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ABSTRACT

In the classical three rotor problem, three equal point masses move on a circle subject to attractive cosine potentials of strength g. In the center
of mass frame, energy E is the only known conserved quantity. In earlier works [Krishnaswami and Senapati, Indian Acad. Sci. Conf. Ser. 2(1),
139 (2019), and Chaos 29(12), 123121 (2019)], an order–chaos–order transition was discovered in this system along with a band of global
chaos for 5.33g ≤ E ≤ 5.6g. Here, we provide numerical evidence for ergodicity and mixing in this band. The distributions of relative angles
and angular momenta along generic trajectories are shown to approach the corresponding distributions over constant energy hypersurfaces
(weighted by the Liouville measure) as a power-law in time. Moreover, trajectories emanating from a small volume are shown to become
uniformly distributed over constant energy hypersurfaces, indicating that the dynamics is mixing. Outside this band, ergodicity and mixing
fail, though the distributions of angular momenta over constant energy hypersurfaces show interesting phase transitions from Wignerian
to bimodal with increasing energy. Finally, in the band of global chaos, the distribution of recurrence times to finite size cells is found to
follow an exponential law with the mean recurrence time satisfying a scaling law involving an exponent consistent with global chaos and
ergodicity.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5141067

The study of ergodicity on constant energy surfaces is an inter-
esting question in dynamics. Geodesic flow on constant nega-
tive curvature Riemann surfaces provide a canonical well-studied
example. In this paper, we find a new physical system, namely,
the classical three rotor problem, which displays global chaos and
ergodicity in a band of energies. In this system, three equally
massive point particles coupled via attractive cosine potentials
move on a circle. Unlike in billiards, trajectories are smooth
since the configuration space is a manifold without boundary.
The quantum version is also of interest as it models chains of
coupled Josephson junctions with rotor angles corresponding to
superconducting phases. As the energy is increased, the system
displays a fairly sharp transition to chaos followed by a band
of global chaos and a subsequent gradual return to regularity.
Here, we provide numerical evidence for ergodicity and mix-
ing in this band of global chaos: time averages are shown to
approach ensemble averages and trajectories from a small region
are shown to spread out uniformly over constant energy hyper-
surfaces. Additional evidence for global chaos and ergodicity is
provided through the investigation of recurrence time statistics.

Interestingly, the system may be viewed as providing an exam-
ple of ergodicity in geodesic flow on a torus with non-constant
curvature of both signs.

I. INTRODUCTION

There are several few degrees of freedom models that display
global chaos as well as ergodicity and mixing. Geodesic flow on
a constant negative curvature compact Riemann surface is a well-
known example.1,2 Ballistic motion on billiard tables of certain types
including Sinai billiards3 and its generalization to the Lorentz gas4

provide other canonical examples. Kicked rotors and the corre-
sponding Chirikov standard map5 are also conjectured to display
global chaos and ergodicity for certain sufficiently large parame-
ter values.6 In this paper, we study ergodicity and mixing in the
classical three rotor problem that was shown in Refs. 7 and 8 to
display global chaos in a band of energies. This is in contrast with
the model of three free but colliding masses moving on a circle,
where numerical investigations reported in Ref. 9 indicated a lack
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of ergodicity. An attractive feature of the three rotor system is that
it offers the possibility of studying ergodicity in a continuous time
autonomous Hamiltonian system of particles without boundaries
or specular reflections. In particular, rotors can pass through each
other without collisional singularities. This is physically reason-
able since the three rotor problem is realized as the classical limit
of a chain of coupled Josephson junctions10 with the rotor angles
corresponding to the superconducting phases associated with dis-
tinct segments between junctions. Interestingly, the center of mass
dynamics of three rotors may also be regarded as geodesic flow
on a 2-torus with non-constant curvature (of both signs) of an
appropriate Jacobi–Maupertuis metric.8

The statistics of recurrence times provides another window
into chaotic dynamics.11,12 It is well-known that the distribution of
recurrence times to small volumes in phase space approaches an
exponential law for sufficiently mixing dynamics (e.g., Axiom-A
systems13 and some uniformly hyperbolic systems14). Moreover, suc-
cessive recurrence times are independently distributed so that the
sequence of recurrence times is Poissonian.

In this paper, we provide evidence for ergodicity in the band
of global chaos by showing that numerically determined time aver-
ages approach the corresponding ensemble averages. Evidence for
mixing in the same band is obtained by showing that trajectories
with a common energy from a small volume approach a uniform
distribution on the energy hypersurface. Finally, we show that the
distribution of recurrence times to finite size cells on such energy
hypersurfaces follows an exponential law. Moreover, the mean
recurrence time obeys a scaling law with exponent as expected from
global chaos and ergodicity.

II. FORMULATION AND SUMMARY OF RESULTS

The classical dynamics of three rotors is governed by the
Hamiltonian

H =
3

∑

i=1

{

π 2
i

2mr2
+ g[1 − cos (θi − θi+1)]

}

, (1)

where θ4 ≡ θ1, πi are the angular momenta conjugate to the rotor
angles θi and g ≥ 0 is the coupling strength. In center of mass and
relative coordinates

ϕ0 = (θ1 + θ2 + θ3)/3, ϕ1 = θ1 − θ2, and ϕ2 = θ2 − θ3, (2)

the Lagrangian for relative motion is L = T − V , where

T = 1

3
mr2

[

ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2

]

,
(3)

V = g [3 − cos ϕ1 − cos ϕ2 − cos(ϕ1 + ϕ2)] .

