕ1 = ϕ2. Putting this in Eq. (9), we get a single evolu-
tion equation for ϕ1 = ϕ2 = ϕ ,

mr2
ϕ̈ =−g(sinϕ + sin2ϕ), (46)

which may be interpreted as a simple pendulum with an ad-
ditional periodic force. As before, each periodic solution of
this equation may, upon inclusion of CM motion, be used to
obtain periodic solutions of the three-rotor problem.

At E = 0, the isosceles solutions reduce to the ground
state G. More generally, there are two families of librational
breathers. With E denoting energy in units of g, they are
LG (oscillations around G (ϕ = 0) for 0 ≤ E ≤ 9/2) and
LD (oscillations around D (ϕ = π) for 4 ≤ E ≤ 9/2) with
monotonically growing time period which diverges at the sep-
aratrix at E = 9/2 (see Fig. 5). For E > 9/2, we have ro-
tational modes R with time period diminishing with energy
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FIG. 5: Level contours of E on a phase portrait of the LG,
LD and R families of isosceles periodic solutions.

(τ rot(E) ∼ 2π/
√

E as E → ∞). At very high energies, one
rotor is at rest while the other two rotate rapidly in opposite
directions. Eq. (46) may be reduced to quadrature by use of
the conserved relative energy (12):

E = mr2
ϕ̇

2 +g(3−2cosϕ− cos2ϕ). (47)

For instance, in the case of the LG family,

ω0t√
3
=

1√
2

∫ u

0

du√
u(2−u)(u2−3u+E/2)

(48)

where u = 1− cosϕ . The relative angle ϕ may be expressed
in terms of Jacobi elliptic functions. Putting ε =

√
9−2E,

ϕ(t) = arccos
(

1− Eη2

2ε +(3− ε)η2

)
where

η(t) = sn

(√
εω0t√

3
,

√
(ε−1)(3− ε)

8ε

)
. (49)

It turns out that the periods of both LG and LD families are
given by a common expression,

τ
lib(E) =

4
√

3
ω0
√

ε
K

(√
1
2
− 6−E

4ε

)
for 0≤ E ≤ 4.5. (50)

As E → 4.5, τ lib diverges as 2
√

2/3log(4.5−E). The time
period of rotational solutions (for E ≥ 4.5) is

τ
rot(E) =

4
√

3
ω0

(E2−4E)−1/4K

(√
1
2
+

6−E

2
√

E2−4E

)
.

(51)

1. Linear stability of breathers

The stability of isosceles solutions as encoded in the stabil-
ity index (σ = tr M− 2) is qualitatively different from that
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FIG. 6: Absolute value of the stability index of the isosceles
breathers as a function of energy.

of the pendulum solutions. In particular, there is only one
unstable to stable transition occuring at E ≈ 8.97 (see Fig.
6). Indeed, by computing the monodromies, we find that both
families LG and LD of librational solutions are unstable. The
stability index σLG grows monotonically from 2 to ∞ as the
energy increases from 0 to 4.5. In particular, even though ar-
bitrarily low energy breathers are small oscillations around the
stable ground state G, they are themselves unstable to small
perturbations. By contrast, we recall that low energy pendu-
lum solutions around G are stable. On the other hand, the LD
family of breathers are much more unstable, indeed, we find
that σLD increases from ≈ 5.3× 104 to ∞ for 4 < E < 4.5.
This is perhaps not unexpected, given that they are oscillations
around the unstable static solution D. The rotational breathers
are unstable for 4.5 < E < 8.97 with σR growing from −∞ to
−2. These divergences of σ indicate that isosceles solutions
around E = 4.5 suffer severe instabilities not seen in the pen-
dulum solutions. Beyond E = 8.97, the rotational breathers
are stable with σR growing from −2 to 2 as E→ ∞. This sta-
bility of the breathers is also evident from the Poincaré sec-
tions of §VI. In fact, the isosceles solutions go from inter-
secting the Poincaré surface ‘ϕ1 = 0’ at hyperbolic to elliptic
fixed points as the energy is increased beyond E ≈ 8.97 (see
Fig. 9-11).

V. JACOBI-MAUPERTUIS METRIC AND CURVATURE

We now consider a geometric reformulation of the clas-
sical three-rotor problem, that suggests the emergence of
widespread instabilities for E > 4 from a largely stable phase
at lower energies and a return to regularity as E → ∞. This
indicates the presence of an ‘order-chaos-order’ transition
which will be confirmed in §VI.

