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ABSTRACT

This paper concerns the classical dynamics of three coupled rotors: equal masses moving on a circle subject to attractive cosine interparticle
potentials. This system arises as the classical limit of a model of coupled Josephson junctions. In appropriate units, the non-negative energy E
of the relative motion is the only free parameter. We �nd families of periodic solutions: pendulum and isosceles solutions at all energies and
choreographies up tomoderate energies. Themodel displays order-chaos-order behavior: it is integrable at zero and in�nitely high energies but
displays a fairly sharp transition from regular to chaotic behavior as E is increased beyond Ec ≈ 4 and a more gradual return to regularity. The
transition to chaos is manifested in a dramatic rise of the fraction of the area of the Hill region of Poincaré surfaces occupied by chaotic sections
and also in the spontaneous breaking of discrete symmetries of Poincaré sections present at lower energies. Interestingly, the above pendulum
solutions alternate between being stable and unstable, with the transition energies cascading geometrically from either sides at E = 4. The
transition to chaos is also re�ected in the curvature of the Jacobi-Maupertuis metric that ceases to be everywhere positive when E exceeds four.
Examination of Poincaré sections also indicates global chaos in a band of energies (5.33 . E . 5.6) slightly above this transition.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110032

We study the classical dynamics of three equal point masses
moving on a circle subject to attractive cosine interparticle poten-
tials. This three-rotor problem, where rotors can pass through
each other, arises as the classical limit of a chain of coupled Joseph-
son junctions. In center of mass variables, the relative energy E

serves as a control parameter.We discover three classes of periodic
solutions: choreographies up to moderate energies and pendula
and breathers at all energies. The system is integrable at zero and
in�nite energies but displays a fairly sharp transition to chaos
aroundE ≈ 4, thus providing an instance of the order-chaos-order
transition. We �nd several manifestations of this transition: (a)
a geometric cascade of stable to unstable transition energies in
pendula as E → 4±; (b) a transition in the curvature of the Jacobi-
Maupertuis metric from being positive to having both signs as E
exceeds four, implying widespread onset of instabilities; (c) a dra-
matic rise in the fraction of the area of Poincaré surfaces occupied
by chaotic trajectories and (d) a breakdown of discrete symmetries
in Poincaré sections present at lower energies. Slightly above this
transition, we �nd evidence for a band of global chaos where we
conjecture ergodic behavior.

I. INTRODUCTION

We study the problem of three rotors, where three particles of
equal massmmove on a circle subject to attractive cosine interparti-
cle potentials of strength g. The rotors can pass through each other so
that there are no collisions. While the problem of two rotors reduces
to that of a simple pendulum, the dynamics of three (or more) rotors
is rich and displays novel signatures of the transition to chaos as the
coupling g (or energy) is varied.

The quantum n-rotor problem is also of interest as it is used to
model a chain of coupled Josephson junctions.1Here, the rotor angles
are the phases of the superconducting order parameters associated
with the segments between junctions. While in the application to the
insulator-to-superconductor transition in arrays of Josephson junc-
tions, one is typically interested in the limit of large n, here we focus
on the classical dynamics of the n = 3 case.

In Sec. II, we begin by formulating the classical three-rotor prob-
lem and eliminate the center of mass motion to arrive at dynamics
on a 2-dimensional con�guration torus parametrized by the rela-
tive angles ϕ1 and ϕ2. In Sec. III, we discuss the dynamics on the
ϕ1-ϕ2 torus, �nd all static solutions for the relative motion, and
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discuss their stability (see Fig. 1). The system is also shown to be inte-
grable at zero and in�nitely high relative energies E (compared to the
coupling g) due to the emergence of additional conserved quantities.
Furthermore, we also describe changes in the topology of the Hill
region of the con�guration space at E = 0, 4g, and 4.5g (see Fig. 2).

