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In Part I [1], we introduced the idea of a Lax pair and ex-

plained how it could be used to obtain conserved quantities

for systems of particles. Here, we extend these ideas to con-

tinuum mechanical systems of fields such as the linear wave

equation for vibrations of a stretched string and the Korteweg-

de Vries (KdV) equation for water waves. Unlike the Lax ma-

trices for systems of particles, here Lax pairs are differential

operators. A key idea is to view the Lax equation as a com-

patibility condition between a pair of linear equations. This is

used to obtain a geometric reformulation of the Lax equation

as the condition for a certain curvature to vanish. This ‘zero

curvature representation’ then leads to a recipe for finding

(typically an infinite sequence of) conserved quantities.

1. Introduction

In the first part of this article [1], we introduced the idea of a dy-

namical system: one whose variables evolve in time, typically via

differential equations. It was pointed out that conserved quanti-

ties, which are dynamical variables that are constant along trajec-

tories help in simplifying the dynamics and solving the equations

of motion (EOM) both in the classical and quantum settings. We

then introduced the concept of a Lax pair of p× p square matrices Keywords

Continuum mechanics, fields, lin-

ear wave equation, Lax pair,

KdV equation, conserved quan-

tities, zero curvature representa-

tion, monodromy matrix.

(L, A) which, when available, is a useful tool to find conserved

quantities. A system admits a Lax pair if its EOM are equivalent

to the Lax equation (which is a system of p2 equations)

Lt = L̇ ≡
dL

dt
= [L, A] = LA − AL. (1)
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Here, the matrix elements of L and A depend on the dynamical

variables. As a consequence of (1), the Lax matrix L evolves

isospectrally: its eigenvalues and traces of its powers ( tr Lk, k =

1, 2, . . .) are conserved. This was illustrated using the harmonic

oscillator, Toda chain, and Euler top which are classical mechan-

ical systems with finitely many degrees of freedom (one for the

oscillator, three for the top and N for a Toda chain of N atoms).

Here, we move from systems of particles with finitely many de-

grees of freedom to continuum mechanical systems of fields with

infinitely many degrees of freedom. A simple example of a field

is the height u(x, t) of a vibrating stretched string.Continuum mechanical

systems of classical

fields evolve via partial

differential equations

such as the wave

equation utt = c2uxx, as

opposed to Newton’s

ordinary differential

equations (e.g.

mq̈ = −kq) of particle

mechanics.

Classical

fields evolve via partial differential equations (PDEs) such as the

wave equation utt = c2uxx, as opposed to Newton’s ordinary dif-

ferential equations (e.g. mq̈ = −kq) of particle mechanics. Here,

subscripts on u denote its partial derivatives: ut = ∂tu = ∂u/∂t,

etc. To specify an instantaneous configuration of the string, one

needs to specify the height field u(x, t) at each point x along the

string. It is in this sense that fields possess infinitely many degrees

of freedom. The height of a surface water wave, the pressure in a

fluid or the magnetic field around the Earth are other examples of

dynamical fields.

Our first example of a continuum mechanical system with a Lax

pair is perhaps the simplest example of a field equation: the linear

wave equation ut + cux = 0. The latter describes waves that main-

tain their shape and move rightwards at a constant speed c > 0.

Unlike the

finite-dimensional Lax

matrices for systems of

particles, in continuum

mechanics (systems of

fields), L and A are

differential operators.

Unlike the matrices encountered in Part I [1], the Lax pair L and

A are now a pair of differential operators. As one might suspect

from the existence of a Lax pair, the wave equation admits an

infinite number of conserved quantities, since the differential op-

erator L may be viewed as an infinite-dimensional matrix whose

spectrum (eigenvalues) is conserved. We then generalize this Lax

pair to a richer physical system, the nonlinear Korteweg-de Vries

(KdV) equation for water waves: ut − 6uux + uxxx = 0. The

Lax pair for KdV (consisting of second and third-order differen-

tial operators L and A) can be used to find an infinite number of

unexpected and nontrivial conserved quantities. In fact, it turns
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out that the wave and KdV equations are the first two members of

an infinite ‘KdV hierarchy’ of equations that share the same set

of conserved quantities!

We then use the KdV example The Lax equation admits

a geometric

reformulation known as

the zero curvature

representation which is

obtained by viewing it as

a compatibility condition

between two first-order

linear equations. This

compatibility condition

is equivalent to the

vanishing of a certain

curvature (which means

that a certain space is

flat).

to pass to a more symmetrical

reformulation of the Lax pair idea where the Lax equation is

viewed as a compatibility condition for a pair of linear equations

involving only first derivatives with respect to space and time.

This compatibility condition has a geometric meaning: it says

that a certain curvature or fictitious electromagnetic field strength

vanishes. More generally, we will say that a (nonlinear) system

of field equations admits a zero curvature representation if the

equations are equivalent to the condition for a certain curvature

to vanish. Remarkably, a number of interesting nonlinear field

equations, especially in one spatial dimension (such as the mKdV,

nonlinear Schrödinger, sine-Gordon, Heisenberg magnetic chain

and principal chiral), admit zero curvature representations. What

is more, one can use the vanishing of this curvature to obtain

The 1st order wave

equation ut + cux = 0 is

related to the 2nd order

wave equation

(∂2
t − c2∂2

x)φ = 0.