It is well known that configuration space trajectories of
the Lagrangian L = (1/2)mi jq̇iq̇ j−V (q) may be regarded as
reparametrized geodesics of the Jacobi-Maupertuis (JM) met-
ric gJM

i j = (E−V )mi j which is conformal to the mass/kinetic
metric mi j(q)21,22. The sectional curvatures of this met-
ric have information on the behavior of nearby trajectories
with positive/negative curvature associated to (linear) stabil-
ity/instability. For the three-rotor problem, the JM metric on

the ϕ1-ϕ2 configuration torus is given by

ds2
JM =

2mr2

3
(E−V )(dϕ

2
1 +dϕ1dϕ2 +dϕ

2
2 ), (52)

where V = g[3− cosϕ1− cosϕ2− cos(ϕ1 +ϕ2)]. Letting f
denote the conformal factor E−V and using the gradient and
Laplacian defined with respect to the flat kinetic metric, the
corresponding scalar curvature (2× the Gaussian curvature) is

R = |∇ f |2− f ∆ f
f 3 = g2

mr2(E−V )3

[
6+( 2E

g −3)(3− V
g )+

cos(ϕ1−ϕ2)+ cos(2ϕ1 +ϕ2)+ cos(ϕ1 +2ϕ2)

]
. (53)

A. Behavior of JM curvature

For 0 ≤ E ≤ 4g, R is strictly positive in the classically al-
lowed Hill region (V < E) and diverges on the Hill bound-
ary V = E where the conformal factor vanishes (see Ap-
pendix B for a proof and the first two ‘bath-tub’ plots of R
in Fig. 7). Thus the geodesic flow should be stable for these
energies. Remarkably, we also find a near absence of chaos
in all Poincaré sections for E . 3.8g (see Fig. 9 and 12).
We will see that Poincaré surfaces show significant chaotic
regions for E > 4g. This is perhaps related to the instabil-
ities associated with R acquiring both signs above this en-
ergy. Indeed, for 4g < E ≤ 9g/2, the above ‘bath-tub’ de-
velops sinks around the saddles D(0,π), D(π,0) and D(π,π)
where R becomes negative, though it continues to diverge on
the Hill boundary which is a union of two closed curves encir-
cling the local maxima T(±2π/3,±2π/3). For E > 9g/2, the
Hill region expands to cover the whole torus. Here, though
bounded, R takes either sign while ensuring that the total cur-
vature

∫
T 2 R

√
detgi j dϕ1 dϕ2 vanishes. For asymptotically

high energies, the JM metric tends to the flat metric E mi j and
R∼ 1/E2→ 0 everywhere indicating a return to regularity.

B. JM stability of static solutions

The static solutions G, D and T lie on the boundary of the
Hill regions corresponding to the energies EG,D,T = 0, 4g and
4.5g. We define the curvatures at G, D and T by letting E
approach the appropriate limiting values in the following for-
mulae:

R(0,0) =
6g

mr2E2 , R(0,π),(π,0),(π,π) =
−2g/mr2

(E−4g)2

and R(± 2π
3 ,± 2π

3 )
= −12g/mr2

(2E−9g)2 . (54)

Thus RG = ∞ while RD = RT =−∞ indicating that G is stable
while D and T are unstable. These results on geodesic stabil-
ity are similar to those obtained from (23). Note that we do
not define the curvatures at G, D and T by approaching these
points from within the Hill regions as these limits are not de-
fined for G and T and gives +∞ for D. On the other hand, it is
physically forbidden to approach the Hill boundary from the
outside. Thus we approach G, D and T by varying the energy
while holding the location on the torus fixed.
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FIG. 7: Scalar curvature R of the JM metric on the Hill region of the ϕ1-ϕ2 torus. In the regions shaded grey, |R| is very large.
We see that R > 0 for E ≤ 4g but has both signs for E > 4g indicating instabilities.

VI. POINCARÉ SECTIONS: PERIODIC ORBITS AND
CHAOS

To study the transitions from integrability to chaos in the
3-rotor problem, we use the method of Poincaré sections.
Phase trajectories are constrained to lie on energy level sets
which are compact 3d submanifolds of the 4d phase space
parametrized by ϕ1, ϕ2, p1 and p2 (cotangent bundle of the
2-torus). By the Poincaré surface ‘ϕ1 = 0’ at energy E (in
units of g), we mean the 2d surface ϕ1 = 0 contained in a
level-manifold of energy. It may be parametrized by ϕ2 and
p2 with the two possible values of p1(ϕ2, p2;E) determined
by the conservation of energy. Similarly, we may consider
other Poincaré surfaces such as the ones defined by ϕ2 = 0,
p1 = 0, p2 = 0 etc. We record the points on the Poincaré
surface where a trajectory that begins on it returns to it un-
der the Poincaré return map, thus obtaining a Poincaré section
for the given initial condition (IC). For transversal intersec-
tions, a periodic trajectory leads to a Poincaré section consist-
ing of finitely many points while quasi-periodic trajectories
produce sections supported on a finite union of 1d curves. We
call these two types of sections ‘regular’. By a chaotic sec-
tion, we mean one that is not supported on such curves but
explores a 2d region. In practice, deciding whether a numer-
ically obtained Poincaré section is regular or chaotic can be
a bit ambiguous in borderline cases when it is supported on
a thickened curve (see Fig. 11e and around I in Fig. 9). We
define the chaotic region of a Poincaré surface at energy E to
be the union of all chaotic sections at that energy.

