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Conserved quantities can help to understand and solve the

equations of motion of various dynamical systems. Lax pairs

are a useful tool to find conserved quantities of some dynami-

cal systems. We give a motivated introduction to the idea of a

Lax pair using examples such as the linear harmonic oscilla-

tor, Toda chain and Eulerian rigid body. A key step is to write

the equations in ‘Lax form’, which makes it easy to read off

conserved quantities. In Part II, these ideas will be extended

from systems of particles to continuum systems of fields and

also given a geometric interpretation in terms of curvature.

1. Introduction

A dynamical system is one whose state evolves with time: planets

moving in the solar system, tumbling stones, growing populations

or the economy. For a system of particles, the state variables can

be taken as the Cartesian components of the instantaneous posi-

tions and velocities (or momenta) of the particles. The number of

such position coordinates is called the number of degrees of free-

dom of the system: a point particle moving on a plane has two

degrees of freedom. By a dynamical variable, we mean a prop-

erty of the system (such as the kinetic energy), which depends

on the state variables and can change with time. We will be con-

cerned with dynamical systems whose time evolution is governed

by differential equations. The solutions of these equations may Keywords

Dynamical systems, conserved

quantities, Lax pair, isospec-

tral evolution, harmonic oscillator,

Toda chain, Euler top.

be visualized as curves (trajectories) traced out by the state as it

evolves in time in the space of states (also known as the phase

space).
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Role of Conserved Quantities in Dynamical Systems

ABy a ‘level set’ of a

function of three

variables f (x, y, z) we

mean the set of points

(x, y, z), where f takes a

common value. The

level sets of

f = x2 + y2 + z2 are

spheres centered at the

origin. Except for the

zero radius sphere, they

are surfaces of one lower

dimension than the

surrounding

three-dimensional (3D)

Euclidean space.

conserved quantity is a special type of dynamical variable

which is constant along trajectories; its value may, however, change

continuously from one trajectory to another. Conserved quanti-

ties are also called constants of motion or integrals of motion and

play an important role in helping us understand the evolution of

a system (see Boxes 1 and 3 for their role in quantum mechan-

ics). Conserved quantities impose relations among dynamical

variables (coordinates and momenta) thereby preventing a trajec-

tory from exploring the whole of the state space. For example, for

a free particle moving on a line, the conservation of momentum

forces trajectories to lie on horizontal lines of the planar position-

momentum phase space. Similarly, in the case of the harmonic

oscillator, the conservation of energy forces trajectories to lie on

a family of ellipses in the phase plane (see §4.). Each conserved

quantity imposesEach conserved quantity

imposes one relation

among coordinates and

momenta and constrains

the motion to lie on a

level set of dimension

one less than that of the

state space. Thus, the

presence of multiple

independent conserved

quantities restricts the

portion of the phase

space that a trajectory

can explore.

one relation among coordinates and momenta

and constrains the motion to lie on a ‘level set’ of dimension one

less than that of the state space. If there are two conserved quan-

tities, the trajectory is restricted to lie on the intersection of their

level sets. Thus in general, a system with n degrees of freedom

and a 2n-dimensional state space can have at most 2n − 1 inde-

pendent conserved quantities in order to admit continuous time

evolution. However, more often than not, there are far fewer than

2n − 1 such constants of motion.

Conserved quantities are often related to symmetries. For exam-

ple, in the Kepler problem, angular momentum l is a constant

vector due to rotation invariance. The motion of a planet is con-

fined to the plane perpendicular to l.

Newton’s equation

m ẍ = −dV/dx is a

second order nonlinear

ordinary differential

equation for x(t) if the

potential V(x) is not just

a quadratic polynomial

in x.

Conserved quantities can also help to solve the equations of mo-

tion (EOM) of a dynamical system. For example, Newton’s equa-

tion m ẍ = −V ′(x) for a particle moving in one dimension under

the influence of a conservative force f = −dV/dx derived from a

potential V(x) always admits one conserved quantity. Here, x(t)

is the particle’s position and dots denote time derivatives. Indeed,
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multiplying by the ‘integrating factor’ ẋ we get

m ẍ ẋ = −V ′(x) ẋ ⇒
d

dt

(

mẋ2

2

)

= −
d

dt
V(x), (1)

implying the conservation of energy E = 1
2
mẋ2 + V(x).