The energy E = T + V is the only known conserved quantity.
The relative angles ϕ1,2 define periodic coordinates on a 2-torus
configuration space and evolve independently of ϕ0,

mr2 (2ϕ̈1 + ϕ̈2) = −3g [sin ϕ1 + sin(ϕ1 + ϕ2)] ,
(4)

mr2 (2ϕ̈2 + ϕ̈1) = −3g [sin ϕ2 + sin(ϕ1 + ϕ2)] .

These equations may be viewed as the equations for reparametrized
geodesics on the configuration torus with respect to the Jacobi–
Maupertuis metric line element,8

ds2
JM = 2mr2

3
(E − V)(dϕ2

1 + dϕ1dϕ2 + dϕ2
2). (5)

The system is integrable at E = 0 and E = ∞ and displays a fairly
sharp transition to chaos at E ≈ 4g and a more gradual return to
regularity as E → ∞.8 This transition to stochasticity is manifested
in a dramatic rise in the “fraction of chaos” f(E): the fraction of the
area of the energetically allowed (Hill) region of the (for definite-
ness) “ϕ1 = 0” Poincaré surface occupied by chaotic sections. For
instance, in Fig. 1, f is the fractional area occupied by the orange col-
ored chaotic sections. What is more, this dramatic rise in f (f ≈ 4%
at E = 3.85g to f ≈ 40% at E = 4.1g) during the onset of chaos is
accompanied by a spontaneous breaking of discrete symmetries of
Poincaré sections. This transition is also associated with a change in
the sign of the curvature of the Jacobi–Maupertuis metric defined
on the ϕ1 − ϕ2 configuration torus when E exceeds 4g.8,15 Interest-
ingly, the onset of chaos is also reflected in the stability of certain

FIG. 1. Approach to the band of global chaos (5.33g ≤ E ≤ 5.6g) on the Poincaré surface ϕ1 = 0. The last elliptic islands to cease to exist (as E → 5.33g−) are around
choreographies (C), and the first elliptic islands to open up (when E exceeds 5.6g) are around pendula (P), which also occur along the Hill boundary. Isosceles solutions
intersect this surface at the points marked I.
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periodic solutions. In fact, in Ref. 8, three families of periodic solu-
tions of (4) were found: (a) Pendula, where two of the rotors form a
“molecule” with zero separation at all times, (b) Isosceles breathers,
where one rotor is always midway between the other two, and (c)
Non-rotating choreographies, where all rotors are equally separated
in time. Strikingly, the pendula display an accumulation of stabil-
ity transitions as E → 4g±, coinciding with the onset of widespread
chaos.

Of special significance to the current work is the emergence of
global chaos in the energy band 5.33g ≤ E ≤ 5.6g. In this band, the
fraction of chaos f on the “ϕ1 = 0” Poincaré surface attains the max-
imum value f ≈ 1 (see Fig. 1). Intriguingly, the beginning of this
band coincides with the divergence in the period of the non-rotating
choreographies, which additionally cease to exist above this energy.
Similarly, the cessation of this band coincides with the energy at
which pendula become stable.

Interestingly, in the above band, chaotic sections were also seen
to occupy practically the whole of the energetically allowed por-
tion of various other Poincaré surfaces (see Fig. 13 of Ref. 8). This
indicated that each chaotic trajectory explored the entire energy
hypersurface justifying the term “global chaos.” Based on this and
the roughly uniform manner in which chaotic sections filled up
Poincaré surfaces, we conjectured that the dynamics is ergodic in
this band of energies. The purpose of this paper is to investigate
the dynamics in this band of global chaos and provide evidence for
ergodicity and mixing, as well as study the distribution of recurrence
times.

We begin in Sec. III by presenting evidence for ergodicity
by showing that numerically determined time averages agree with
ensemble averages. In particular, we find the distributions of relative
angles (ϕ1,2) and momenta (p1,2) over constant energy hypersurfaces
weighted by the Liouville measure. While the joint distribution func-
tion of ϕ1,2 is uniform on the Hill region of the configuration torus

at all energies, the distribution of p1 (and of p2) shows interesting
transitions from the Wigner semi-circular distribution when E � g
to a bimodal distribution for E > 4.5g (see Fig. 2). In the band
of global chaos, we find that distributions of ϕ1,2 and p1,2 along
generic (chaotic) trajectories are independent of the chosen trajec-
tory and agree with the corresponding distributions over constant
energy hypersurfaces, indicating ergodicity. This agreement fails for
energies outside this band. In Sec. III B, we investigate the rate of
approach to ergodicity in the band of global chaos. We find that
time averages such as 〈cos2 ϕ1〉t and 〈p2

1〉t along a generic trajectory
over the time interval [0, T] approach the corresponding ensemble
averages as a power-law ∼T−1/2 (see Fig. 4). This is expected of an
ergodic system where correlations decay sufficiently fast in time (see
the Appendix and Ref. 16).

In Sec. IV, we show that the dynamics is mixing (with respect
to the Liouville measure) in the band of global chaos. This is done
by showing that the histogram of number of trajectories in various
cells partitioning the energy hypersurface approaches a distribu-
tion strongly peaked at the expected value with increasing time [see
Fig. 6(a)]. We also observe characteristic departures from mixing
even in chaotic regions of the phase space at energies just outside
this band [see Fig. 6(b)].