In Sec. IV, we use consistent reductions of the equations of
motion to one degree of freedom to �nd pendulum and isosceles
families of periodic solutions at all energies (see Fig. 3). We inves-
tigate the stability of the pendula and breathers by computing their
monodromies. Notably, we �nd that the stability index of pendula
becomes periodic on a log scale as E → 4g± and shows an accumu-
lation of stable to unstable transition energies at E = 4g (see Fig. 4).
In other words, the largest Lyapunov exponent switches from posi-
tive to zero in�nitely often with the widths of the (un)stable windows
asymptotically approaching a geometric sequence as E → 4g±.

In Sec. V, we reformulate the dynamics on the ϕ1-ϕ2 torus as
geodesic �owwith respect to the Jacobi-Maupertuismetric.We prove
in Appendix A that the scalar curvature is strictly positive on the
Hill region for 0 ≤ E ≤ 4g but acquires both signs above E = 4g
(Fig. 7) indicating the onset of widespread geodesic instabilities. In
Sec. VI, we examine Poincaré sections and observe a marked tran-
sition to chaos in the neighborhood of E = 4g as manifested in a
rapid rise of the fraction of the area of the energetically allowed
“Hill” region occupied by chaotic sections (Fig. 12). This is accom-
panied by a spontaneous breaking of two discrete symmetries of
low energy Poincaré sections (Figs. 9 and 10). This transition also
coincides with the accumulation of stable to unstable transition ener-
gies of the pendulum family of periodic solutions at E = 4g. Slightly
above this energy, we �nd a band of global chaos 5.33g . E . 5.6g,
where the chaotic sections �ll up the entireHill region on all Poincaré
surfaces, suggesting ergodic behavior (see Fig. 13). In Sec. VII, we
derive a system of delay di�erential and algebraic equations for peri-
odic choreography solutions of the three-rotor problem.We discover
three families of choreographies. The �rst pair are uniformly rotat-
ing versions of two of the static solutions for the relative motion. The
third family is nonrotating, stable, and exists for all relative ener-
gies up to the onset of global chaos (see Fig. 14). It is found by
a careful examination of Poincaré sections. Finally, we prove that
choreographies cannot exist for arbitrarily high relative energies. We
conclude with a discussion in Sec. VIII. Appendix B summarizes the
numerical method employed to estimate the fraction of chaos on
Poincaré surfaces. A preliminary version of this paper was presented
at the Conference on Nonlinear Systems and Dynamics, New Delhi,
October 2018.2

II. THREE COUPLED CLASSICAL ROTORS

We study a periodic chain of three identical rotors of mass m
interacting via cosine potentials. The Lagrangian is

L =
3
∑

i=1

{

1

2
mr2θ̇ 2i − g[1 − cos (θi − θi+1)]

}

(1)

with θ4 ≡ θ1. Here, θi are 2π-periodic coordinates on a circle of
radius r. Though we only have nearest neighbor interactions, each
pair interacts as there are only three rotors. We consider “ferromag-
netic” coupling g > 0 so that the rotors attract each other.Unlikewith

gravity, the inter-rotor forces vanishwhen rotors coincide so that they
can “pass” through each other: this is physically apt since they occupy
distinct sites. The equations of motion for i = 1, 2, and 3 are

mr2θ̈i = g sin(θi−1 − θi)− g sin(θi − θi+1) (2)

with θ0,1 ≡ θ3,4. The con�guration space is a 3-torus 0 ≤ θi ≤ 2π
with conjugate angular momenta πi = mr2θ̇i and

H =
3
∑

i=1

{

π 2
i

2mr2
+ g[1 − cos (θi − θi+1)]

}

. (3)

Hamilton’s equations,

mr2θ̇i = πi and π̇i = g[sin(θi−1 − θi)− sin(θi − θi+1)], (4)

de�ne a smooth Hamiltonian vector �eld on the 6d phase space. The
additive constant in H is chosen so that its minimal value is zero.
This system has 3 independent dimensionful physical parametersm,
r, and g that can be put to one by a choice of units. However, once
such a choice of units has been made, all other physical quantities
(like ~) have de�nite numerical values. This circumstance is similar
to that in the Toda model.3

In Sec. V, we will reformulate the dynamics as geodesic �ow on
T2 (or T3 upon including center of mass motion, see below), which
is geodesically complete. For E > 4.5g, this is expected on account of
compactness and lack of boundary of the energetically allowed Hill
region. ForE < 4.5g, though the trajectories can (in �nite time) reach
the Hill boundary, they simply turn around. Examples of such trajec-
tories are provided by the ϕ1 = 0 pendulum solutions described in
Sec. IV A.