Box 1. Utility of conserved quantities in quantum mechanics: The hydrogen spectrum

Conserved quantities also play an important role in understanding quantum systems. In favourable cases,

they can even be used to find the spectrum of bound state energy levels. For instance, consider the grav-

itational Earth-Sun Kepler problem or its quantum version: the electron-proton Hydrogen atom with both

bodies treated as point particles located at r1 and r2. In the center of mass frame, this ‘two-body’ problem

reduces to that of a particle of ‘reduced mass’ m = m1m2/(m1+m2) moving in an attractive central potential

V(r) = −α/r. Here, r = |r| ≡ |r1 − r2| is the distance between particles and α > 0 is a measure of the

interaction strength. The system has three degrees of freedom, say the Cartesian components of the relative

coordinate r = (x, y, z). Interestingly, it admits seven conserved quantities: energy (E = p2/2m − α/r,

where p = p1 − p2 is the relative momentum), the three components each of the angular momentum and

the Laplace–Runge–Lenz vectors (l = r × p and A = p × l − m α r̂). The latter lies in the plane of the

orbit (the ecliptic plane perpendicular to l) and points from the origin (focus) to perihelion. However, as

discussed earlier, at most five (2 × 3 − 1) of these conserved quantities can be independent. It turns out that

there are two relations among them: A · l = 0 and A2 = 2mEl2 + m2α2. Remarkably, with some heuristic

reasoning, these conserved quantities can be used to obtain the bound state spectrum of the hydrogen atom,

where the Newtonian gravitational potential is replaced by the Coulomb potential with α = e2/4πǫ0, where

ǫ0 is the permittivity of free space and e the proton charge. Let us consider circular orbits (zero eccen-

tricity) so that every point on the orbit qualifies as perihelion and A = 0. Bohr’s quantization condition

(l = n~, n = 1, 2, 3 . . ., see Box 3) along with A2 = 2mEl2 + m2α2 then leads to the well-known Hydrogen

spectrum E = −mα2/2~2n2. Here, n is known as the principal quantum number. It turns out that there are

no other bound energy levels so that the spectrum is independent of the angular momentum (azimuthal),

magnetic and spin projection quantum numbers (l,ml and ms) which can be used to label linearly indepen-

dent states with the same energy. This is typical: conserved quantities lead to degeneracies in the quantum

mechanical energy spectrum. The more the number of compatible conserved observables (simultaneously

diagonalizable commuting operators like L2, Lz and S z in Hydrogen), the greater the degeneracy of energy

levels.

In other words, the conservation of energy has allowed us to re-

duce Newton’s second order equation to a first-order one. The

latter may be integrated by separation of x and t variables

dt =
dx′

√
(2/m)(E − V(x′))

so that
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t − t0 =

∫ x

x0

dx′
√

(2/m)(E − V(x′))
. (2)

In a few casesA particle moving in 1D

under the influence of a

conservative force

always admits a

conserved energy. The

latter may be used to

reduce the determination

of trajectories to the

evaluation of an integral

followed by the

inversion of a function.

(such as a quadratic/cubic or quartic potential),

this integral can be evaluated explicitly to give a formula for t(x).

The trajectory x(t) is obtained by inverting this formula. Such

a reduction to quadrature (evaluating integrals) is in general not

possible for systems with more than one degree of freedom (e.g.

particle moving in 3D in a general potential V(r)).

Lax Pairs as a Tool to Generate Conserved Quantities

Lax pairs, introduced by Peter Lax [1] are a tool for finding con-

served quantities of some evolution equations. As we will explain

(especially in Part II [3]), they are based on the idea of express-

ing (typically) nonlinear evolution equations as ‘compatibility’

conditionsPeter David Lax is an

American mathematician

of Hungarian origin

(born 01 May 1926). He

has worked at the

Courant Institute of

Mathematical Sciences

(New York) on various

topics including

integrable systems, fluid

mechanics and partial

differential equations.