A. Transition to chaos and global chaos

1. Numerical schemes and robustness of Poincaré sections

To obtain Poincaré sections, we implement the following
numerical schemes: ODE45: explicit Runge-Kutta with dif-
ference order 5; RK4 and RK10: implicit Runge-Kutta with
difference orders 4 and 10 and SPRK2: symplectic partitioned
Runge-Kutta with difference order 2. Due to the accumu-
lation of errors, different numerical schemes (for the same
ICs) sometimes produce trajectories that cease to agree af-
ter some time, thus reflecting the sensitivity to initial con-
ditions. Despite this difference in trajectories, we find that
the corresponding Poincaré sections from all schemes are
roughly the same when evolved for sufficiently long times
(see Fig. 8). Moreover, we find a strong correlation between

the degree to which different schemes produce the same tra-
jectory and the degree of chaos as manifested in Poincaré
sections. As the agreement in trajectories between different
schemes improves, the Poincaré sections go from being spread
over 2d regions to being concentrated on a finite union of 1d
curves. Since ODE45 is computationally faster than the other
schemes, the results presented below are obtained using it.
Furthermore, we find that for all ICs studied, all four Poincaré
sections on surfaces defined by ϕ1 = 0, ϕ2 = 0, p1 = 0 and
p2 = 0 are qualitatively similar with regard to the degree of
regularity or chaos. Thus, in the sequel, we restrict to the
Poincaré surface defined by ϕ1 = 0.

2. Symmetry breaking accompanying onset of chaos

We find that for E . 4, all Poincaré sections (on the surface
‘ϕ1 = 0’) are nearly regular and display left-right (ϕ2→−ϕ2)
and up-down (p2 →−p2) symmetries (see Fig. 9). Though
there are indications of chaos even at these energies along
the periphery of the four stable lobes (e.g., near the unstable
isosceles fixed points I ), chaotic sections occupy a negligi-
ble portion of the Hill region. Chaotic sections make their first
significant appearance at E ≈ 4 along the figure-8 shaped sep-
aratrix and along the outer periphery of the regular ‘lobes’ that
flank it (see Fig. 10). This transition to chaos is accompanied
by a spontaneous breaking of both the above symmetries. In-
terestingly, the ϕ2→−ϕ2 symmetry (though not p2→−p2)
seems to be restored when E & 4.4. The lack of p2 →−p2
symmetry at high energies is not unexpected: rotors at high
energies either rotate clockwise or counter-clockwise.

At moderate energies E & 4, we observe that all chaotic
sections (irrespective of the ICs) occupy essentially the same
region, as typified by the examples in Fig. 11. At somewhat
higher energies (e.g. E = 14), we find chaotic sections that fill
up both the entire chaotic region and portions thereof when
trajectories are evolved up to t = 105. At yet higher energies
(e.g. E = 18, Fig. 11e), there is no single chaotic section that
occupies the entire chaotic region as the p2→−p2 symmetry
is broken.

3. Fraction of chaos and global chaos

For a range of energies beyond 4, we find that the area of
the chaotic region increases with E (see Fig. 10 and 11). At
E ≈ 5.5, the chaotic region coincides with the energetically
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FIG. 8: (a) The trajectories (e.g., |ϕ1|) obtained via different numerical schemes cease to agree after t ∼ 102 for the IC
ϕ1 = 6.23, ϕ2 = 3.00, p1 =−.90 and p2 = 1.87 with E = 9.98. (b, c, d, e) However, Poincaré sections (with ≈ 5×104 points)
obtained via different schemes are seen to explore qualitatively similar regions when evolved till t = 105 (though not for shorter
times ∼ 103).

FIG. 9: Several Poincaré sections in the energetically al-
lowed ‘Hill’ region on the ‘ϕ1 = 0’ surface for E = 2 and 3.
All sections (indicated by distinct colors online) are largely
regular and possess up-down and left-right symmetries. The
Hill boundary is the librational pendulum solution ϕ1 = 0. P,
I and C indicate pendulum, isosceles and choreography pe-
riodic solutions. More careful examination of the vicinity of
the I s shows small chaotic sections.

allowed portion of the Poincaré surface (see Fig. 11c). Be-
yond this energy, chaotic sections are supported on increas-
ingly narrow bands (see Fig. 11e). This progression towards
regular sections is expected since the system acquires an ad-
ditional conserved quantity in the limit E → ∞. To quantify
these observations, we find the ‘fraction of chaos’ f by ex-
ploiting the feature that the density of points in chaotic sec-
tions is roughly uniform for all energies on the ‘ϕ1 = 0’ sur-
face (this is not true for most other Poincaré surfaces). Thus f
is estimated by calculating the fraction of the area of the Hill
region covered by chaotic sections (see Appendix C and Fig.
12).