Indeed, the d’Alembert

wave operator ∂2
t − c2∂2

x

may be factorized as

(∂t + c∂x)(∂t − c∂x). The

first-order equations

ut + cux = 0 and

vt − cvx = 0 describe

right/left-moving waves

u = f (x − ct) and

v = g(x + ct) while the

2nd order wave equation

describes bi-directional

propagation: φ(x, t) =

f (x − ct) + g(x + ct).

(infinitely many) conserved quantities for these systems. This

proceeds via an object called the monodromy or parallel trans-

port matrix which governs how vectors change when one goes

around a closed spatial loop. Our exploration of the Lax pair

idea will also come around a full circle when we show that the

monodromy matrix itself satisfies a Lax-like equation so that the

traces of its powers furnish a set of conserved quantities! The

presence of these conserved quantities gives these systems very

remarkable features: aside from admitting exact solutions, these

systems typically admit special types of spatially localized soli-

tary waves called solitons which can scatter in complicated ways

and yet reemerge while retaining their shapes.

2. Wave Equation

One of the simplest field equations in one dimension (1D) is the

wave equation:

ut + cux = 0 for constant c. (2)
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Figure 1. Right-moving

solitary wave u(x, t) = f (x −

ct) at times t = 0, 1, 2 with

profile f = exp(−x2/2) and

speed c = 5.
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Here, u(x, t) could represent the amplitude/height of the wave

(sound/water, etc.) at position x at time t. For c > 0, this par-

tial differential equation describes right-moving waves that travel

at speed c while maintaining their shape (see Figure 1).In the time-independent

Schrödinger equation

Lψ = λψ,

L = −∂2
x + u(x, t) plays

the role of the

Hamiltonian (energy

operator), u that of

potential energy and λ

the energy eigenvalue in

units where ~2/2m = 1.

In one-dimensional

quantum systems, bound

state energy eigenvalues

are nondegenerate (see

p. 99 of [2]). Thus, the

corresponding energy

eigenspaces are

one-dimensional, as

assumed in §3 of [1].

Indeed, one checks that u(x, t) = f (x − ct) is a solution of (2)

for any differentiable function f . We seek a Lax pair of differen-

tial operators L and A (depending on u) such that Lt = [L, A] is

equivalent to (2). It is convenient to take L to be the Schrödinger

operator L = −∂2 + u(x, t), where ∂ = ∂x = ∂/∂x. L is familiar

from Sturm-Liouville theory as well as from quantum mechanics

as the Hamiltonian of a particle moving in the potential u(x, t).

Since L is symmetric (hermitian), Lt = ut is also symmetric, so

for the Lax equation to make sense [L, A] must also be symmet-

ric. As in §2 of [1], choosing A to be anti-symmetric (up to the

addition of an operator that commutes with L) guarantees this. It

turns out that A = c∂ does the job (see Box 1). Indeed, using the

commutator [∂, f ] = f ′ for any function f , we see that the Lax

equation is equivalent to the wave equation:

Lt = ut = [L, A] = [−∂2 + u(x, t), c∂] = [u, c∂] = −cux. (3)

We will use this Lax pair as a stepping stone to find a Lax pair

for the KdV equation, which is a nonlinear wave equation with

widespread applications. As discussed in Part I [1], the existence

of a Lax pair is usually associated with the presence of conserved
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quantities. For example, integrating (2) in x, we get

d

dt

∫ ∞

−∞

u dx = −c

∫ ∞

−∞

uxdx = −c(u(∞) − u(−∞)) = 0 (4)

assuming u → 0 as x → ±∞. Thus, C1 =
∫ ∞

−∞
u dx is conserved.

The reason this worked is that (2) takes the form of a local con-

servation law: ∂tρ + ∂x j = 0 with ρ = u and j = cu.

Box 1. Lax pair for the wave equation.

The choice A = c∂ to partner the Schrödinger operator L in the Lax pair (3) for the wave equation (2)

can be arrived at by starting from the simplest of differential operators, a first order differential operator

α(x, t)∂ + β(x, t) and imposing some consistency conditions. We shall see in Box 4, that this approach

generalizes to other equations. To make A anti-symmetric, we subtract its adjoint and consider

A1 = (α∂ + β − ∂†α − β) = (α∂ + ∂α) = [α, ∂]+ = (α′ + 2α∂) where α
′ =

∂α

∂x
. (5)

Here, we used (i) ∂† = −∂, which is familiar from the hermiticity of momentum p = −i~∂ in quantum

mechanics, (ii) g† = g for any real function g and (iii) (∂α)( f ) = α′ f + α f ′ so that ∂α = α′ + α∂. The

commutator with the Schrödinger operator L is then

[L,A1] = [−∂2 + u, α′ + 2α∂] = −α′′′ − 4α′′∂ − 4α′∂2 − 2αu′ . (6)