Center ofMass (CM) and relative coordinates: It is convenient
to de�ne the CM and relative angles

ϕ0 = (θ1 + θ2 + θ3)/3, ϕ1 = θ1 − θ2, and ϕ2 = θ2 − θ3. (5)

As a consequence of the 2π-periodicity of θs,ϕ0 is 2π-periodic, while
ϕ1,2 is 6π-periodic. However, the cuboid (0 ≤ ϕ0 ≤ 2π , 0 ≤ ϕ1,2
≤ 6π) is a ninefold cover of the fundamental cuboid 0 ≤ θ1,2,3 ≤ 2π .
In fact, since the con�gurations (ϕ0,ϕ1 − 2π ,ϕ2), (ϕ0,ϕ1,ϕ2 + 2π),
and (ϕ0 + 2π/3,ϕ1,ϕ2) are physically identical, we may restrict ϕ1,2
to lie in [0, 2π]. Here, ϕi are not quite periodic coordinates on
T3 ≡ [0, 2π]3. Rather, when ϕ1 7→ ϕ1 ± 2π or ϕ2 7→ ϕ2 ∓ 2π , the
CM variable ϕ0 7→ ϕ0 ± 2π/3. In these coordinates, the Lagrangian
becomes L = T − V , where

T =
3

2
mr2ϕ̇2

0 +
1

3
mr2

[

ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2
]

and

V = g [3 − cosϕ1 − cosϕ2 − cos(ϕ1 + ϕ2)] , (6)

with the equations of motion (EOM) 3mr2ϕ̈0 = 0,

mr2ϕ̈1 = −g [2 sinϕ1 − sinϕ2 + sin(ϕ1 + ϕ2)] , 1 ↔ 2. (7)

The conjugate momenta are p0 = 3mr2ϕ̇0,

p1 = (mr2/3)(2ϕ̇1 + ϕ̇2), p2 = (mr2/3)(ϕ̇1 + 2ϕ̇2). (8)

The EOM admit a conserved energy which is a sum of CM, relative
kinetic and potential energies,

E =
3

2
mr2ϕ̇2

0 +
1

3
mr2

[

ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2
]

+ V(ϕ1,ϕ2). (9)
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III. DYNAMICS ON THE ϕ1-ϕ2 TORUS

Thedynamics ofϕ1 andϕ2 (or equivalently that ofϕ±) decouples
from that of the CM coordinate ϕ0. The former may be regarded as
periodic coordinates on the 2-torus [0, 2π] × [0, 2π]. On the other
hand, ϕ0, which may be regarded as a �ber coordinate over the ϕ1,2
base torus, evolves according to

ϕ0 =
p0t

3mr2
+ ϕ0(0)+

2π

3
(n2 − n1) mod 2π . (10)

Here, n1,2 are the “greatest integer winding numbers” of the trajectory
around the cycles of the base torus. If a trajectory goes continu-

ously from ϕi
1,2 to ϕ

f
1,2 (regarded as real rather than modulo 2π),

then the greatest integer winding numbers are de�ned as n1,2 = [(ϕ
f
1,2

− ϕi
1,2)/2π].
Consequently, we may restrict our attention to the dynamics of

ϕ1 and ϕ2. The equations of motion on the corresponding 4d phase
space (the cotangent bundle of the 2-torus) are

ϕ̇1 = (2p1 − p2)/mr2, ṗ1 = −g [sinϕ1 + sin(ϕ1 + ϕ2)] , (11)

and 1 ↔ 2. These equations de�ne a singularity-free vector �eld on
the phase space. They follow from the canonical Poisson brackets
(PBs) with Hamiltonian given by the relative energy

Hrel =
p21 + p22 − p1p2

mr2
+ V(ϕ1,ϕ2). (12)