He received the 2005

Abel Prize “for his

groundbreaking

contributions to the

theory and application of

partial differential

equations and to the

computation of their

solutions”.

for a pair of ‘auxiliary’ linear equations to admit si-

multaneous solutions. Since linear equations are often easier to

understand than nonlinear ones, this can be a significant simpli-

fication. The idea only works for certain special systems, which,

however, play an important role in our understanding of more

general dynamical systems. Unfortunately, there is no recipe to

find a Lax pair for a system or to know in advance whether one

exists. So some knowledge of the nature of the system and its

solutions (from numerical, analytical or experimental investiga-

tions) coupled with educated guesswork is involved. But, as we

will see, once a Lax pair is known, it can be very helpful in un-

derstanding the system.

2. Lax Pair for the Linear Harmonic Oscillator

The linear (or simple) harmonic oscillator is one of the simplest of

mechanical systems. It describes, for instance, small oscillations

of a particle of mass m due to a restoring force −kx proportional

to its displacement x from equilibrium. Here k > 0 is the force

constant. Newton’s second law ‘F = ma’ for such a particle leads

to the differential equation

mẍ = −kx. (3)
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We will use this example to A Lax pair for a given

system of equations (if it

exists) is not unique. For

instance, we may add to

A a matrix that

commutes with L and

add to L a

time-independent matrix

that commutes with A

without altering the Lax

equation L̇ = [L, A].

Systems can even

possess Lax pairs of

different dimensions.

illustrate the idea of a Lax pair.

Though the general solution x(t) = A cos(ωt + φ) for constants

of integration A and φ with ω =
√

k/m is well-known, we will

not need the explicit solution to discuss a Lax pair formulation.

Introducing the momentum p = mẋ, we may rewrite (3) as a pair

of first-order equations ẋ = p/m and ṗ = −mω2x. It is convenient

to regard them as equations for the variables ωx and p/m which

have the same dimension (of velocity):

d(ωx)

dt
= ω

(

p

m

)

and
d(p/m)

dt
= −ω(ωx). (4)

These equations are equivalent to the Lax equation L̇ = [L, A] for

the pair of 2 × 2 matrices [2]

L =













p/m ωx

ωx −p/m













and A =













0 ω/2

−ω/2 0













, (5)

whose entries depend on The Lax equation

L̇ = [L, A] bears a

resemblance to the

Heisenberg equation of

motion for an operator Q

in the Heisenberg picture

of quantum mechanics:

i~
dQ

dt
= [Q,H], (6)

where H is the

Hamiltonian. If H and Q

are finite dimensional

matrices, then

tr [Q,H] = 0 so that

tr Q is conserved. But

often, operators in

quantum mechanics are

infinite dimensional and

unbounded. The trace of

the commutator of such

operators may not vanish

(or even be finite). In

such cases, tr Q may not

be a (finite) conserved

quantity.

the dynamical variables ωx and p/m.

Here, [L, A] = LA − AL is the commutator. How did we arrive

at this (L, A) pair? We notice that (4) are linear in ωẋ and ṗ/m.

So, for L̇ = [L, A] to reproduce (4) we choose L to be linear in ωx

and p/m. The simplest possibility is to take L to be a 2 × 2 real

matrix. However, in general, this would lead to four EOM. To en-

sure that there are only 2 independent equations as in (4), we will

suppose that L is a traceless symmetric matrix with entries linear

in p/m and ωx as in (5). As a consequence, L̇ is also symmetric.

Since the commutator of symmetric and anti-symmetric matrices

is symmetric, it is natural to take A to be anti-symmetric1 . Since

the RHS of (4) are linear in ωx and p/m, we take A to be inde-

pendent of these variables so that [L, A] would also be linear in

them. In terms of these variables, the RHS of (4) is independent

of m and linear in ω, so the entries of the antisymmetric matrix

A can depend only on ω and must be linear in it. This essentially

leads to the A appearing in (5). One then verifies that the four Lax

equations following from (5) coincide with (4):

L̇ =













ṗ/m ωẋ

ωẋ − ṗ/m













= [L, A] =













−ω2x ωp/m

ωp/m ω2x













. (7)
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We1
For [L, A] to be symmetric,

A can differ from an anti-

symmetric matrix at most by a

multiple of the identity, which

would not affect the commuta-

tor.

notice the following feature of the Lax matrix, tr L2 =

2(p2/m2 +ω2x2) is (m/4)× the conserved energy of the harmonic

oscillator. It turns out that this is a general feature: one may use

the Lax matrix to obtain conserved quantities.