Here, we used [∂, α] = α′, the Leibnitz product rule, linearity and anti-symmetry of commutators to obtain

[u, α′] = 0, [u, 2α∂] = −2αu′, [−∂2
, α
′] = −∂[∂, α′] − [∂, α′]∂ = −α′′′ − 2α′′∂ and

[−∂2
, 2α∂] = −∂[∂, 2α∂] − [∂, 2α∂]∂ = −∂(2α′∂) − (2α′∂)∂ = −4α′∂2 − 2α′′∂. (7)

In the Lax equation Lt = [L,A1], Lt = ut is multiplication by ut(x, t). For [L, A1] in (6) to also be a

multiplication operator, the coefficients of ∂ and ∂2 must vanish which implies α′ = α′′ ≡ 0 for all x. This

implies α = α(t) is a function of time alone. Thus, Lt = [L, A1] becomes ut = −2α(t)ux. For this to be

equivalent to the wave equation ut + cux = 0, we must pick α(t) = c/2, so that A1 reduces to A = c∂.

Integrating an equation in local conservation form implies the

conservation of
∫ ∞

−∞
ρdx, provided the ‘flux’ of j across the ‘bound-

ary’ vanishes: j(∞) − j(−∞) = 0. Similarly, multiplying (2) by

u leads to an equation that is again in local conservation form:

∂t(u
2/2) + c∂x(u2/2) = 0. Thus, C2 =

∫ ∞

−∞
u2 dx is also con-

served. In a similar manner, we find that ∂tu
n + c∂xun = 0, so that
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Cn =
∫ ∞

−∞
u(x, t)n dx is conserved for any n = 1, 2, 3, . . .. Thus,

the wave equation admitsThe infinite sequence of

conserved quantities Qn

are special: they are

conserved for both the

linear wave and KdV

equations. In fact, they

are conserved for all the

equations in the KdV

‘hierarchy’.

infinitely many constants of motion.

However, unlike in Part I [1], Cn have not been obtained from the

Lax operator L. As we will see in Box 2, the wave equation also

admits another infinite sequence of conserved quantities Qn that

may be obtained from L. Unlike Cn, the Qn turn out to be very

special: they are conserved quantities both for the wave equation

and its upcoming nonlinear generalization, the KdV equation.

Box 2. Infinitely many conserved quantities for the linear wave equation.

Since L = −∂2 + u(x, t) and A = c∂ are unbounded differential operators, we do not try to make sense of

tr Ln to find conserved quantities by the method of §4 of [1]. Nevertheless, conserved quantities can be

obtained from the pair of equations Lψ = λψ and ψt = −Aψ (see §3 of [1]). Indeed, suppose we put λ = k2

and change variables from the wavefunction ψ to a new function ρ defined via the transformation

ψ(x, t; k) = exp

[

−ikx +

∫ x

−∞

ρ(y, k, t) dy

]

. (8)

Then, by studying the quantum mechanical scattering problem for a plane wave with one dimensional

wavevector k in the potential u (assumed to vanish at ±∞), it can be shown that
∫ ∞

−∞
ρ(x, k, t) dx (which is

the reciprocal of the transmission amplitude) is conserved in time for any k. We will use this to find an

infinite sequence of integrals of motion (in terms of u). Putting (8) in Lψ = k2ψ, we get a Riccati-like

equation relating ρ to u: ρx + ρ
2 − 2ikρ = u(x, t). Since ρ is a conserved density, so are the coefficients ρn

in an asymptotic series in inverse powers of k: ρ =
∑∞

n=1 ρn(x, t)/(2ik)n which is a bit like a ‘semiclassical’

expansion. Comparing coefficients of different powers of k, one finds

at O(k0) : ρ1 = −u, at O(1/k) : ρ2 = ∂ρ1 and at O(1/kn) : ρn+1 = ∂ρn +

n−1
∑

m=1

ρmρn−m. (9)

Using this recursion relation we may express ρn in terms of u and its derivatives:

ρ1 = −u, ρ2 = −ux, ρ3 = u2 − uxx , ρ4 = (2u2 − uxx)x,

ρ5 = −u4x + 2(u2)xx + u2
x + 2uuxx − 2u3

, ρ6 =

(

−u4x + 18uu2x −
16

3
u3

)

x

etc. (10)

Contd.
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Box 2. Contd.

The even coefficients integrate to zero while ρ2n+1 lead to nontrivial conserved quantities defined as

Qn =
(−1)n+1

2

∫ ∞

−∞

ρ2n+1 dx for n = 0, 1, 2 . . . . (11)

The first few of these conserved quantities for the wave equation are:

Q0 =

∫

u

2
dx, Q1 =

∫

u2

2
dx, Q2 =

∫ (

u2
x

2
+ u3

)

dx and Q3 =
1

2

∫

[

5u4 + 10uu2
x + u2

2x

]

dx. (12)

3. Korteweg-de Vries (KdV) Equation

The most famous

solution of the KdV

equation is the soliton

u = − c
2
sech2

[ √
c(x−ct)

2

]

. It

describes a localized

solitary wave of

depression that travels at

velocity c while

retaining its shape.