Static solutions and their stability: Static solutions for the rel-
ative motion correspond to zeros of the vector �eld, where the force
components in (11) vanish: p1 = p2 = 0 and

sinϕ1 + sin(ϕ1 + ϕ2) = sinϕ2 + sin(ϕ1 + ϕ2) = 0. (13)

In particular, we must have ϕ1 = ϕ2 or ϕ1 = π − ϕ2. When ϕ1 = ϕ2,
the force components are both equal to sinϕ1(1 + 2 cosϕ1), which
vanishes at the following con�gurations:

(ϕ1,ϕ2) = (0, 0), (π ,π) , and (±2π/3,±2π/3) . (14)

On the other hand, if ϕ1 = π − ϕ2, we must have sinϕ1 = 0 leading
to twomore static con�gurations (0,π) and (π , 0). Thus, we have six

static solutions which we list in increasing order of (relative) energy
(see Fig. 1),

E = 0 : G(0, 0), E = 4g : D1(π ,π),D2(π , 0),D3(0,π),

and E = 9g/2 : T1,2(±2π/3,±2π/3). (15)

Uniformly rotating solutions from G, D, and T: If we include
the uniform rotation of the CM angle (ϕ̇0 = � is arbitrary), these
six solutions correspond to the following uniformly rotating rigid
con�gurations of 3-rotors (see Fig. 1): (a) the ferromagnetic ground
state G where the three particles coalesce (θ1 = θ2 = θ3), (b) the
three “diagonal” “antiferromagnetic Néel” states D where two par-
ticles coincide and the third is diametrically opposite (θ1 = θ2
= θ3 + π and cyclic permutations thereof), and (c) the two “trian-
gle” “spin wave” states T where the three bodies are equally separated
(θ1 = θ2 + 2π/3 = θ3 + 4π/3 and θ2 ↔ θ3).

Stability of static solutions:The linearized EOM (7) for pertur-
bations to G, D, and T [ϕ1,2 = ϕ̄1,2 + δϕ1,2(t)] are

mr2
d2

dt2

(

δϕ1
δϕ2

)

= −gA

(

δϕ1
δϕ2

)

where AG = 3I,

AD3(0,π) =
(

1 0
−2 −3

)

, AD2(π ,0) =
(

−3 −2
0 1

)

,

AD1(π ,π) =
(

−1 2
2 −1

)

and AT = −3I/2.

(16)

Here, I is the 2 × 2 identity matrix. Perturbations to G are stable

and lead to small oscillations with equal frequencies ω0 =
√

3g/mr2.

The saddles D have one stable direction with frequency ω0/
√
3 and

one unstable eigendirection with growth rate ω0. On the other hand,

both eigendirections around T are unstable with growth rate ω0/
√
2.

Changes in the topology of the Hill region with energy:
The Hill region of possible motions HE at energy E is the subset
V(ϕ1,ϕ2) ≤ E of the ϕ1-ϕ2 con�guration torus. The topology of the
Hill region for various energies can be read-o� from Fig. 1(a). For
instance, for 0 < E < 4g, HE is a disk while it is the whole torus for
E > 4.5g. For 4g < E < 4.5g, it has the topology of a torus with a

(a) (b) (c) (d)

FIG. 1. (a) Potential energy V in units of g on the ϕ1-ϕ2 configuration torus with its extrema (locations of static solutions G, D, and T) indicated. The contours also encode
changes in the topology of the Hill region (V ≤ E) when E crosses EG = 0, ED = 4g, and ET = 4.5g. (b)–(d) Uniformly rotating three-rotor solutions obtained from G, D,
and T. Here, i, j, and k denote any permutation of the numerals 1, 2 and 3. (b) and (d) are the simplest examples of choreographies discussed in Sec. VII. (a) Contours of V ,
(b) Ground state G. (c) Diagonal states D. (d) Triangle states T.
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(a)

(b)