3. Isospectral Evolution of the Lax Matrix

The Lax equation ensures that the eigenvalues (spectrum) of L are

independent of time. This property is known as isospectrality. To

understand this, let us consider the Lax equationIsospectral evolution

means the spectrum of

the Lax matrix is

independent of time.
Lt ≡ L̇ = [L, A], (8)

where L and A are matrices with entries depending on the dy-

namical variables. We have used subscripts to denote derivatives.

Since the trace of the commutator of a pair of finite dimensional

matrices vanishes, tr L is independent of timeThe trace of a

commutator of finite

dimensional matrices

tr [A, B] = tr (AB − BA)

vanishes because

tr AB = tr BA =
∑

i, j Ai j B ji.

. More generally,

one may show that the eigenvalues of L are conserved. To see this,

we begin with the eigenvalue problem Lψ = λψ. Differentiating

in time,

Ltψ + Lψt = λtψ + λψt. (9)

Upon using the Lax equation (8) this becomes

(LA − AL)ψ + Lψt = λtψ + λψt. (10)

Utilizing Lψ = λψ and rearranging, we get

(L−λ)Aψ+ (L−λ)ψt = λtψ or (L−λ)(ψt +Aψ) = λtψ. (11)

See Box 2 for other

methods of showing the

isospectrality of a Lax

matrix without assuming

that its eigenspaces are

one-dimensional.

For the eigenvalue λ to be time-independent (λt = 0), the LHS

must vanish. For this to happen, ψt + Aψ must be an eigenvector

of L with eigenvalue λ. Recall that ψ too is an eigenstate of L

with the same eigenvalue. Now, for simplicity, we will assume

that the λ-eigenspace of L is one-dimensional, which implies that

ψt + Aψ must be a multiple of ψ (they are linearly dependent):

ψt + Aψ = βψ (12)
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Box 2. Two more ways to show that the eigenvalues of L are time-independent

(a) In this approach, we assume that L is Hermitian so that λ is real. We take an inner product of (L−λ)(ψt+

Aψ) = λtψ (see (11)) with the eigenfunction ψ and use Hermiticity to get

〈(L − λ)(ψt + Aψ), ψ〉 = 〈λtψ, ψ〉 or 〈(ψt + Aψ), (L − λ)ψ〉 = λt‖ψ‖
2. (14)

The LHS vanishes as Lψ = λψ. Moreover, being an eigenfunction, ||ψ|| , 0, so we must have λt = 0.

(b) The isospectrality of L(t) may also be established by showing that L(t) is similar (related by a similarity

transformation) to L(0). Indeed, suppose we define the invertible matrix S (t) via the equation Ṡ = −AS

with the initial condition S (0) = 1, then the solution of the Lax equation with initial value L(0) is L(t) =

S (t)L(0)S −1(t). This is easily verified:

L̇(t) = ∂t(S L(0)S −1) = −AS L(0)S −1 − S L(0)S −1∂t(S )S −1 = −AL(t) + L(t)A = [L(t), A]. (15)

Here we used ∂t(S S −1) = ∂t1 = 0, to write ∂t(S
−1) = −S −1∂t(S )S −1. Finally, we observe that two matrices

related by a similarity transformation have the same eigenvalues:

L(0)ψ = λψ ⇒ S L(0)S −1(Sψ) = λ(Sψ) or L(t)(Sψ) = λ(Sψ). (16)

Thus, the eigenvalues of L are conserved in time.

for some (possibly time-dependent) complex number β. This

equation may be viewed as an evolution equation2 2
It is possible to absorb the β1

term into A since it commutes

with L and, therefore, does not

affect the Lax equation.

for ψ:

ψt = (−A + β1)ψ. (13)

Here, 1 is the identity matrix. Thus, the Lax equation Lt = [L, A]

and this evolution equation for ψ together imply that the eigen-

value λ is a conserved quantity. We say that L evolves isospec-

trally.