The near absence of chaos is reflected in f approximately
vanishing for E . 3.8. There is a rather sharp transition to
chaos around E ≈ 4 ( f ≈ 4%, 20% and 40% at E = 3.85,
4 and 4.1; see lower inset of Fig. 12). This is a bit unex-
pected from the viewpoint of KAM theory and might encode
a novel mechanism by which KAM tori break down in this
system. Thereafter, f rapidly rises and reaches the maximal

value f ≈ 1 at E ≈ 5.33. As illustrated in the upper inset of
Fig. 12, this ‘fully chaotic’ phase persists up to E ≈ 5.6. Inter-
estingly, we find that for this range of energies, f ≈ 1 on a va-
riety of Poincaré surfaces examined (see Fig. 13), so that this
may be regarded as a phase of ‘global chaos’. Furthermore,
the density of points is uniform on all Poincaré surfaces in this
phase of global chaos indicating some sort of ergodicity. Ad-
ditionally, the pendula and breathers are unstable in this phase
(see §IV) and it would be interesting to know whether this is
the case with all periodic solutions. Remarkably, the cessa-
tion of the band of global chaos happens to coincide with the
energy Er1 ≈ 5.6 above which pendulum solutions are always
stable (see Fig. 4). Beyond E ≈ 5.6, f decreases gradually to
zero as E → ∞. Interestingly, the sharp transition to chaos at
E ≈ 4 is also reflected in the JM curvature of §V going from
being positive for E < 4 to admitting both signs for E > 4. It
is noteworthy that the stable to unstable transition energies in
pendula also accumulate from both sides at E = 4 (see Fig. 4).

B. Periodic solutions on the Poincaré surface ‘ϕ1 = 0’

Here, we identify the points on the Poincaré surface cor-
responding to the periodic pendulum and isosceles solutions.
Remarkably, careful examination of the Poincaré sections also
leads us to a new family of periodic ‘choreography’ solutions
which are defined and discussed further in §VII.

1. Pendula

The ϕ1 = 0 pendulum solutions are everywhere tangent to
the Poincaré surface ‘ϕ1 = 0’ and interestingly constitute the
‘Hill’ energy boundary (see Fig. 9-11). [Nb. This connection
between pendulum solutions and the Hill boundary is special
to the surfaces ‘ϕ1 = 0’ and ‘ϕ2 = 0’.] By contrast, the other
two classes of pendulum trajectories (ϕ2 = 0 and ϕ1+ϕ2 = 0)
are transversal to this surface, meeting it at the pendulum
points P(0,±

√
E/3) halfway to the boundary from the ori-

gin. These are period-2 and period-1 fixed points for libra-
tional and rotational solutions respectively. Examination of
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(a) (b) (c)

FIG. 10: Several Poincaré sections on the ‘ϕ1 = 0’ surface in the vicinity of E = 4 where the chaotic region (shaded, yellow
online) makes its first significant appearance. Distinct sections have different colors online. On each surface, one sees breaking
of both up-down and left-right symmetries. Aside from a couple of exceptions on the E = 4 surface, the set of ICs is left-right
and up-down symmetric. The boundary of the Hill region on the ‘ϕ1 = 0’ Poincaré surface is the ϕ1 = 0 pendulum solution.
It becomes disconnected for E > 4 owing to the bifurcation of the librational pendula into clockwise and counterclockwise
rotational pendula.

(a) (b) (c) (d) (e)

FIG. 11: The up-down symmetry remains broken, though the left-right symmetry is restored on Poincaré plots at higher
energies. The periodic orbits corresponding to points marked C are choreographies for E . 5.33.

the Poincaré sections indicates that pendulum solutions must
be stable for E . 3.9 and E & 5.6 leaving open the question of
their stability at intermediate energies. As discussed in §IV A,
the pendulua go from being stable to unstable infinitely of-
ten as E→ 4±. Additionally, by considering initial conditions
near the pendulum points, we find that the pendulum solutions
lie within the large chaotic section only between E ≈ 4.6 and
the cessation of global chaos at E ≈ 5.6.

2. Breathers

Unlike pendula, all isosceles periodic orbits intersect the
‘ϕ1 = 0’ surface transversally at points on the vertical axis.
Indeed, the breathers defined by ϕ1 = ϕ2 and ϕ2 + 2ϕ1 = 0
intersect the surface at the isosceles points I (0,±

√
E) which

form a pair of period-2 fixed points for E < 4.5 and be-

come period-1 in the rotational regime (see Fig. 9-11). The
breathers defined by ϕ1 +2ϕ2 = 0 intersect the surface at the
period-1 fixed point at the origin. In agreement with the con-
clusions of §IV B 1, the Poincaré sections show that all three
isosceles points are unstable at low energies, lie in the large
chaotic section for 3.9 . E . 8.97 and are stable at higher
energies.

3. A new family of periodic solutions

The period-2 fixed points C at the centers of the right and
left lobes on the Poincaré surfaces of Fig. 9 and 10 correspond
to a new family of periodic solutions. Evidently, they go from
being stable to unstable as the energy crosses E ≈ 5.33. We
argue in §VII that they are choreographies for E . 5.33.
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FIG. 12: Energy dependence of the area of the chaotic re-
gion on the ‘ϕ1 = 0’ Poincaré surface as a fraction of the area
of the Hill region.

FIG. 13: (b) Various Poincaré surfaces showing global
chaos at E = 5.516.