FIG. 2. (a) Topology of the Hill region of configuration space [V(ϕ1,ϕ2) ≤ E]
showing transitions at E = 4g and 4.5g. (b) The Hill region for E = 4g is not
quite a manifold; its boundary consists of 3 noncontractible closed curves on the
torus meeting at the static saddle configurations D1,2,3.

pair of disks (around T1 and T2) excised. These changes in topol-
ogy are con�rmed by the Morse theory4 if we treat V as a real-valued
Morse function, since its critical points are nondegenerate. In fact, the
critical points of V are located at G (minimum with index 0), D1,2,3

(saddles with indices 1), and T1,2 (maxima with indices 2). Thus,
the topology of HE can change only at the critical values EG = 0,
ED = 4g, and ET = 4.5g [see Fig. 2(a)]. At E = 0, the Hill region
shrinks to a point, while at E = 4.5g, it is a twice-punctured torus.
Figure 2(b) illustrates the Hill region at E = 4g.

Low and high energy limits: In the CM frame, the 3 rotor
problem (11) has a 4-dimensional phase space but possesses only
one known conserved quantity (12). However, an extra conserved
quantity emerges as E → 0 or E → ∞.

(a) For E � g, the kinetic energy dominates and H ≈ (p21 −
p1p2 + p22)/mr2. Here, ϕ1,2 becomes cyclic coordinates and p1,2 are
both approximately conserved.

(b) For E � g, the system executes small oscillations around
the ground state G (ϕ1,2 ≡ 0). The quadratic approximation to the
Lagrangian (6) for relative motion is

Llow = (mr2/3)
[

ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2
]

− g
(

ϕ2
1 + ϕ2

2 + ϕ1ϕ2
)

. (17)

The linear equations of motion for ϕ1 and ϕ2 decouple,

mr2ϕ̈1 = −3gϕ1 and mr2ϕ̈2 = −3gϕ2, (18)

leading to the separately conserved normal mode energies
E1,2 =

(

mr2ϕ̇2
1,2 + 3gϕ2

1,2

)

/2. The equality of frequencies implies
that any pair of independent linear combinations of ϕ1 and ϕ2 is
also normal modes. Of particular signi�cance are the coordinates
ϕ± = (ϕ1 ± ϕ2)/2 that diagonalize the kinetic and potential energy
quadratic forms,

Llow = mr2ϕ̇2
+ − 3gϕ2

+ + mr2ϕ̇2
−/3 − gϕ2

−. (19)

Though (18) are simply the EOM for a pair of decoupled oscillators,
the Lagrangian and Poisson brackets {·, ·} inherited from the non-
linear theory are di�erent from the standard ones. With conjugate

momenta p1,2 = (mr2/3)(2ϕ̇1,2 + ϕ̇2,1), theHamiltonian correspond-
ing to (17) is

Hlow =
p21 − p1p2 + p22

mr2
+ g

(

ϕ2
1 + ϕ2

2 + ϕ1ϕ2
)

. (20)

Here, p1,2 di�ers from the standard momenta ps1,2 = mr2ϕ̇1,2, whose
PBs are now noncanonical, {ϕi, psj } = −1 + 3δij. Hlow,

Lz = mr2(ϕ1ϕ̇2 − ϕ2ϕ̇1) and the normal mode energies,

H1,2 =
(

2p1,2 − p2,1
)2
/2mr2 + 3gϕ2

1,2/2, (21)

are the obvious low energy constants of motion. Only three are
independent due to the relation

Hlow =
2

3

[

H1 + H2 +
√

H1H2 − (3g/4mr2)L2z

]

. (22)

IV. REDUCTION TO ONE DEGREE OF FREEDOM

Through a reduction to one degree of freedom, we �nd two
families of periodic orbits, the pendula and isosceles breathers (see
Fig. 3). They exist at all energies, go from librational to rotational
motion as E increases and turn out to have remarkable stability
properties.