In Sec. V, we study the distribution of recurrence times to a
finite size cell17 in a given energy hypersurface. Within the band of
global chaos, we find that the normalized distribution of recurrence
times τ follows the exponential law (1/τ̄ ) exp(−τ/τ̄ ), with possible
deviations at small recurrence times (see Fig. 9). Though the mean
recurrence/relaxation time τ̄ varies with the Liouville volume v of
the cell, we find that it obeys the scaling law τ̄ × v2/3 = τ ∗. This
scaling law is similar to the ones discussed in Refs. 18 and 19 with
the scaling exponent 2/3 consistent with global chaos and ergodic-
ity. The rescaled mean recurrence time τ ∗ can vary with the location
of the cell center but does not vary significantly with energy in the

FIG. 2. Distribution along generic trajectories (yellow, lighter) and distribution over constant energy hypersurface (black, darker) of (a) relative angle (ϕ1) and (b) relative
momentum (p1) for a range of increasing energies with m = r = g = 1. The horizontal axis is ϕ1 in (a) and p1 in (b). Note that ϕ1 and ϕ2 have the same distributions as do
p1 and p2. The distribution along a generic (chaotic) trajectory is found to be insensitive to the IC chosen. The momentum distribution over constant energy hypersurfaces
transitions from aWigner semi-circle to a bimodal distribution with increasing energy. The two distributions agree only in the band of global chaos (5.33 ≤ E ≤ 5.6) consistent
with ergodicity in this band.
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band of global chaos. Finally, we demonstrate a loss of memory
by showing that the gaps between successive recurrence times are
uncorrelated.

III. ERGODICITY IN THE BAND OF GLOBAL CHAOS

In this section, we provide evidence for ergodicity in the band
of global chaos (5.33g ≤ E ≤ 5.6g) by comparing distributions of
ϕ1,2 and p1,2 on constant energy hypersurfaces (weighted by the
Liouville measure) with their distributions along generic numeri-
cally determined trajectories. For ergodicity, the distribution along
a generic trajectory (over sufficiently long times) should be inde-
pendent of initial conditions (ICs) and tend to the corresponding
distribution over the energy hypersurface.20,21 We also examine the
rate of approach to ergodicity in time and deviations from ergodic-
ity outside the band of global chaos. Our numerical and analytical
results, while indicative of ergodic behavior, are nonetheless not
sufficient to establish it, since we examine only a restricted set of
observables.

A. Distributions along trajectories and over energy

hypersurfaces

Distribution along generic trajectories: By the distribution
function of a dynamical variable F(p, ϕ) (such as p1 or ϕ1) along a
given trajectory parametrized by time t, we mean

%F(f) = lim
T→∞

1

T

∫ T

0

δ(F(p(t), ϕ(t)) − f) dt. (6)

The time average of F along the trajectory is then given by the first
moment 〈F〉t =

∫

f%F(f) df. In practice, to find the distribution of F,
we numerically evolve a trajectory starting from a random initial
condition (IC) and record the values f of F at equally spaced inter-
vals of time (say, 1t = 0.25) up to tmax = 3 × 105 in units where
g = m = r = 1. For such tmax and for energies in the globally chaotic
band, we find that the histograms of recorded values approach
asymptotic distributions (see Fig. 2) that are largely independent of
the choice of 1t and ICs.

Distributions over energy hypersurfaces: The ensemble aver-
age 〈·〉e of a dynamical variable F(p, ϕ) at energy E is defined with
respect to the Liouville volume measure on phase space. Since ϕi

and pj are canonically conjugate, we have

〈F〉e = 1

VE

∫

F δ(H − E) dϕ1 dϕ2 dp1 dp2,

where VE =
∫

δ(H − E) dϕ1 dϕ2 dp1 dp2 (7)

is the volume of the H = E energy hypersurface ME. More generally,
the distribution of F(p, ϕ) over the energy E hypersurface weighted
by the Liouville measure is the following phase space integral:

ρF,E(f) = 1

VE

∫

δ(F(p, ϕ) − f)δ(H − E) dϕ1 dϕ2 dp1 dp2. (8)

Loosely, it is like the Maxwell distribution of speeds in a gas. We will
often omit the subscripts F and/or E when the observable and/or the
energy are clear from the context. By definition, the above distribu-
tion is a probability density

∫

ρ(f)df = 1. The ensemble average 〈F〉e

is its first moment,

〈F〉e =
∫

fρF,E(f) df. (9)

To find distributions over an energy hypersurface ME, we need
to integrate over it. For instance, to find the volume VE of the
energy hypersurface, we observe that the Hamiltonian H = T + V

is quadratic in p2, where

T = p2
1 + p2

2 − p1p2

mr2
,

(10)

V(ϕ1, ϕ2) = g [3 − cos ϕ1 − cos ϕ2 − cos(ϕ1 + ϕ2)] .