VII. CHOREOGRAPHIES

Choreographies are an interesting class of periodic solu-
tions of the n-body problem where all particles follow the
same closed curve equally separated in time23. The Lagrange
equilateral solution where three equal masses move on a com-
mon circle and the stable zero-angular momentum figure-8 so-
lution discovered by C. Moore24 (see also Ref.3) are perhaps
the simplest examples of choreographies in the equal mass
gravitational 3 body problem. Here, we consider choreogra-
phies in the 3 rotor problem where the angles θi(t) of the three
rotors may be expressed in terms of a single 3τ-periodic func-

ϕ1(t) ϕ2(t)

0 2 4 6 8 10 12 14

-2

-1

0

1

2

ϕ t

Choreography at E = 4

(a)
0 1 2 3 4 5

E/g

4

5

6

7

3τ
Time period of Choreographies

(b)

FIG. 14: (a) A non-rotating choreography at E = 4g show-
ing that the time lag between ϕ1 and ϕ2 is one-third the pe-
riod. (b) The time period 3τ of non-rotating choreographies
as a function of energy indicating divergence at E ≈ 5.33g.

tion, say θ1(t):

θ2(t) = θ1(t + τ) and θ3(t) = θ1(t +2τ). (55)

This implies that the CM and relative coordinates ϕ0, ϕ1(t)
and ϕ2(t) = ϕ1(t + τ) must be 3τ periodic (see Fig. 14a) and
satisfy the delay algebraic equation

ϕ1(t)+ϕ1(t + τ)+ϕ1(t +2τ) =
θ1−θ2 +θ2−θ3 +θ3−θ1 ≡ 0 mod 2π. (56)

The EOM (9) become 3mr2ϕ̈0 = 0 and the pair of delay dif-
ferential equations

mr2
ϕ̈1(t) =−g

[
2sinϕ1(t)− sinϕ1(t + τ)

+sin(ϕ1(t)+ϕ1(t + τ))
]

and
mr2

ϕ̈2(t) = mr2
ϕ̈1(t + τ) =−g

[
2sinϕ1(t + τ)

−sinϕ1(t)+ sin(ϕ1(t)+ϕ1(t + τ))
]
. (57)

In fact, the second equation in (57) follows from the first by
use of the delay algebraic equation (56). Moreover, using the
definition of ϕ0, the constant angular velocity of the CM

ϕ̇0 =
1
τ
[ϕ0(t + τ)−ϕ0(t)]

=− 1
3τ

[ϕ1(t)+ϕ1(t + τ)+ϕ1(t +2τ)] . (58)

It is verified that any 3τ periodic triple ϕ0,1,2 satisfying (56),
(57) and (58) leads to a choreography of the 3-rotor system.
Thus, to discover a choreography we only need to find a 3τ-
periodic function ϕ1 satisfying (56) and the first of the delay
differential equations (57) with the period 3τ self-consistently
determined. Now, it is easy to show that choreographies can-
not exist at asymptotically high (relative) energies. In fact, at
high energies, we may ignore the interaction terms (∝ g) in
(57) to get ϕ1(t) ≈ ωt +ϕ1(0) for |ω| � 1. However, this
is inconsistent with (56) which requires 3ωt ≡ 0 mod 2π at
all times. On the other hand, as discussed below, we do find
examples of choreographies at low and moderate relative en-
ergies.

A. Examples of choreographies

Uniformly rotating (at angular speed Ω) versions of the
static solutions G and T (but not D) (see §III A 1 and Fig. 1)
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provide the simplest examples of choreographies with θ1(t) =
Ωt and τ = 2π/Ω for G and τ = 2π/3Ω for T where Ω is ar-
bitrary. In the case of G, though all particles coincide, they
may also be regarded as separated by τ . The energies (12) of
these two families of choreographies come from the uniform
CM motion and a constant relative energy:

E(G)
tot =

3
2

mr2
Ω

2 and E(T)
tot =

3
2

mr2
Ω

2 +
9g
2
. (59)

These two families of choreographies have the scaling prop-
erty: if θ(t) with period 3τ describes a choreography in the
sense of (55), then θ(at) with period |3τ/a| also describes a
choreography for any real a. It turns out that the above two
are the only such ‘scaling’ families of choreographies. To see
this, we note that both θ(t) and θ(at) must satisfy the delay
differential equation

θ̈(t + τ)− θ̈(t) = −g
mr2

[
2sin(θ(t + τ)−θ(t))

− sin(θ(t)−θ(t− τ))+ sin(θ(t + τ)−θ(t− τ))

]
(60)

implying that either a2 = 1 or θ̈(t + τ) = θ̈(t). However,
the latter implies that θ̇(t + τ)− θ̇(t) = −ϕ̇1(t) is a constant
which must vanish for the delay algebraic equation (56) to be
satisfied. Consequently, ϕ̇2 must also vanish implying that the
choreography is a uniformly rotating version of G or T.