In §4. of Part II [3], we will revisit this problem from a different

viewpoint where the Lax equation Lt = [L, A] can be viewed as a

compatibility condition among the two linear equations Lψ = λψ

and ψt = −Aψ for constant λ.
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4. Conserved Quantities From the Lax Equation

We have justA mechanical system

with p degrees of

freedom can have at

most 2p − 1 independent

conserved quantities. So

though tr Ln is

conserved for any

positive integer n, not all

of them may be

independent.

seen that if the equations of motion of a system

can be written in Lax form Lt = [L, A], then the isospectrality

of L gives us conserved quantities. These conserved quantities

could be the eigenvalues of L or equivalently the basis indepen-

dent quantities det L and tr Ln for n = 1, 2, 3, . . .. For example,

the familiar conserved energy of the harmonic oscillator may be

expressed in terms of the Lax matrix of (5):

E =
1

2

(

p2

m
+ mω2x2

)

= −
m

2
det L =

m

4
tr L2. (17)

We also notice that for any E > 0 this Lax matrix has two distinct

eigenvalues (±
√

2E/m) leading to 1D eigenspaces (one linearly

independent eigenvector for each eigenvalue), as was assumed in

(12). Furthermore, for n = 1, 2, 3, . . .,

L2n =

(

p2

m2
+ x2ω2

)n

1 =

(

2E

m

)n

1 and L2n+1 =

(

2E

m

)n

L.

(22)

Thus, tr L2n = 2 (2E/m)n while tr L2n+1 = 0 so that the traces of

higher powers of L do not furnish any new conserved quantities.

In the case of the simple

harmonic oscillator, the

traces of powers of L

higher than two do not

furnish any new

independent conserved

quantities.

Indeed, a system with one degree of freedom cannot have more

than one independent conserved quantity. In fact, the conserva-

tion of energy restricts the trajectories of the harmonic oscillator

to lie on a family of ellipses in the x-p phase plane. If there was an

additional conserved quantity, trajectories would reduce to points

which cannot describe nontrivial time evolution. Box 3 explores

how conserved quantities can help find the quantum energy spec-

trum in a semiclassical (~→ 0) approximation.

We now discuss some more examples of Lax representations. Our

first example is the Toda chain which admits a simple and elegant

Lax pair. We then consider the Euler equations for a rigid body.

They admit a simple Lax pair, which however does not allow us

to obtain its conserved energy. This problem is solved by intro-

ducing a new Lax pair with a ‘spectral parameter’.
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Box 3. Bohr–Sommerfeld quantization condition and the simple harmonic oscillator

The harmonic oscillator allows us to illustrate how conserved quantities can help to find the quantum me-

chanical energy spectrum in a semiclassical approximation. The solutions of the EOM (4) can be expressed

as

x(t) =

√

2E

mω2
sin θ(t) and p(t) =

√
2mE cos θ(t) where θ = ω × (t − t0). (18)

Here, E = p2/2m + (1/2)mω2 x2 is the conserved energy (§4., (17) ). The trajectory (x(t), p(t)) on the phase

plane is an ellipse with semiaxes A =
√

2E/mω2 and B =
√

2mE. What is more, these ellipses are the level

curves of the energy function E(x, p). Interestingly, I = E/ω admits an elegant geometric interpretation: it

is (1/2π)× the area (πAB) enclosed by the trajectory during one oscillation. The conserved quantity I(x, p)

is called an ‘action variable’ (it has dimensions of action (length × momentum)); and being an area, it may

be expressed as a line integral clockwise around the closed trajectory:

I =
1

2π

∮

p dx =
1

2π

∫ 2π
ω

0

2E cos2(θ(t)) dt =
2E

2π

1

2
×

2π

ω
=

E

ω
. (19)

The Bohr–Sommerfeld quantization condition postulates that in the semiclassical regime of highly excited

states, the classically conserved action variable is quantized in units of Planck’s constant:

I =
1

2π

∮

p dx = n~ for large positive integer n. (20)

Thus, for the harmonic oscillator we get the semiclassical energy spectrum En ≈ n~ω for n ≫ 1. The same

method can be applied to obtain the highly excited energy levels of other systems such as the anharmonic

oscillator where the potential V(x) = ax2 + bx4 is a quartic polynomial.