Hence, we cover ME by two coordinate patches parametrized by
ϕ1, ϕ2, and p1 with

p±
2 = 1

2

(

p1 ±
√

4mr2(E − V(ϕ1, ϕ2)) − 3p2
1

)

. (11)

Using the factorization H − E = (p2 − p+
2 )(p2 − p−

2 ), we evaluate
the integral over p2 in Eq. (7) to arrive at

VE =
∫∫

(ϕ1 ,ϕ2)∈HE

dϕ1 dϕ2

∫ pmax

−pmax

dp1

(p+
2 − p−

2 )
, (12)

where pmax =
√

4mr2(E − V)/3. Here, ϕ1,2 are restricted to lie in
the Hill region HE (V ≤ E). Interestingly, the integral over p1 is
independent of ϕ1 and ϕ2 as well as E so that

∫∫ pmax

−pmax

dp1

(p+
2 − p−

2 )
= π√

3
⇒ VE = π√

3
× Area(HE). (13)

Here, Area(HE) is the area of the Hill region with respect to the
measure dϕ1 dϕ2. It is a monotonically increasing function of E and
saturates at the value 4π 2 for E ≥ 4.5, when the Hill region includes
the entire ϕ1 − −ϕ2 torus. We now derive formulas for distributions
over energy hypersurfaces.

Distribution of angles: The joint distribution function of ϕ1

and ϕ2 is given by [p±
2 are as in (11)]

ρE(ϕ1, ϕ2) = 1

VE

∫

δ(H − E) dp1 dp2

= 1

VE

∫ pmax

−pmax

dp1

(p+
2 − p−

2 )
= π

VE

√
3

, (14)

since from (13), the integral over p1 is π/
√

3 for all E and ϕ1. In
other words, (ϕ1, ϕ2) is uniformly distributed on the Hill region.
Furthermore, for E ≥ 4.5, the Hill region is the whole torus and
ρE(ϕ1, ϕ2) = 1/4π 2. Thus, ϕ1 and ϕ2 are each uniformly distributed
on [0, 2π] for E ≥ 4.5. Figure 2(a) shows that the distributions of
ϕ1 and ϕ2 along a trajectory with energy E = 5.5 in the band of
global chaos agree with this uniform phase space distribution (the
fractional deviation is at most 0.2% across all angles).

Distribution of momenta: The momentum distribution func-
tions turn out to be more intricate. Due to the 1 ↔ 2 symmetry of
the Hamiltonian (10), the 1-particle momentum distribution func-
tions ρE(p1) and ρE(p2) are equal and are given by the marginal
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FIG. 3. The energetically allowed portion (shaded gray) of the ϕ2 − p2 Poincaré surface for a sequence of increasing values of p1 at E = 5.5 in the band of global chaos
for m = r = g = 1. On each plot, the horizontal axis is ϕ2 ∈ [−π ,π ] and the vertical axis is p2 ∈ [−3, 3]. The value of the distribution function ρE(p1) is the Liouville area

of the shaded region. It is plausible that ρE(p1) is even and that as p1 goes from 0 to pmax =
√

4mr2E/3 ≈ 2.71, ρE(p1) initially increases from a non-zero local minimum,
reaches a maximum, and then drops to zero as shown in the E = 5.5 subfigure of Fig. 2(b).

distribution

ρE(p1) = 1

VE

∫

δ(H − E) dϕ1 dϕ2 dp2

= 1

VE

∫∫

(ϕ1 ,ϕ2)∈HE,p1

dϕ1 dϕ2

p+
2 − p−

2

. (15)

Here, HE,p1 is the portion of the ϕ1–ϕ2 torus allowed for the given
values of E and p1. Since p±

2 must be real, from (11), we see
that 4mr2(E − V) − 3p2

1 ≥ 0 or V ≤ E − 3p2
1/4mr2. Thus, ϕ1 and

ϕ2 must lie in the Hill region for the modified energy E′ = E −
3p2

1/4mr2. For this Hill region to be non-empty, we must have
E′ ≥ 0. Thus, the distribution function ρE(p1) is supported on the

interval [−
√

4mr2E/3,
√

4mr2E/3] and is given by

ρE(p1) = 1

VE

∫∫

HE′

dϕ1 dϕ2
√

4mr2(E′(p1) − V)
. (16)

On account of E′(p1) being even, ρE(p1) = ρE(−p1). Upon going to
Jacobi coordinates ϕ± = (ϕ1 ± ϕ2)/2, the integral over ϕ− can be

expressed in terms of an incomplete elliptic integral of the first kind.
Though the resulting formulas are lengthy in general, for low ener-
gies, ρE(p1) turns out to be the Wigner semi-circular distribution
[see Fig. 2(b)]. Indeed, upon going to Jacobi coordinates and using
the quadratic approximation for the potential Vlow = 3gϕ2

+ + gϕ2
−,

we find that at low energies, the Hill region HE′ is the elliptical disk
3gϕ2

+ + gϕ2
− ≤ E′(p1). Thus,

VE = π√
3

× Area(HE) = 2π 2E

3g
for E � g, (17)

leading to the Wigner semi-circular distribution

ρE(p1) = 1

VE

∫∫

HE′

2dϕ+dϕ−
√

4mr2(E′(p1) − Vlow)

= 3

2πmr2E

√

4

3
mr2E − p2

1 for E � g. (18)

For larger E, we perform integral (16) numerically. Figure 2(b)
shows that the distribution goes from being semi-circular to bimodal

FIG. 4. (a) Time averages 〈p21〉t and 〈cos2 ϕ1〉t as a function of time T for 35 randomly chosen trajectories at E = 5.5. They are seen to approach the corresponding ensemble
averages (〈·〉e indicated by thick black lines) as time grows. (b) Root mean square deviation (over 35 chaotic initial conditions) of time averages from the corresponding
ensemble average as a function of time T for E = 5.5 in the band of global chaos for the observables cos2 ϕ1, cos