Observation of such a

wave was reported in

1834 by Scott Russell

while riding a horse

along the

Edinburgh–Glasgow

canal.

The KdV equation, with subscripts denoting partial derivatives,

ut − 6uux + uxxx = 0, (13)

describes long wavelength (l ≫ h, ‘shallow-water’) surface waves

of elevation u(x, t) ≪ h in water flowing in a narrow canal of

depth h (see Figure 2).

The KdV equation for the field u describes the evolution of in-

finitely many degrees of freedom labelled by points x length-

wise along the canal. While the nonlinear advection term uux

can steepen the slope of a wave profile, the ‘dispersive’ uxxx term

tends to spread the wave out (see Box 3). A balance between

the two effects can lead to localized solitary waves or ‘solitons’

that can propagate while maintaining their shape. What is more,

two such solitons can collide and reemerge while retaining their

shapes. These phenomena, which were discovered via laboratory

and numerical experiments, suggested that the KdV equation may

possess several constants of motion.
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Figure 2. Surface wave

profile in a canal.

Box 3. Nondispersive versus dispersive propagation.

A linear evolutionary partial differential equation (such as the wave equation) is nondispersive if the phase

velocity vp(k) = ω(k)/k of a plane wave solution ei(kx−ω(k)t) is independent of the wavevector k. This happens

if the angular frequency-wavevector dispersion relation ω = ω(k) is linear. For the wave equation ut + cux =

0, we have ω = ck so that vp = c is a constant implying nondispersive propagation. For a nondispersive

equation, all Fourier components (labelled by k) travel at the same speed so that a wave packet does not

spread out. For example, light waves in vacuum are nondispersive. On the other hand, free particle matter

waves described by the Schrödinger equation i~
∂ψ

∂t
= − ~

2

2m
∂2

xψ are dispersive: ω = ~k2/2m or vp(k) = ~k/2m.

Here, higher k modes travel faster and a wave packet broadens out with time.

In fact, the KdV equation admits some elementary conserved

quantities [3, 4]. For instance, integrating (13) gives

d

dt

∫ ∞

−∞

u dx =

∫ ∞

−∞

(

3u2 − uxx

)

x
dx = 0, (14)

assuming u → 0 as x → ±∞. This leads to the conservation of

the mean height 2Q0 =
∫ ∞

−∞
u dx. Furthermore, one may check by

differentiating in time andThe conserved quantities

P and E are related to

symmetries of the KdV

equation under

space-time translations

via a theorem of Emmy

Noether. See Chapt. 1 of

[5] for more on

symmetries of the KdV

equation.

using (13) that

2Q1 = P =

∫ ∞

−∞

u2dx and Q2 = E =

∫ ∞

−∞

(

u3 +
u2

x

2

)

dx (15)

are also conserved. P and E can be interpreted as the momentum

and energy of the wave. While these conservation laws could

perhaps be guessed, in what came as a major surprise, in 1967–68,

Whitham and then Kruskal and Zabusky discovered a fourth (Q3

from Box 2) and fifth conserved quantity. Miura discovered yet

more and the list grew to eleven conserved quantities. In fact, it

was shown by Gardner, Greene, Kruskal and Miura that the KdV
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equation admits an infinite sequence of independent conserved

quantities. These turn out to be the same as the Qn of Box 2 for

reasons that will soon become apparent.

At around the same time, in 1968, Peter Lax [6] proposed an

(L, A) pair for the KdV equation. Interestingly, the work of

Gardner, Greene,

Kruskal and Miura was

motivated by Kruskal

and Zabusky’s 1965

observation of ‘recurrent

behavior’ and ‘soliton

scattering’ in numerical

solutions of the KdV

equation.

As for the wave equation in

§2., L is the Schrödinger operator, but A is a third order operator

(see Box 4 for an indication of how one arrives at A):

L = −∂2 + u(x, t) and A = 4∂3 − 6u∂ − 3ux. (16)

As before, Lt = ut. The commutator [L, A] receives two contribu-

tions. With u′ denoting ux, the 3rd order term in A gives

[−∂2 + u, 4∂3] = −4(u′′′ + 3u′′∂ + 3u′∂2). (17)

As for the first order part of A, the calculation is essentially the

same as in (6), with α = −3u:

[−∂2 + u,−3(2u∂ + ux)] = −3(u′′′ − 4u′′∂ − 4u′∂2 − 2uu′). (18)

The existence of a Lax

representation for an

evolutionary partial

differential equation is

usually associated with

the presence of infinitely

many independent

conserved quantities.

Adding these, the differential operator terms in Lt = [L, A] can-

cel, leaving us with the KdV equation (13):

ut = [L, 4∂3 − 6u∂ − 3ux] = −u′′′ + 6uu′. (19)

The Lax representation helps us understand roughly why KdV

admits infinitely many conserved quantities. Indeed, L = −∂2 + u

may be viewed as an infinite dimensional matrix, all of whose

eigenvalues are conserved. In fact, the method of Box 2 for
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Box 4. Lax pair for the KdV equation.