B. Non-rotating choreographies

Remarkably, we have found another 1-parameter family
of choreographies (e.g., Fig. 14a) that start out as small
oscillations around G. At low energies, they have a period
3τ = 2π/ω0 and reduce to

ϕ1(t)≈

√
2E
3g

sin(ω0(t− t0)) for E� g (61)

where ω0 =
√

3g/mr2. It is easily verified that (56) is iden-
tically satisfied while (57) is satisfied for E � g. Moreover,
using (58), we find that the angular speed ϕ̇0 of the CM must
vanish for (61) so that the energy is purely from the relative
motion. The phase trajectory corresponding to (61) intersects
the ϕ1 = 0 Poincaré surface at the pair of period-2 fixed points
C(±

√
E/2g,0) which lie at the centers of the left and right

stable ‘lobes’ pictured in Fig. 9 at E = 2g and 3g.
More generally, we numerically find that when the ICs are

chosen at the stable fixed points at the centers of these lobes,
the trajectories are a one-parameter family of choreographies
ϕ1(t;E) varying continuously with E up to E ≈ 5.33. It can
be argued that these choreographies are non-rotating (involve
no CM motion). Indeed, from (58) and (56), we must have
3τϕ̇0 ≡ 0 mod 2π , implying that ϕ̇0 cannot jump discontin-
uously. Since, 3τϕ̇0 = 0 as E → 0 (61), it must remain zero
when E is continuously increased from 0 to 5.33. Though we
do not study their stability here by the monodromy approach,
the Poincaré sections (see Fig. 9 and 10) indicate that they are

stable. As shown in Fig. 14b, the time period 3τ grows mono-
tonically with E and appears to diverge at E ≈ 5.33, which
coincides with the beginning of the band of ‘global chaos’
(see §VI). For E & 5.33, the period-2 choreography points
C on the ‘ϕ1 = 0’ Poincaré surface become unstable and lie
in a chaotic region (see Fig. 11), preventing us from finding
such a choreography, if it exists, using the above numerical
technique. As argued before, choreographies are forbidden at
very high energies. For instance, on the ‘ϕ1 = 0’ Poincaré sur-
face at E = 18 (see Fig. 11e), the analogues of the C points
correspond to unstable periodic orbits which are not chore-
ographies. In fact, we conjecture that this family of periodic
solutions ceases to be a choreography beyond E ≈ 5.33.

VIII. DISCUSSION

In this paper, we have studied the classical three rotor prob-
lem and found novel signatures of its transition to chaos as
well as a phase of global chaos. We also discovered ‘pen-
dulum’ and ‘isosceles-breather’ periodic solutions as well as
choreographies and discussed their stability properties. §I
contains a concise summary of our results. Here, we discuss
some open questions arising from our work.

The classical 3 rotor problem and planar restricted 3 body
problem are similar in the sense that both have essentially two
degrees of freedom and only one known conserved quantity.
In the latter, Bruns and Poincaré25 proved the non-existence
of additional conserved quantities of certain types (analytic in
small mass ratios and orbital elements). It would be reassuring
to obtain a similar result for the 3 rotor problem. Analogously,
the extension to our system, of Ziglin’s and Melnikov’s argu-
ments for non-integrability is also of interest26,27.

While we found the trace of the monodromy for periodic
‘pendulum’ solutions numerically, it would be interesting to
prove the accumulation of stable to unstable phase transitions
at E = 4g and establish its asymptotic periodicity on a log
scale, for instance by finding an analytical expression for the
stability index as Yoshida18 does in the 2d anharmonic oscilla-
tor of Eq. (39). This accumulation at the threshold for bound
librational trajectories with diverging time periods and the pe-
riodicity on a log scale is reminiscent of the energy spectrum
of Efimov trimers that accumulate via a geometric sequence
at the two-body bound state threshold with diverging S-wave
scattering length13. It would also be interesting to explore a
possible connection between this accumulation of transitions
and the accumulation of homoclinic points at a hyperbolic
fixed point in a chaotic system. The nature of bifurcations19

and local scaling properties28 at these transitions are also of
interest. In another direction, one would like to understand
if there is any connection between the accumulation of tran-
sition energies and the change in topology of the Hill region
(V ≤ E) of the configuration torus as E crosses the value 4g
at the three critical points (saddles D) of the Morse function
V (see §III B). One would also like to analyse the onset of
widespread chaos in this system using methods such as those
of Chirikov29 and Greene30.

We have argued that the 3 rotor system is integrable at
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E = 0 and ∞ (g = ∞,0), where additional conserved quantities
emerge. One wonders whether it is ‘integrable’ at any other
energy. In other words, is there any non-trivial energy hyper-
surface in phase space on which all trajectories are periodic or
quasi-periodic so that the corresponding Poincaré sections are
regular? Our estimate of the fraction of chaos on the ‘ϕ1 = 0’
Poincaré surface strongly suggests that any integrable energy
EI is either isolated or EI . 3.8g. However, even for low en-
ergies, we expect chaotic sections in the neighborhood of the
isosceles points I (see Fig. 9). In fact, we conjecture that the
3 rotor problem has no non-trivial integrable energies unlike
the 2d anharmonic oscillator18.

As discussed in §VI, Poincaré sections suggest a band of
global chaos for 5.33g . E . 5.6g. This is of course consis-
tent with the instability of pendulum and breather solutions in
this regime. Consequently, it would be interesting to inves-
tigate the possible ergodic behavior of three rotors for such
energies.