4 ϕ1, p
2
1, and p

6
1. The fits show a T−1/2 approach to

ergodicity.
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FIG. 5. Difference between time averages 〈·〉t over a time T = 105 (for 35 ran-
domly chosen chaotic trajectories) and ensemble average 〈·〉e for cos2 ϕ1 and
p21, indicating ergodicity in the band of global chaos 5.33 ≤ E ≤ 5.6 (magenta)
and discernible departures outside this band (orange). The spread in 〈·〉t–〈·〉e at
a fixed energy is due to the finiteness of T . However, this spread is small com-
pared to the average values 〈cos2 ϕ1〉e = 0.5 and 〈p41〉e = 2E2/3 − 4E + 7,
demonstrating that time averages over distinct chaotic trajectories converge to
a common value. Note that the spread in 〈p41〉t − 〈p41〉e increases with E as the
average values themselves increase with E.

as E crosses 4g. Loosely, ρE(p1) is the analog of the Maxwell dis-
tribution for the relative momenta of the three rotor problem.
Figure 3 provides a qualitative explanation of the bimodal shape
of ρE(p1) for an energy in the band of global chaos. Figure 2(b)
shows that the distribution of p1 along a generic trajectory closely
matches its distribution ρE(p1) over the constant energy hyper-
surface in the band of global chaos (5.33 ≤ E ≤ 5.6) but deviates
at other energies, providing evidence for ergodic behavior in this
band.

B. Approach to ergodicity

To examine the rate of approach to ergodicity for energies in
the band of global chaos, we compare ensemble averages of variables
such as cos2 ϕ1 and p2

1 with their time averages over increasingly long
times.

Ensemble average: The ensemble average 〈·〉e of a variable F at
energy E defined in (7) reduces to

〈F〉e = 1

VE

∫∫

(ϕ1 ,ϕ2)∈HE

dϕ1 dϕ2

∫ pmax

−pmax

Fsum dp1

2(p+
2 − p−

2 )

with Fsum = F(ϕ1, ϕ2, p1, p
+
2 ) + F(ϕ1, ϕ2, p1, p

−
2 ) (19)

upon using the factorization H − E = (p2 − p+
2 )(p2 − p−

2 ) to evalu-
ate the integral over p2. Since for E ≥ 4.5, ϕ1 and ϕ2 are indepen-
dently uniformly distributed on [0, 2π], we have

〈cosm ϕ1 cosn ϕ2〉e = 〈cosm ϕ1〉e〈cosn ϕ2〉e, (20)

with 〈cos2n ϕ1〉e = (2n)!

22n(n!)2
and the odd moments vanishing. Remark-

ably, the phase space averages of momentum observables are also
exactly calculable for E ≥ 4.5,

〈p2
1〉e = 2

3
E − 2, 〈p4

1〉e = 2

3
E2 − 4E + 7,

〈p2
1p

2
2〉e = 1

3
E2 − 2E + 7

2
, (21)

〈p6
1〉e = 20

27
E3 − 20

3
E2 + 70

3
E − 260

9
.

Though we restrict to E ≥ 4.5 to obtain simple formulas for ensem-
ble averages, this includes the band of global chaos 5.33 ≤ E ≤ 5.6
where alone we can expect ergodic behavior.

To compare with time averages, for each energy, we pick Ntraj =
35 random ICs (on the ϕ1 = 0 surface) and evolve them forward.

As Fig. 4(a) indicates, though the time averages ( 1
T

∫ T

0
F dt) display

significant fluctuations at early times, they have approached their
asymptotic values by T = 105. To estimate the rate of approach to
ergodicity, we compute the root mean square deviation σ(T) of the
time average from the ensemble average as a function of time

σ 2(T) = 1

Ntraj

∑

a

(

〈F〉t,a(T) − 〈F〉e

)2
,

where 〈F〉t,a(T) = 1

T

∫ T

0

F(t′a) dt′a (22)

is the time average over the ath trajectory. Figure 4(b) shows that
for several variables F = cos2 ϕ1, p

2
1, etc., the mean square deviation

decays roughly as the reciprocal of time, σ ∼ 1/
√

T, as expected of
an ergodic system where correlations decay sufficiently fast (see the
Appendix and Ref. 16).

Finally, we examine the approach to ergodicity as the energy
approaches the band of global chaos 5.3 . E . 5.6. To this end, we
compare the ensemble averages of a few variables with their time
averages for 35 randomly chosen chaotic trajectories over a range
of energies. Figure 5 shows that the time averages of cos2 ϕ1 and
p2

1 agree reasonably well with their ensemble averages in the band
of global chaos. At lower and higher energies, there are discernible
deviations from the ensemble averages, showing ergodicity break-
ing. (a) For E slightly outside the band of global chaos, we find that
there is a single chaotic region (see Fig. 1), and time averages along
trajectories from this region converge to a common value which,
however, differs from the ensemble average over the whole energy
hypersurface (see Fig. 5). (b) At energies significantly outside the
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band of global chaos, there can be several distinct chaotic regions
[see Fig. 11(e) of Ref. 8]. We find that time averages of an observ-
able along chaotic trajectories from these distinct regions generally
converge to different values, none of which typically agrees with the
ensemble average over the whole energy hypersurface.