Here we adapt the method of Box 1 to explain the choice of the 3rd order differential operator A = 4∂3 −

6u∂ − 3ux in the KdV Lax pair (16). From §2., we know that A = c∂ and the Schrödinger operator

L = −∂2 + u furnish a Lax pair for the linear wave equation. To find a Lax pair for the 3rd order KdV

equation, we will retain L = −∂2 + u with Lt being the multiplication operator ut, while allowing for A to

be of order higher than one. The simplest possibility is a 2nd order operator, but this does not work. Indeed,

anti-symmetrization reduces it to a 1st order operator which is no different from (5) with α = −(e′ + g f ′):

A2 = e∂2 + f∂g∂ − (e∂2 + f∂g∂)† = e∂2 + f∂g∂ − ∂2e − ∂g∂ f = −(e′ + g f ′)′ − 2(e′ + g f ′)∂. (20)

The next possibility is a 3rd order operator. For simplicity, we try the operator b∂3 where b is a constant.

Upon anti-symmetrizing,

A3 = b∂3 − (b∂3)† = b∂3 + ∂3b = 2b∂3
. (21)

As in Box 1, using the product rule and [∂, h] = h′ we find that

[L,A3] = [−∂2 + u, 2b∂3] = −2b(u′′′ + 3u′′∂ + 3u′∂2). (22)

While this includes a u′′′ term, it lacks the uu′ term in (13) and is not purely a multiplication operator. Here,

A1 from Box 1 comes to the rescue. Thus, let us consider A = A3 + A1 = 2b∂3 + 2α∂ + α′ so that

[L,A] = [−∂2 + u, 2b∂3 + 2α∂ + α′] = −α′′′ − 2αu′ − 2bu′′′ − (6bu′′ + 4α′′)∂ − (6bu′ + 4α′)∂2
. (23)

For [L, A] to be a multiplication operator, the coefficients of ∂ and ∂2 must vanish. Thus, α′ = −(3/2)bu′

which implies α = −(3/2)bu + α0 for an integration constant α0. Eliminating α, the Lax equation becomes

Lt = ut = [L,A] = −
b

2
u′′′ + (3bu − 2α0)u′. (24)

Comparing with ut = 6uux − u3x fixes b = 2 and α0 = 0 so that A = 4∂3 − 6u∂ − 3u′ as claimed. Note that

we may add to A an arbitrary function of time (which would commute with L) without affecting the Lax

equation.

finding conserved quantities for the wave equation from its (L, A)

pair also applies to the KdV equation. What is more, since the

two equations share the same Lax operator L, it turns out that

they also possess the same set of conserved quantities Qn. More-

over, treating Qn as a sequence of ‘energies’ or Hamiltonians,

one obtains the ‘KdV’ hierarchy of field equations. The linear

wave and KdV equations are the first two in this hierarchy, while

ut = u5x−10uu3x−20uxu2x+30u2ux is the third. The Schrödinger
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operator L = −∂2 + u serves as The Schrödinger

operator L = −∂2 + u

serves as a common Lax

operator for all the

equations in the KdV

hierarchy.

a common Lax operator for all

of them though the operator A (which enters through ψt = −Aψ)

differs for the various members of this hierarchy. Remarkably, it

turns out that the Qn of Box 2 are integrals of motion for each of

the equations in this hierarchy.

4. From Lax Pair to Zero Curvature Representation

The zero curvature

representation

generalizes the idea of a

Lax pair to a wider class

of nonlinear evolution

equations in one spatial

dimension. The reason

for the name zero

curvature is explained in

Box 5.

The zero curvature representation generalizes the idea of a Lax

pair to a wider class of nonlinear evolution equations for sys-

tems especially in one spatial dimension. To understand how this

works, we change our viewpoint and regard the nonlinear Lax

equation Lt = [L, A] as a compatibility condition for the follow-

ing pair of linear equations to admit simultaneous solutions:

Lψ = λψ and ψt = −Aψ with λ a constant. (25)

Indeed, by differentiating Lψ = λψ in time and using the second

equation, it is verified that The transformation from

the KdV Lax pair (L, A)

to the matrices (U,V) is

somewhat analogous to

the one from Newton’s

second order equation to

Hamilton’s first order

equations which treat

position and momentum

on a more equal footing.

for the eigenvalue λ of L to be time-

independent, L and A must satisfy the Lax equation Lt = [L, A].

Unlike in §3 of [1], here there is no need for λ to be a nondegen-

erate eigenvalue of L.

In the case of the KdV equation (13), L = −∂2
x+u involves 2nd or-

der space derivatives, so that the two equations in (25) are some-

what asymmetrical. There is a way of replacing (25) with a more

symmetric pair of linear equations involving only 1st order deriva-

tives:

∂xF = UF and ∂tF = VF. (26)

The price to be paid is that U and V are now square matrices and

F a column vector (of size equal to ∂x − U and ∂t − V may

be viewed as the space

and time components of

a ‘covariant derivative’.