Finally, a deeper understanding of the physical mechanisms
underlying the onset of chaos in this system would be desir-
able, along with an examination of quantum manifestations of
the classical chaos, given the connection to modeling chains
of coupled Josephson junctions.
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Appendix A: Quantum N-rotor problem from XY model

The quantum N-rotor problem may be related to the 2d XY
model of classical statistical mechanics which displays the
celebrated Kosterlitz-Thouless topological phase transition8.
The dynamical variables of the XY model are 2d unit-vector
spins Sα (or phases eiθα ) at each site α of an N ×M rect-
angular lattice with horizontal and vertical spacings a and
b and nearest neighbor ferromagnetic interaction energies
−J Sα ·Sβ =−J cos(θα−θβ ) with J > 0. One often considers
a = b and assumes that θ varies gradually so that in the con-
tinuum limit a→ 0 and N,M→ ∞ holding aN and aM fixed,
the Hamiltonian becomes H = J

2
∫
|∇θ |2 d2r. This defines the

1+1 dimensional O(2) principal chiral model.
Here, we approximately reformulate the XY model as an

interacting quantum N-rotor problem by taking a partial con-
tinuum limit in the vertical direction followed by a Wick ro-
tation. The resulting quantum system has been used to model
a 1d array of coupled Josephson junctions and is known to be
related to the XY model in a Villain approximation5,6. With
i and j labelling the columns and rows of the lattice, the XY

model Hamiltonian is

H =−J ∑
i, j

[
cos(θi, j+1−θi, j)+ cos(θi+1, j−θi, j)

]
(A1)

with J > 0. In the first term, the sum is over 1≤ i≤N and 1≤
j ≤M− 1 while for the second term, we have 1 ≤ i ≤ N− 1
and 1≤ j ≤M. We will impose periodic boundary conditions
(BCs) in the horizontal but not in the vertical direction (open
BCs are also of interest). We will take a continuum limit in
two steps. We first make the spacing between rows small by
introducing a continuous vertical coordinate τ in place of j
such that τ( j + 1)− τ( j) = δτ = b. Next, we approximate
cos(θi, j+1−θi, j) by

cos(θi(τ +δτ)−θi(τ))≈ 1− 1
2
(θi(τ +δτ)−θi(τ))

2

≈ 1− 1
2

θ
′
i (τ)

2 bdτ. (A2)

Here, we have chosen to write (δτ)2 as bdτ in anticipation of
taking b→ 0 in the second step. Within this approximation,
the Hamiltonian (A1) up to an additive constant becomes

H = J ∑
i

∫ {b
2

θ
′
i (τ)

2− 1
b

cos [θi+1(τ)−θi(τ)]

}
dτ (A3)

using the prescription ∑ j b f (τ j)→
∫

f (τ)dτ . The resulting
partition function

Z =
∫ N

∏
k=1

D[θk]exp [−βH] (A4)

after a Wick rotation τ = ict, may be written as

Z =
∫

D[θ ]eiS/h̄ where

S
h̄
= βJc∑

i

∫
dt
[

b
2c2 θ̇i(t)2 +

1
b

cos [θi+1(t)−θi(t)]
]
.(A5)

We introduced a parameter c > 0 with dimensions of speed so
that t has dimensions of time. We may take a second contin-
uum limit, this time in the horizontal direction by replacing
∑i by

∫ dx
a by taking a→ 0 and N→ ∞ while holding aN and

a/b fixed to get

S
h̄
≈ βJc

∫ dx
a

∫
dt

{
b

2c2

(
∂θ

∂ t

)2

+
1
b

cos
(

a
∂θ

∂x

)}
≈ 1

2
βJc

∫
dx dt

{
b
a

1
c2 θ̇

2− a
b

θ
′2
}
. (A6)

The path integral
∫

D[θ ]eiS/h̄ is what we would have obtained
if we had taken the conventional continuum limit (a,b→ 0)
of the XY model partition function and then performed a
Wick rotation. Our two-step continuum limit has allowed us
to approximately identify the quantum N-rotor problem (A5)
where b has not yet been taken to zero.

For fixed N,a and b, the physical interpretation of (A5) is
facilitated by letting Lb/acβ play the role of h̄ where L is a
length that remains finite in the limit a,b→ 0. L could be the



Classical three rotor problem: periodic solutions, stability and chaos arXiv:1811.05807 17

horizontal linear dimension of the system. This h̄ has dimen-
sions of action and tends to 0 at low temperatures where quan-
tum fluctuations in the Wick rotated theory should be small.
With this identification of h̄, we read off the classical action

S[θ ] = ∑
i

∫ {JLb2

2ac2 θ̇
2
i +

JL
a

cos [θi−θi+1]

}
dt. (A7)

Letting m = J/c2, r =
√

Lb2/a and g = JL/a, the correspond-
ing Hamiltonian (with θN+1 ≡ θ1)

H =
N

∑
i=1

{
1
2

mr2
θ̇

2
i +g[1− cos(θi−θi+1)]