It turns out that the Bohr–Sommerfeld quantization rule can be derived from the Schrödinger equation of

quantum mechanics in a semiclassical approximation. When one does this, one finds in the first approxi-

mation, a sub-leading correction to (20) for large n [4, 5]:

∮

p dx = 2π~

(

n +
µ

4

)

for large positive integer n. (21)

Here, µ = Nsoft + 2Nhard is called the Maslov index. Nsoft is the number of classical turning points (x such

that V(x) = E) where the potential may be approximated by a linear function and Nhard is the number of

‘turning points’ where the particle encounters an infinite potential barrier (since we are concerned with

highly excited states). For the harmonic oscillator, µ = Nsoft = 2 and En ≈ (n + 1/2)~ω. This happens to

agree with the exact quantum mechanical spectrum including a zero point energy. In the Kepler/Hydrogen

atom problem, there are no turning points (kinetic energy never vanishes along an orbit) and so µ = 0 as in

Box 1.
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Figure 1. Toda chain of

N = 8 particles with peri-

odic boundary conditions.

5. Toda Chain: Lax Pair and Conserved Quantities

In 1967, Morikazu Toda introduced a model for a one-dimensional

crystal in which a chain of identical atoms/particles of mass m in-

teracts with their nearest neighbours via nonlinear springs with

exponential forces. If xi is the displacement of the ith particle

from its equilibrium position and pi its momentum, then the EOM

areThe Toda chain consists

of particles interacting

via nonlinear springs

with exponential

restoring forces. It can

be used to model

one-dimensional

crystals.

mẋi = pi and ṗi = κ
(

e−(xi−xi−1) − e−(xi+1−xi)
)

. (23)

Here, κ is a force constant and we will work in units where κ =

m = 1. We will consider an N particle Toda chain subject to

periodic boundary conditions: xN+i = xi for all i. Thus, we may

visualize the particles as lying on a circle and interpret xi as the

angular displacement θi from equilibrium (see Figure 1).

The exponential nonlinearityFalschka’s variables

convert the nonlinearities

in the equations of

motion (EOM) of the

Toda chain from

exponential to quadratic.

of the EOM (23) may be made

quadratic by introducing Falschka’s variables [6]

ai =
1

2
e−(xi−xi−1)/2 and bi = −

1

2
pi−1, (24)

which evolve according to

ȧi = ai(bi+1 − bi) and ḃi = 2(a2
i − a2

i−1). (25)

These equations are equivalent to the Lax equation L̇ = [L, A] if
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we define the essentially tridiagonal matrices L and A as below

L =















































b1 a1 0 · · · aN

a1 b2 a2

0 a2 b3

.

.

.
. . .

aN bN















































and A =















































0 −a1 0 · · · aN

a1 0 −a2 · · · 0

0 a2 0 · · · 0

.

.

.
.
.
.

−aN 0















































.

(26)

The traces tr Ln for n = 1, 2, . . . ,N then give us N conserved

quantities [7]. The first two of these may be interpreted in terms

of the total momentum and energy of the chain:

In the absence of

external forces, a top

displays two types of

motion: spinning about

an instantaneous axis of

rotation and precession

of this axis about the

fixed direction of angular

momentum in the lab

frame.

tr L =

N
∑

i=1

bi = −
1

2

N
∑

i=1

pi−1 = −
P

2
and

tr L2 =

N
∑

i=1

(

2a2
i + b2

i

)

=
1

2

N
∑

i=1

(

1

2
p2

i + e−(xi−xi−1)

)

=
E

2
. (27)

6. Euler Top: Lax Pair and Conserved Quantities

Next, we consider a rigid body (e.g. a top) free to rotate about

its center of mass (which is held fixed) in the absence of external

forces like gravity. In a frame that rotates with the body, its EOM

may be written as a system of three first-order ‘Euler’ equations

[8, 9] for the components of angular momentum about its center

of mass:

~S t = ~S × ~Ω or Ṡ 1 = S 2Ω3 − S 3Ω2,

Ṡ 2 = S 3Ω1 − S 1Ω3 and Ṡ 3 = S 1Ω2 − S 2Ω1. (28)

Here, ~Ω = (Ω1,Ω2,Ω3) is the angular velocity vector which is

related to ~S = (S 1, S 2, S 3) via ~S = I~Ω. The inertia tensor3 3
For a body with mass density

ρ(x), the components Ii j of the

inertia tensor are given by an in-

tegral over the body
∫

(x2δi j −

xi x j)ρ(x) dx.