Thus, the auxiliary linear

equations (26) require

that every vector field

F(x, t) is ‘covariantly’

constant.

the order of the differential

operator L) whose components depend on location. The matrix

elements of U and V depend on the dynamical variables (such as

u for KdV) as well as on the eigenvalue λ which is now called the

spectral parameter.

Eqn. (26) is called the auxiliary linear system of equations. It

is overdetermined (more equations than unknowns) in the sense
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that U and V must satisfy a compatibility (consistency) condition

for solutions F to exist. Indeed, equating mixed partials ∂x∂tF =

∂t∂xF, we get the consistency condition

∂tU − ∂xV + [U,V] = 0. (27)

The original nonlinear evolution equations are said to have a zero

curvature representation if they are equivalent to (27) for some

pair of matrices U and V .For a Lax operator which

is an nth-order spatial

differential operator, we

may express the Lax

equation as a system of n

first order equations for

the column vector

(ψ, ψx, ψxx, · · · , ψ(n−1)x)T

comprising the first

(n − 1) derivatives of the

eigenfunction ψ. [Here

GT denotes the transpose

of the vector G]. U and

V then become n × n

matrices. For the KdV

equation, n = 2.

Before explaining how this scheme

may be used to find conserved quantities, let us use the KdV equa-

tion to provide an example.

To find U for KdV, we write the eigenvalue problem for the Lax

operator (−∂2
x + u)ψ = λψ as a pair of first order equations by

introducing the column vector F = ( f0, f1)T = (ψ, ψx)T :

∂x













f0

f1













=













0 1

u − λ 0

























f0

f1













⇒ U =













0 1

u − λ 0













, (28)

upon comparing with (26). Next, we use ψt = −Aψ with Aψ =

4ψxxx − 6uψx − 3uxψ to find V such that ∂tF = VF. We may

express ψt = −Aψ as a system of two first order ODEs. First, we

differentiate Lψ = λψ in x to express ψxxx as uxψ + uψx − λψx.

Thus, Aψ can be written in terms of ψ and ψx:

Aψ = −2(u + 2λ)ψx + uxψ. (29)

Next, using F = (ψ, ψx)T , ψt = −Aψ takes the formThe parameter λ is

known as the spectral

parameter because in the

KdV case, it arose as an

eigenvalue (part of the

spectrum) of the Lax

operator L.

∂t

(

f0
f1

)

= V

(

f0
f1

)

with V =

(

−ux 2(u + 2λ)

2u2 − uxx + 2uλ − 4λ2 ux

)

. (30)

Here, the second row of the matrix V is obtained by taking the x

derivative of the first equation in (30) and using Lψ = λψ.

The parameter λ that appears in U and V originally arose as the

eigenvalue of the Lax operator L. This explains the name spectral

parameter. More generally, a zero curvature representation need

not arise from a Lax pair and the corresponding spectral parame-

ter λ may not admit an interpretation as an eigenvalue.
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Box 5. Why the name ‘zero curvature’?

Einstein’s theory of gravity teaches us that a gravitational field is associated to space-time curvature. It

turns out that an electromagnetic field is also associated to curvature, though not of space-time but of an

‘internal’ space. Now, the electric and magnetic fields E and B may be packaged in the components of the

field strength: F0i = Ei/c and Fi j =
∑

k ǫi jk Bk for 1 ≤ i, j, k ≤ 3, where c denotes the speed of light. Thus, the

field strength is a measure of curvature. What is more, specializing to one spatial dimension (x0 = t, x1 = x)

and introducing the scalar and vector potentials A0 and A1, we have F01 = ∂tA1 − ∂xA0. More generally,

in the non-abelian version of electromagnetism relevant to the strong and weak interactions, A0 and A1

become matrices and the field strength acquires an extra commutator term: F01 = ∂tA1 − ∂xA0 + [A1, A0].

Now making the substitutions A1 → U and A0 → V , we see that the consistency condition (27) states

that the field strength or curvature of this generalized electromagnetic field vanishes. Hence the name zero

curvature condition is used.

5. Conserved Quantities from the Zero Curvature Condition

Here, we will learn how the zero curvature representation may be

used to construct conserved quantities. Let us consider the first

of the auxiliary linear equations in (26) for the column vector F:

∂xF = U(x)F(x). Let us imagine solving this equation for F from

an initial location x to a final point y. If y = x + δx for small δx,

then

F(x + δx) ≈ [1 + δx U(x)] F(x). (31)

The transition matrix

T (y, x) transforms the

vector field F at x to its

value at y. Such a matrix

is sometimes called a

parallel transport

operator.

More generally, linearity suggests that the solution may be writ-

ten as F(y) = T (y, x)F(x). Here T (y, x) may be viewed as trans-

forming F(x) into F(y) and is called the transition matrix. For this

to work, T (y, x) must satisfy the equation and ‘boundary’ condi-

tion

∂yT (y, x; λ) = U(y; λ)T (y, x; λ) and T (x, x; λ) = 1. (32)
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Box 6. Time evolution operator and the ordered exponential.