A. Periodic pendulum solutions

We seek solutionswhere one pair of rotors forms a “bound state”
with constant angular separation. Consistency requires this separa-
tion to vanish so that the two behave like a single rotor and the
equations reduce to that of a two-rotor problem. There are three such
families of “pendulum” solutions depending on which pair is bound
[see Fig. 3(a)]. For de�niteness, we suppose that the �rst two particles
have a �xed separation ζ (θ1 = θ2 + ζ or ϕ1 = ζ ). Substituting this
in (7), we get a consistency condition and an evolution equation for
ϕ2,

2 sin ζ − sinϕ2 + sin(ζ + ϕ2) = 0 and

mr2ϕ̈2 = −g [2 sinϕ2 − sin ζ + sin(ζ + ϕ2)] . (23)

(a) (b)

FIG. 3. (a) θi and θj form a molecule that along with θk oscillates about their
common CM. (b) θi is at rest at the CM with θj and θk oscillating symmetrically
about the CM. Here, i, j, and k denote any permutation of the numerals 1, 2, and
3. (a) Pendula, (b) Isosceles “breathers.”
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The consistency condition is satis�ed only when the separation
ζ = 0, i.e., rotors 1 and 2 must coincide so that ϕ1 = 0 and ϕ̇1 = 0
(or p2 = 2p1) at all times (the other two families are de�ned by
ϕ2 = ϕ̇2 = 0 and ϕ1 + ϕ2 = ϕ̇1 + ϕ̇2 = 0). The evolution equation
for ϕ2 reduces to that for a pendulum,

mr2ϕ̈2 = −3g sinϕ2 with E =
mr2ϕ̇2

2

3
+ 2g(1 − cosϕ2) (24)

being the conserved energy. The periodic solutions are either libra-
tional (for 0 ≤ E < 4g) or rotational (for E > 4g) and may be
expressed in terms of the Jacobi elliptic function sn,

ϕ̄2(t) =
{

2 arcsin(k sn(ω0t, k)) for 0 ≤ E ≤ 4g,

2 arcsin(sn(ω0t/κ , κ)) for E ≥ 4g.
(25)

Here, ω0 =
√

3g/mr2 and the elliptic modulus k =
√

E/4g with
κ = 1/k. Thus 0 ≤ k < 1 for libration and 0 ≤ κ < 1 for rotation.
The corresponding periods are τlib = 4K(k)/ω0 and
τrot = 2κK(κ)/ω0, whereK is the complete elliptic integral of the �rst
kind. As E → 4g±, the period diverges and we have the separatrix
ϕ̄2(t) = 2 arcsin(tanh(ω0t)). The conditions ϕ1 = 0 and p2 = 2p1
de�ne a 2d “pendulum submanifold” of the 4d phase space foliated
by the above pendulum orbits. Upon including the CMmotion of ϕ0,
each of these periodic solutions may be promoted to a quasiperiodic
orbit of the three-rotor problem. There is a two-parameter family of
such periodic orbits, labeled for instance, by the relative energy E and
the CM angular momentum p0.

1. Stability of pendulum solutions via monodromy
matrix

Introducing the dimensionless variables

p̃1,2 = p1,2/
√

mr2g and t̃ = t
√

g/mr2, (26)

the equations for small perturbations

ϕ1 = δϕ1, ϕ2 = ϕ̄2 + δϕ2, and p1,2 = p̄1,2 + δp1,2 (27)

to the above pendulum solutions (25) to (11) are

d2

dt̃2

(

δϕ1
δϕ2

)

= −
(

2 + cos ϕ̄2 0
cos ϕ̄2 − 1 3 cos ϕ̄2

)(

δϕ1
δϕ2

)

. (28)

This is a pair of coupled Lamé-type equations since ϕ̄2 is an elliptic
function. The analogous equation in the 2d anharmonic oscillator

reduces to a single Lamé equation.5,6 Our case is a bit more involved
and we resort to a numerical approach here. It is convenient to
consider the �rst order formulation

d

dt̃







δϕ1
δϕ2
δp̃1
δp̃2






= −







0 0 −2 1
0 0 1 −2

1 + cos ϕ̄2 cos ϕ̄2 0 0
cos ϕ̄2 2 cos ϕ̄2 0 0













δϕ1
δϕ2
δp̃1
δp̃2






. (29)