I is

a 3 × 3 real symmetric matrix which encodes the distribution of

mass in the body. The eigenvalues I1, I2 and I3 of I are called the

principal moments of inertia. In what follows, we will choose the

axes of the co-rotating frame to be the principal axes of inertia

(eigenvectors of I) so that the inertia tensor becomes diagonal:

I = diag(I1, I2, I3).

There is a straightforward way of expressing the Euler equations
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Box 4. From vectors to 3 × 3 anti-symmetric matrices using the Levi-Civita symbol

The Levi-Civita symbol ǫi jk (for i, j, k taking any values among 1, 2, 3), is a tensor anti-symmetric under

exchange of any pair of indices with ǫ123 = 1. For instance, ǫ112 = 0, ǫ312 = 1 and ǫ132 = −1. Now, given

a vector ~S , we may construct an anti-symmetric matrix S i j =
∑

k ǫi jkS k by ‘contracting’ the vector with the

Levi-Civita symbol. Conversely, contracting the anti-symmetric matrix with the Levi-Civita symbol brings

us back to the original vector S k =
∑

i, j ǫi jkS i j/2. Under this transformation, the matrix corresponding to

the cross product of vectors ~S × ~Ω is the commutator [Ω, S ].

in Lax form if we introduce the anti-symmetric matrices

S =





















0 S 3 −S 2

−S 3 0 S 1

S 2 −S 1 0





















and Ω =





















0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0





















(29)

corresponding to the vectors ~S and ~Ω (see Box 4 for how they are

related).

The cross product

~S × ~Ω = (S 2Ω3 − S 3Ω2, S 3Ω1 − S 1Ω3, S 1Ω2 − S 2Ω1), (30)

then corresponds to (the negative of) the matrix commutator:

[S ,Ω] =





















0 S 2Ω1 − S 1Ω2 S 3Ω1 − S 1Ω3

S 1Ω2 − S 2Ω1 0 S 3Ω2 − S 2Ω3

S 1Ω3 − S 3Ω1 S 2Ω3 − S 3Ω2 0





















. (31)

Thus, the Euler equations (28) take the Lax form:

S t = [Ω, S ]. (32)

Comparing with (8) we see that (S ,−Ω) furnish a Lax pair.The Euler top admits

two conserved

quantities, the square of

angular momentum (~S 2)

and the energy (E).

What

is more, the Lax equation then implies that −(1/2) tr S 2 = S 2
1
+

S 2
2
+ S 2

3
(square of angular momentum) is a conserved quan-

tity. Indeed, it is straightforward to check using (28) that S 1Ṡ 1 +

S 2Ṡ 2 + S 3Ṡ 3 = 0. In addition to ~S 2, the Euler top is known to

possess another conserved quantity, its energy:

E =
1

2















S 2
1

I1

+
S 2

2

I2

+
S 2

3

I3















. (33)
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However, E depends on the principal moments of inertia and can-

not be obtained from the Lax matrix S by combining the traces

of any of its powers. This is because S is independent of I1,2,3.

Thus, we seek a new Lax pair (L, A) such that both ~S 2 and E can

be obtained from traces of L and its powers. The parameter λ that

appears in the Lax

matrix L of (34) is

(somewhat confusingly)

known as a spectral

parameter. It is not to be

confused with the

symbol for an eigenvalue

of the Lax matrix! The

reason for this

terminology will be

clarified in §4 of Part II.

We, therefore, intro-

duce a new Lax matrix which is a combination of the angular mo-

mentum and inertia matrices, weighted by a parameter λ. How-

ever, in place of I, it turns out to be convenient to work with the

diagonal matrix: I = diag(I1,I2,I3) with Ik = (1/2)(Ii+ I j− Ik)

where (i, j, k) is any cyclic permutation of (1, 2, 3). For example,

I1 = (1/2)(I2 + I3 − I1). Now, we postulate the new Lax pair

L(λ) = I2 +
S

λ
=





















I2
1

S 3/λ −S 2/λ

−S 3/λ I2
2

S 1/λ

S 2/λ −S 1/λ I2
3





















and

A(λ) = −(λI + Ω) = −





















λI1 Ω3 −Ω2

−Ω3 λI2 Ω1

Ω2 −Ω1 λI3





















. (34)

To motivate this Lax pair we first note that putting L = S/λ and

A = −Ω in L̇ = [L, A] gives the desired EOM (32). For the energy

to emerge as a conserved quantity from tr L2, we will augment

this Lax pair by matrices involving the principal moments of iner-

tia (or the matrix I) while ensuring that the EOM are not affected.