IV. MIXING IN THE BAND OF GLOBAL CHAOS

In Sec. III, we provided numerical evidence for ergodicity in
the three rotor problem for energies in the band of global chaos. We
now investigate whether the dynamics is mixing in this regime. A
flow φt on the energy hypersurface ME of the phase space is said to be
strongly mixing if for all subsets A, B ⊆ ME with positive measures
[µ(A) > 0 and µ(B) > 0], we have

lim
t→∞

µ(φt(B) ∩ A) = µ(B) × µ(A)/µ(ME), (23)

where µ is the Liouville volume measure on ME.20,21 To numerically
examine whether the dynamics of three rotors is mixing in the band
of global chaos, we work in units where m = r = g = 1 and con-
sider a large number N (= 1.3 × 107) of random ICs with energy E
in a small initial region of phase space [e.g., |ϕ1,2|, |p1| < 0.05 with
p2 = p+

2 (11) determined by E]. The trajectories are numerically
evolved forward in time, and their locations are recorded at discrete
time intervals (e.g., t = 10, 20, . . . , 300). If the dynamics is mixing,
then in the limit N → ∞ and t → ∞, the number of trajectories
located at time t in a Liouville volume V must equal NV/VE, where
VE is the Liouville volume of the energy hypersurface. Poincaré sec-
tions (see Fig. 1) as well as investigations of ergodicity in Sec. III rule
out the possibility of mixing for energies outside the regime of global

chaos. Thus, we restrict to 5.33 ≤ E ≤ 5.6, where VE = 4π 3/
√

3, a
formula that holds for any E ≥ 4.5 (13). Now, for convenience, we
divide the 3d energy hypersurface into cuboid-shaped cells of equal
geometric volume Vg. The Liouville volumes of these cells are not
equal, so we denote by µi the Liouville volume of the ith cell. In
practice, we take cells of linear dimensions 2π/d each in ϕ1 and ϕ2

and 2pmax
1 /d in p1 where d = 40 is the number of subdivisions and

pmax
1 the maximal value of p1 corresponding to energy E. Though we

compute µi exactly, it is approximately Vg× the Liouville density at
the center of the ith cell,

µi ≈ 1

2(p+
2 − p−

2 )
× 2π

d
× 2π

d
× 2pmax

1

d
, (24)

where p±
2 (11) are evaluated at the center of the cell. Cells that lie

outside or straddle the boundary of the energy hypersurface are not
considered. At various times, we record the instantaneous locations
of the trajectories and count the number ni(t) of trajectories that lie
in the cell i. If the dynamics is mixing, the number of trajectories in
the ith cell should be

ni = N × µi

VE

. (25)

To test the mixing hypothesis and rate of approach, we plot in Fig. 6
at various times t = 10, 20, . . . , 300, a histogram of ni(t). To be more
precise, we plot a histogram of ñi(t) = ni(t)VE/(µiN) so that the
expected mean is 1, to facilitate comparison across energies, times,
and numbers of ICs considered. At very early times (t . 10), most
cells have not been visited by trajectories so that the histogram is
strongly peaked around zero counts. As t increases, we observe from
Fig. 6(a) that the histograms shift, and become progressively nar-
rower, peaking around the expected value of 1 with the expected
width (see Fig. 7). This provides evidence for mixing in the regime
of global chaos. In Fig. 6(b), we compare these histograms at suf-
ficiently late times (t = 300) for a range of energies and observe
significant departures from mixing for energies outside the band of
global chaos. In fact, for energies such as E = 4.5 and E = 6, the his-
tograms in Fig. 6(b) show three distinct peaks corresponding to cells
that are never visited and two other types of cells (in chaotic regions)
that are visited with unequal frequencies (see Fig. 8). This character-
istic departure from mixing with respect to the Liouville measure
(even when restricted to chaotic regions) is also reflected in the two
distinct densities of points in Poincaré plots at such energies, as seen
in Fig. 8.

FIG. 6. Histograms of number of trajectories ni(t) in each cell i of an energy hypersurface. To facilitate comparison across energies and numbers of ICs considered, the
histograms of ñi(t) = (ni(t)VE)/(µiN) [see Eq. (25)] are displayed. For the flow to be mixing, the histograms should strongly peak around ñi(t) = 1. Figure (a) shows the
approach to mixing in time at an energy E = 5.5 in the band of global chaos. The histogram is seen to migrate from peaking at zero to 1 with advancing time. Figure (b)
shows these histograms at reasonably late times (t = 300) showing how the flow becomes mixing as we approach the band of global chaos (represented here by E = 5.5).
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FIG. 7. Drop with time of the standard deviation of the distribution [see Fig. 6(a)]
of the scaled number of trajectories ñi(t) in each cell of the energy E = 5.5 hyper-
surface. The latter is partitioned into Ncells ≈ 4 × 104 cells, and N = 1.3 × 107

trajectories have been considered. The plot shows that the standard deviation
has dropped to 0.066 at t = 300. This is close to the expected standard deviation
0.055 if the N trajectories were distributed uniformly among the Ncells cells at the
instant considered.