In Box 2 of Part I [1], we encountered an equation for the time evolution operator S (t)

Ṡ = −A(t) S , with the initial condition S (0) = 1, the identity matrix. (33)

The same equation also arises as the second of the auxiliary linear equations in (26) and as the Schrödinger

equation in quantum mechanics for the time dependent ‘Hamiltonian’ −i~A(t). Here, we explain how this

equation may be solved. When A is independent of time the solution is the matrix exponential S = exp(−At).

However, for time-dependent A, this formula does not satisfy (33) if A(t) at distinct times do not commute.

To solve (33), we first integrate it in time form 0 to t to get an integral equation that automatically encodes

the initial condition:

S (t) − 1 = −

∫ t

0

A(t1)S (t1) dt1. (34)

S appears on both sides, so this is not an explicit solution. Iterating once, we get

S (t) = 1 −

∫ t

0

dt1 A(t1)

(

1 −

∫ t1

0

dt2 A(t2)S (t2)

)

. (35)

Repeating this process, we get an infinite sum of multiple integrals,

S (t) = 1−

∫ t

0

dt1 A(t1)+

∫ t

0

∫ t1

0

dt1dt2 A(t1)A(t2)−· · · =

∞
∑

n=0

(−1)n

∫

· · ·

∫

0<tn<···<t1<t

dt1 · · · dtn A(t1)A(t2) · · · A(tn).

(36)

Now, if we define time ordering denoted by the symbol T via

T(A(t1)A(t2)) =



















A(t1)A(t2) if t1 ≥ t2

A(t2)A(t1) if t2 ≥ t1,
(37)

and use the identity
∫

t1>t2
dt1dt2A(t1)A(t2) =

∫

t2>t1
dt1dt2A(t2)A(t1), we obtain

∫ t

0

dt1

∫ t1

0

dt2A(t1)A(t2) =
1

2

∫ t

0

dt1

∫ t

0

dt2 T(A(t1)A(t2)). (38)

Thus, we have expressed an integral over a triangle in the t1-t2 plane as half the integral over a square.

Similarly, for n = 3 we may express the integral over a pyramid as one/sixth of that over a cube. Proceeding

this way, we get

∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtn A(t1)A(t2) · · · A(tn) =
1

n!

∫ t

0

· · ·

∫ t

0

dt1dt2 · · · dtnT(A(t1)A(t2) · · · A(tn))

so that S (t) =

∞
∑

0

(−1)n

n!

∫ t

0

· · ·

∫ t

0

dt1dt2 · · · dtnT(A(t1)A(t2) · · · A(tn)) =: T exp

[

−

∫ t

0

A(t′)dt′
]

. (39)

This series is called a time-ordered exponential and denoted T exp. If time is replaced with a spatial coor-

dinate, then it is called a path-ordered exponential and abbreviated ‘P exp’.
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This is obtained by The transition matrix

T (y, x; λ) is a sort of

exponential along a path

from x to y. If the path is

a closed loop that goes

around a spatial circle

once with y = x, then T

is called the monodromy

matrix.

inserting F(y) = T (y, x)F(x) in the auxiliary

linear equation ∂yF(y) = U(y)F(y) and requiring it to hold for any

F(x). In Box 6, we learn that the transition matrix T (y, x) may be

expressed (essentially by iterating (31)) as an ordered exponential

series which we abbreviate as

T (y, x; λ) = P exp

∫ y

x

U(z; λ) dz. (40)

For simplicity, we henceforth suppose that our one-dimensional

system is defined on the spatial interval −a ≤ x ≤ a with periodic

boundary conditions, so that U(−a) = U(a) and V(−a) = V(a).

Thus, we may view our spatial coordinate x as parametrizing a

circle of circumference 2a. So far, we have been working at one

instant of time. It turns out that the transition matrix around the

full circle (x = −a to y = a), which is also called the monodromy

matrix, The time derivative of

the transition matrix

T (y, x) is not quite a

commutator (see

Eqn. (42)). On the other

hand, just like the Lax

matrix L, the

monodromy matrix

T (a,−a) evolves via a

commutator (43) when

periodic boundary

conditions are imposed.

Ta(t, λ) = P exp

∫ a

−a

U(z; t, λ) dz (41)

has remarkably simple time evolution. In fact, using the deriva-

tive of the transition matrix (32) and the zero curvature condition

(27), one may show (see Box 7 or §3 of Chapter 1 of [7]) that the

transition matrix evolves according to:

∂tT (y, x; t) = V(y; t)T (y, x; t) − T (y, x; t)V(x; t). (42)

Now, specializing to x = −a and y = a and using periodic bound-

ary conditions, we obtain an evolution equation for the monodromy

matrix Ta(t) = T (a,−a; t): The trace of the

monodromy matrix

tr Ta(t, λ) is independent

of time for any value of

the spectral parameter λ

and can be used to

generate (infinitely

many) conserved

quantities.