}
(A8)

describes the equal mass N-rotor problem. The rotor angles
θi parametrize N circles whose product is the N-torus config-
uration space. Though the rotors are identical, each is asso-
ciated to a specific site and thus are distinguishable. In par-
ticular, the wavefunction ψ(θ1,θ2, · · ·θN) need not be sym-
metric or antisymmetric under exchanges. We may also vi-
sualize the motion by identifying all the circles but allowing
the rotors/particles to remember their order from the chain.
So particles i and j interact only if i− j = ±1. In particular,
particles with coordinates θ1 and θ3 can freely ‘pass through’
each other! Furthermore, on account of the potential, particles
i and i+ 1 can also cross without encountering singularities.
Finally, we note that the quantum Hamiltonian corresponding
to (A7),

Ĥ = ∑
i
− h̄2

2mr2
∂ 2

∂θ 2
i
−gcos(θi−θi+1) (A9)

has been used to model a 1d array of coupled Josephson
junctions5 with the capacitive charging and Josephson cou-
pling energies given by EC = h̄2/mr2 = L/aβ 2J and EJ = g =
JL/a.

Appendix B: Positivity of JM curvature for 0≤ E ≤ 4g

Here, we prove that for 0≤ E ≤ 4g, the JM curvature R of
§V is strictly positive in the Hill region (E > V ) of the ϕ1-ϕ2
configuration torus. It is negative outside and approaches ±∞

on the Hill boundary E =V . It is convenient to work in Jacobi
coordinates ϕ± = (ϕ1±ϕ2)/2 introduced in §II B and define
P = cosϕ+ and Q = cosϕ−. In these variables,

R =
g2NE(P,Q)

mr2(E−V )3 where NE = 5+2Q2−6PQ+8P3Q

+
[

2E
g −3

]
(2P2 +2PQ−1). (B1)

Since E −V > 0 in the Hill region, it suffices to show that
NE ≥ 0 on the whole torus and strictly positive in the Hill
region. It turns out that (a) NE ≥ 0 for E = 0 and 4g and (b)
for E = 0, NE vanishes only at the ground state G while for
E = 4g, it vanishes only at the saddles D, with both G and the
Ds lying on the Hill boundary. Since G is distinct from the Ds,
linearity of NE then implies that NE > 0 on the entire torus
for 0 < E < 4g. It only remains to prove (a) and (b).

FIG. 15: Accepted (chaotic, shaded lighter/blue) and re-
jected (regular, shaded darker/grey) triangles on Delaunay
Mesh for a sample chaotic region on the ‘ϕ1 = 0’ Poincaré
surface at E = 7 for maximal edge length d = 1. The light
colored region on the periphery inside the Hill region consists
of regular sections.

To proceed, we regard NE as a function on the [−1,1]×
[−1,1] PQ-square. (i) When E = 0, N0 has only one lo-
cal extremum in the interior of the PQ-square at (0,0) where
N0(0,0) = 8. On the boundaries of the PQ-square,

N0(±1,Q) = 2(1∓Q)2 ≥ 0 and
N0(P,±1) = 2(P∓1)2(5±4P)≥ 0 (B2)

with N0 vanishing only at (1,1) and (−1,−1) both of which
correspond to G. Thus, N0 ≥ 0 on the whole torus and van-
ishes only at G which lies on the Hill boundary. (ii) When
E = 4g, the local extrema in the interior of the PQ-square are
at (0,0) and (±1,∓5/3)/

√
3 where N4g takes the values 0

and 40/27. On the boundaries of the PQ-square,

N4g(±1,Q) = 2(1±Q)(5±Q)≥ 0 and
N4g(P,±1) = 2(1±P)(1±P+4P2)≥ 0 (B3)

with N4g vanishing only at (1,−1) and (−1,1). Hence, for
E = 4g, N4g ≥ 0 on the whole torus and vanishes only at the
three saddle points (Ds) all of which lie on the Hill boundary.

Appendix C: Measuring area of chaotic region on ‘ϕ1 = 0’
Poincaré surface

To estimate the fraction of the area of the Hill region (at
a given E) occupied by the chaotic sections on the ‘ϕ1 = 0’
Poincaré surface, we need to assign an area to the correspond-
ing scatter plot (e.g., see Fig 11a). We use the DelaunayMesh
routine in Mathematica to triangulate the scatter plot so that
every point in the chaotic region lies at the vertex of one or
more triangles (see Fig. 15). For such a triangulation and a
given d > 0, the d-area of the chaotic region is defined as the
sum of the areas of those triangles with maximal edge length
≤ d (accepted triangles in Fig. 15). Fig. 16 shows that the area
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FIG. 16: Estimates of the fraction of chaos (area of accepted
region/area of Hill region) for various choices of d. An opti-
mal estimate for f is obtained by picking d where f saturates.
The three data sets displayed have n= 1,3,5 chaotic ICs, each
evolved for the same duration t = 105.

initially grows rapidly with d, and then saturates for a range
of d. Our best estimate for the area of the chaotic region is
obtained by picking d in this range. Increasing d beyond this
admits triangles that are outside the chaotic region. Increas-
ing the number of points in the scatter plot (either by evolving
each IC for a longer time or by including more chaotic ICs,
which is computationally more efficient) reduces errors and
decreases the threshold value of d as illustrated in Fig. 16.
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