V. RECURRENCE TIME STATISTICS

Here, we study the statistics of Poincaré recurrence times to a
three-dimensional cell in an energy—E hypersurface of the phase
space. For convenience, we choose the cell to be a cuboid of width
w, e.g., −w/2 ≤ ϕ1, ϕ2, p1 ≤ w/2 with p2 = p+

2 (11) determined by
energy for a cell centered at the origin. We choose a large num-
ber (∼3 × 104) of initial conditions distributed uniformly randomly
within the cell and numerically evolve them forward in time. The
recurrence time τ for a given trajectory is defined as the time from
the first exit to the next exit from the cell.12 Evidently, starting from
the instant the trajectory first exits the cell, τ is the sum of the times
it spends outside the cell and while traversing the cell. A histogram

FIG. 8. Two distinct densities (shaded dark and light) of points (from trajectories
for 0 ≤ t ≤ 105) on chaotic sections of Poincaré surfaces atE = 4.5 correspond-
ing to the two non-zero peaks in the histogram of Fig. 6(b) showing characteristic
departure from mixing. The unshaded regions are energetically allowed but are
not visited by these chaotic trajectories and correspond to the peak around zero
in the same histogram.

of the recurrence times (normalized to be a probability distribution)
is then plotted as in Fig. 9(a).

Exponential law: For uniformly mixing dynamics, it is
expected that this normalized distribution follows an exponen-
tial law (1/τ̄ ) e−τ/τ̄ , where τ̄ is the mean recurrence or relaxation
time.12 As shown in Fig. 9, this exponential law for recurrence times
holds for energies in the band of global chaos though there can be
(sometimes significant) deviations for very small values of τ [e.g.,
τ . 25 � τ̄ ≈ 250 for w = 0.6 in Fig. 9(d)]. These deviations could
be attributed to a memory effect, the finite time that the system takes
before the dynamics displays mixing [see Fig. 6(a)]. Thus, τ̄ is to be
interpreted as the time constant in the above exponential law that
best fits the distribution away from very small τ .

A heuristic argument for the exponential law follows: for a
more detailed treatment, see Refs. 11 and 22 and references therein.
We pick a large number N of ICs uniformly from a region �

of volume V� in an energy—E hypersurface of volume VE. They
are evolved in time and their locations sampled at a temporal fre-
quency 1. At each such instant, the probability of returning to � is
p = V�/VE provided a sufficiently long time T has elapsed for cor-
relations to have died out. Suppose a fraction f of trajectories have
not returned to � by this time T. Then, the probability that the first
return time τ equals T + 1 is P(τ = T + 1) = fp (leaving aside pos-
sible returns that the sampling at frequency 1 does not detect). If
1 is chosen large enough (& transit time across �), we also have
P(τ = T + 21) = f(1 − p)p and similarly P(τ = T + n1)

= f(1 − p)n−1p for n = 1, 2, . . .. In the limit N → ∞, 1 → 0 and
V� → 0 holding 1/p = τ̄ fixed and omitting prefactors (indepen-
dent of t) that go into the normalization,

P(t ≤ τ ≤ t + dt) ∝ lim
1→0

(1 − p)t/1 = e−t/τ̄ . (26)

Scale invariance: Though τ̄ varies with the width w, we find
that when rescaled by the two-third power of the Liouville volume
v of the cell, it becomes independent of cell size within the band of
global chaos. In other words, τ̄ × v2/3 = τ ∗ is constant for cells cen-
tered at a given location [see Fig. 9(b)]. Thus, as shown in Figs. 9(c)
and 9(d), the rescaled recurrence time distributions for various cell
sizes all follow the same exponential law for a given energy and cell
center. This scaling law may be viewed as a 3d energy hypersurface
analog of the 2d phase space version given in Eq. (36) of Ref. 18 as
well as of the scaling law for the mean recurrence time of the second
type in Ref. 19. Heuristically, the mean recurrence time τ̄ is inversely
proportional to the surface area (∼v2/3) of the cell and allows us to
view the “attractor” as being three dimensional, which is consistent
with global chaos and ergodicity. On the other hand, we find that the
scaling exponent deviates from two-thirds in chaotic regions outside
this band. This is to be expected since the dynamics at such energies
is not mixing in such chaotic regions, as shown in Figs. 6(b) and 8.

The above scaling law defines for us the scaled mean recurrence
time τ ∗ for cells centered at a given location of an energy hyper-
surface. We find that τ ∗ varies with location. For instance, for cells
centered along an isosceles trajectory (see Sec. II), we find that the
values of τ ∗ display a reflection symmetry about the triple collision
configuration and vary over the range 31 . τ ∗ . 56. On the other
hand, within the band of global chaos, τ ∗ hardly varies with energy
for a given cell location.
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FIG. 9. (a) Histogram of recurrence
times (normalized to be a probability dis-
tribution) for a cubical cell centered at the
origin (p1 = ϕ1 = ϕ2 = 0) of the glob-
ally chaotic energy—5.5 (in units where
m = r = g = 1) hypersurface showing
an exponential law (1/τ̄ ) exp(−τ/τ̄ ),
where τ̄ is the fitted mean recurrence
time. Note that τ̄ ≈ 580 is much larger
than the time scale of the linearized sys-

tem (1/ω0 =
√

mr2/3g). (b) At any cell
location, τ̄ scales as the minus two-third
power of the Liouville volume of the
cell, consistent with ergodicity. (c) and
(d) Normalized histogram of (recurrence
times) × (cell volume)2/3 plotted on a
log-linear scale for cells of various widths,
showing a universal exponential distri-
bution (1/τ ∗)exp(−τ/τ ∗) away from
very small τ . The larger spread at large
τ × v2/3 is due to lower statistics. The
rescaled fitted mean recurrence time τ ∗

varies with cell location but only weakly
depends on the energy within the band of
global chaos.