Since I1,2,3 are constant in time we can add any matrix function

f (I) to L without affecting L̇. However, this will affect the com-

mutator [L, A]. To cancel this contribution we will add another

matrix function g(I) to A. Thus, L = S/λ + f and A = −(Ω + g).

For the unwanted terms [S/λ, g] and [ f ,Ω] in [L, A] to have a

chance of cancelling, we use the relation ~S = I~Ω and dimen-

sional analysis to pick f = I2 and g = λI as in (34). For the Euler top, the

Lax equation L̇ = [L, A]

is equivalent to Euler’s

equations of motion for

the angular momentum

vector ~S .

Some

algebra now shows that the Lax equation L̇ = [L, A] is equivalent

to (32). Indeed,

L̇ − [L, A] =
1

λ
(Ṡ + [S ,Ω]) + [S ,I] + [I2,Ω]. (35)

Using ~S = I~Ω, one finds that the sum [S ,I] + [I2,Ω] vanishes.

Thus, requiring the Lax equation to hold for any value of λ leads

to the Euler equations as in (32).
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Figure 2. The intersection

of the energy ellipsoid and

angular momentum sphere

is the orbit of the angular

momentum vector ~S in the

co-rotating frame of the Eu-

ler top.

The trace of this new Lax matrix L is conserved, but it is not a

dynamical variable as it is simply a quadratic polynomial in the

material constants I1,2,3.Traces of higher powers

of L also lead to

conserved quantities but

they are simply functions

of ~S 2 and E.

Pleasantly, the traces of the second and

third powers of L involve the square of angular momentum ~S 2 and

energy E, allowing us to deduce that both of them are conserved:

tr L2 = tr I4 − 2
λ2
~S 2 and

tr L3 = tr
[

I6 + 3
λ2I

2S 2
]

= trI6 − 3
λ2

(

(tr I)2~S 2

4
− I1I2I3E

)

. (36)

These conservation laws may be used to determine how ~S evolves

in the corotating frame. Indeed, since both E and ~S 2 are con-

served, trajectories must lie along the intersection of the energy

ellipsoid and angular momentum sphere:The constancy of energy

E and square of angular

momentum ~S 2 confines

the motion to a pair of

surfaces in the space of

angular momenta. The

trajectories lie along the

intersection of these two

surfaces.

E =
1

2















S 2
1

I1

+
S 2

2

I2

+
S 2

3

I3















and ~S · ~S = S 2
1 + S 2

2 + S 2
3. (37)

These two quadratic surfaces typically intersect along a closed

curve which forms the periodic orbit of the tip of the angular mo-

mentum vector ~S as shown in Figure 2.

Having found the evolution of the angular momentum vector, one

still needs to use ~S (t) to solve three first order equations for the

‘Euler angles’ (θ, φ and ψ) to find the instantaneous orientation of

the rigid body in space. For more on this, see the discussion in

[8].
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7. Discussion

In this article, we have explained what a Lax pair is and how it

can be used to find conserved quantities for dynamical systems

such as the simple harmonic oscillator, Toda chain and the Eu-

ler top. So far, we considered systems of particles with finitely

many degrees of freedom. In Part II, we will

introduce the notion of a

field and extend the idea

of a Lax pair to certain

continuum mechanical

systems of fields.

In Part II, we will extend the idea of a

Lax pair to certain continuum mechanical systems with infinitely

many degrees of freedom (systems of fields rather than finitely

many particles). We will do this in the context of the linear wave

equation for vibrations of a stretched string and the nonlinear Ko-

rteweg de-Vries (KdV) equation for water waves. The Lax pair

framework will also be given a geometric reformulation in terms

of the vanishing of a certain curvature, allowing us in principle

to find infinitely many conserved quantities for certain field equa-

tions.
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