∂tTa(t, λ) = [V(a; t, λ), Ta(t, λ)]. (43)

We are now in familiar territory: this equation has the same struc-

ture as the Lax equation (1) upon making the replacements Ta 7→

L and V 7→ −A. As explained in §3 of Part I [1], the spectrum of

the Lax matrix L is independent of time. This immediately im-

plies that the trace of the monodromy tr Ta(t, λ) is independent

of time. Moreover, this is true for any value of the spectral param-

eter λ. Thus, if we expand tr Ta(λ) in a series in (positive and
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negative) powers of λ, then each of the coefficients is a conserved

quantity. In many interesting cases such as the KdV and nonlin-

ear Schrödinger equations, one obtains infinitely many conserved

quantities in this way.

Box 7. Time evolution of the transition matrix T (y, x; t)

Recall that the transition matrix T (y, x; t) ‘propagates’ vectors in the auxiliary linear space from x to y:

F(y; t) = T (y, x; t)F(x; t) and may be expressed as a path ordered exponential as in (40). To obtain Eqn.

(42) for its time evolution, we first differentiate Eqn. (32) [∂yT (y, x; t) = U(y; t)T (y, x; t)] in time:

∂t∂y T (y, x; t) = ∂tU(y; t) T (y, x; t) + U(y; t) ∂tT (y, x; t). (44)

Then we use the zero curvature condition ∂tU(y) − ∂yV(y) + [U(y),V(y)] = 0 and Eqn. (32) again to get:

∂t∂y T (y, x; t) = (∂yV)T + VUT − UVT + U(∂tT ) = ∂y(VT ) + U(∂tT − V(y)T ). (45)

Thus, we have

∂yW(y, x; t) = U(y)W(y, x; t) where W(y, x; t) = ∂tT − V(y)T. (46)

Thus both W(y, x; t) and T (y, x; t) satisfy the same differential equation (32) though they obey differ-

ent ‘boundary conditions’ W(x, x; t) = −V(x) while T (x, x; t) = I. We now use this to check that

W̃(y, x; t) = −T (y, x; t)V(x) also satisfies the same differential equation with the desired boundary con-

dition W̃(x, x; t) = −V(x). Exploiting the uniqueness of solutions to (32) for a given boundary condition,

we conclude that W(y, x; t) = W̃ = −T (y, x; t)V(x). Substituting this in the definition of W(y, x; t) (46), we

obtain the evolution equation (42) for the transition matrix: ∂tT (y, x; t) = V(y; t)T (y, x; t) − T (y, x; t)V(x; t).

6. Epilogue

Though it is not always

possible or easy to find a

Lax pair for a given

system, it is possible to

generate lots of Lax

pairs and thereby

discover systems with

numerous conserved

quantities. Some of these

turn out to be interesting

‘exactly solvable’ or

‘integrable’ systems.

As one may infer from these examples, there is no step-by-step

procedure to find a Lax pair for a given system or even to know

whether it admits a Lax pair. One first needs to determine some

properties of the system (say numerically, analytically or experi-

mentally as happened with KdV) to develop a feeling for whether

a Lax pair might exist. As a rule of thumb, equations whose tra-

jectories are ‘regular’ or for which (some) analytic solutions can

be obtained often do admit a Lax pair, while those that display ir-

regular/chaotic behavior do not. Even if one suspects the presence

of a Lax pair, finding one may not be easy and requires playing
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around with the equations as we have done for the harmonic oscil-

lator, Euler top, wave equation and the KdV equation. However,

if one does find a Lax pair, it opens up a whole new window to

the problem and brings to bear new tools that can be applied to

its understanding. Indeed, Lax pairs are the tip of an iceberg in

the study of (Hamiltonian) dynamical systems. Conserved quantities can

be particularly helpful in

solving the equations of

motion if they are

sufficiently numerous

and generate

‘commuting’ flows on

the state space (i.e., if

their Poisson brackets

vanish).

While it helps

to have conserved quantities, one can do more if they are suf-

ficiently numerous and generate ‘commuting’ flows on the state

space (i.e., if their Poisson brackets vanish). In such cases, there

is (at least in principle) a way of changing variables to so-called

action-angle variables in which the solutions to the EOM may

be written down by inspection! Moreover, continuum systems in

one spatial dimension (such as the KdV, nonlinear Schrödinger

and sine-Gordon equations) which have a Lax pair and an infi-

nite tower of conserved quantities typically admit solitary wave

solutions called solitons. Two such solitons can collide with each

other and interact in a complicated way but emerge after the col-

lision retaining their original shapes and speeds, thus mimicking

the elastic scattering of particles. When solitary waves

undergo ‘soliton

scattering’, they emerge

from the collision region

retaining their shapes

and speeds (as in the

elastic scattering of

particles) despite

interacting in a

complicated manner.

This soliton scattering behav-

ior can be regarded as a generalization to nonlinear systems of the

superposition principle for linear equations. These nonlinear field

equations also admit a remarkable generalization of the Fourier

transform technique of solving linear PDEs such as the heat or

wave equations. This technique is called the ‘inverse scattering

transform’ and can be used to solve the initial value problem of

determining the fields at time t given their values at t = 0.
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