Loss of memory: We also observe the absence of memory in the
sense that the gaps between successive recurrence times are uncor-
related. For instance, let us denote by τ1 and τ2 the first recurrence
time and the gap between second and first recurrence times for a
given trajectory and cell and define the correlation coefficient

r = [〈τ1τ2〉 − 〈τ1〉〈τ2〉] /(σ1σ2). (27)

The averages here are performed with respect to a random collec-
tion of trajectories and σ1,2 denotes the standard deviations of τ1,2.
We find that |r| ≈ 10−3 − 10−5 � 1 for cells of widths 0.4–1.2 cen-
tered at the origin of the energy E = 5.5 hypersurface, indicating
uncorrelated recurrences.

VI. DISCUSSION

In this paper, on the classical three rotor problem, we have
provided evidence for ergodicity and mixing in a band of energies
where the dynamics is globally chaotic. Section II contains a sum-
mary of the main results. Here, we mention a few open questions
arising from this work. While we have provided a qualitative expla-
nation for the shape of the momentum distribution over energy
hypersurfaces in Sec. III A, it would be better to understand the
mechanisms underlying the phase transitions observed in ρ(p1). In
another direction, outside the band of global chaos, it would be
interesting to determine whether the dynamics, when restricted to
a chaotic region, is ergodic and/or mixing with respect to a suitable
measure. In fact, Figs. 6(b) and 8 suggest that this measure cannot
be the Liouville measure. In Sec. V, the scaled mean recurrence time
τ ∗ to cells at a given location was found to vary with the location on
the energy hypersurface. It would be of interest to study the nature of
this variation and its physical implications. We also wonder whether

global chaos and ergodicity are to be found in the problems of four
or more rotors.

Unlike billiards and kicked rotors, the equations of the three
rotor system do not involve impulses/singularities. It would be
interesting to identify other such continuous time autonomous
Hamiltonian systems that display global chaos and ergodicity. As
noted, the three rotor problem may also be formulated as geodesic
flow on a manifold of non-constant Jacobi–Maupertuis curvature.
A challenging problem would be to try to extend the analytic
treatments of ergodicity in geodesic flows on constant curvature
Riemann surfaces to the three rotor problem. Finally, an explo-
ration of ergodicity and recurrence in the quantum three rotor
system is desirable, given that it models chains of coupled Josephson
junctions.
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APPENDIX: THE POWER-LAW APPROACH TO

ERGODICITY IN TIME

Assuming that correlations decay sufficiently fast, as expected
for a chaotic system, we give here a heuristic explanation for our
observed (see Sec. III B) power-law approach to ergodicity in time
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(see also Ref. 16 for a discussion based on a stochastic frame-
work). Let F(p, ϕ) be a dynamical variable with ensemble average
at energy E denoted F̄ = 〈F〉e (A7). Its time average, over the inter-
val [0, T], along an energy-E phase trajectory (Epi(t), Eϕi(t)) labeled i, is
denoted

F̃i(T) = 1

T

∫ T

0

Fi(t) dt ≡ 1

T

∫ T

0

F(Epi(t), Eϕi(t)) dt. (A1)

To examine the rate at which time averages along different trajec-
tories i approach the ensemble average, we define the mean square
deviation of F̃i(T) from F̄ for a family I of trajectories,

varF(T) =
〈

(

F̃i(T) − F̄
)2

〉

≡ 1

#(I)

∑

i∈I

(

F̃i(T) − F̄
)2

. (A2)

Expanding, we write the mean square deviation as

varF(T) =
〈

F̃i(T)2
〉

+ F̄2 − 2F̄
〈

F̃i(T)
〉

. (A3)

We now assume that the ICs for the trajectories in I are distributed
uniformly with respect to the Liouville measure on the energy-
E hypersurface. Since the dynamics is Hamiltonian, by Liouville’s
theorem, the trajectories remain uniformly distributed at all times T
so that as #(I) → ∞,

〈

F̃i(T)
〉

= F̄. (A4)

Thus, the mean square deviation becomes

varF(T) =
〈

F̃i(T)2
〉

− F̄2 =
〈

F̃i(T)2 − F̄2
〉

=
〈

1

T2

∫ T

0

∫ T

0

[Fi(t1)Fi(t2) − F̄2] dt1 dt2

〉

= 1

T2

∫ T

0

∫ T

0

〈

Fi(t1)Fi(t2) − F̄2
〉

dt1 dt2. (A5)

We now assume that Fi(t1) and Fi(t2) are practically uncorrelated if
|t1 − t2| > ε for some time ε, i.e.,

〈

F(t1)F(t2) − F̄2
〉

≈
{

0 if |t1 − t2| > ε,

C(t1 − t2) otherwise,
(A6)

by time-translation invariance, for some (second cumulant) func-
tion C(t1 − t2). We now change integration variables from t1,2 to u =
t1 − t2 and v = (t1 + t2)/2 with dt1dt2 = du dv and assume T � ε

to get

varF(T) ≈ 1

T2

∫ T

0

dv

∫ ε

−ε

du C(u) = 1

T

∫ ε

−ε

C(u) du. (A7)

Thus, the RMS deviation of time averages from the ensemble

average vanishes like 1/
√

T as T → ∞.
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