Since m, g, and r have been scaled out, there is no loss of generality
in working in units wherem = g = r = 1, as we do in the rest of this
section. Though the coe�cient matrix A(t) is τ -periodic, the solu-
tions satisfy ψ(t + τ) = M(τ )ψ(t), where the eigenvalues λ of the
monodromy matrix M(τ ) are related to the Lyapunov exponents of
pendula,

µ = lim
t→∞

1

t
ln

|ψ(t)|
|ψ(0)|

via µ =
log |λ|
τ

. (30)

Since ours is aHamiltonian systemwith two degrees of freedom, pen-
dula are stable if the stability index σ = tr M − 2 hasmagnitude≤ 2
and are unstable otherwise.7

We now discuss the energy dependence of the stability index
for pendula. In the limit of zero energy, (25) reduces to the
ground state G and A(t) becomes time-independent and similar to
2π i × diag(1, 1,−1,−1). Consequently, M = exp(Aτ) is the 4 × 4
identity I. Thus, G is stable and small perturbations around it are
periodic with period τ = 2π/ω0, as found in Eq. (16). For E > 0,
we evaluate M numerically. We �nd it more e�cient to regard M as
the fundamental matrix solution to ψ̇ = A(t)ψ rather than as a path
ordered exponential or as a product of in�nitesimal time-evolution
matrices. Remarkably, as discussed below, we �nd that while the sys-
tem is stable for low energies 0 ≤ E ≤ E`1 ≈ 3.99 and high energies
E ≥ Er

1 ≈ 5.60, the neighborhood of E = 4 consists of a doubly in�-
nite sequence of intervals where the behavior alternates between sta-
ble and unstable (see Fig. 4). This is similar to the in�nite sequence of
transition energies for certain periodic orbits of a class of Hamiltoni-
ans studied in Ref. 8 and to the singly in�nite sequence of transitions
in the 2d anharmonic oscillator as the coupling α goes from zero to
in�nity,5

Hanharm =
1

2

(

p21 + p22
)

+
1

4

(

q41 + q42
)

+ α q21q
2
2. (31)

Stability of librational pendula (E < 4): In the �rst stable
phase 0 ≤ E ≤ E`1, φ = arg λ3 monotonically increases from 0 to 2π

(a) (b)

FIG. 4. Numerically obtained stability
index of pendulum solutions showing
approach to periodic oscillations between
stable and unstable phases as E → 4±.
Equations (33) and (36) are seen to fit the
data as E → 4±.
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with growing energy and λ4 = e−iφ goes round the unit circle once
clockwise. There is a stable to unstable phase transition at E`1. In the
unstable phase E`1 < E < E`2, σ > 2 corresponding to real positive λ4
increasing from 1 to 1.9 and then dropping to 1 (see Fig. 4). There is
then an unstable to stable transition at E`2. This pattern repeats so that
the librational regime 0 < E < 4 is divided into an in�nite succession
of progressively narrower stable and unstable phases. Remarkably, we
�nd that the stable phases asymptotically have equal widths on a log-
arithmic energy scale just as the unstable ones do. Indeed, if we let
E`2n+1 and E

`
2n denote the energies of the stable to unstable and unsta-

ble to stable transitions for n = 1, 2, 3, . . ., then the widths wlu
n and

wls
n+1 of the nth unstable and n + 1st stable phases are

wlu
n = E`2n − E`2n−1 ≈ (E`2 − E`1)× e−3(n−1) and

wls
n+1 = E`2n+1 − E`2n ≈ (E`3 − E`2)× e−3(n−1).

(32)

Here, E`2 − E`1 ≈ e−4.67(1 − e−1.11) and E`3 − E`2 ≈ e−5.78(1 − e−4.34)

are the lengths of the �rst unstable and second stable intervals, while
3 ≈ 1.11 + 4.34 = 5.45 is the combined period on a log scale. The
�rst stable phase has a width E`1 − 0 ≈ 4 − e−4.67 that does not scale
like the rest. Our numerically obtained stability index (see Fig. 4) is
well approximated by

σ ≈ 2.22 cos

[

2
√
3
log(4 − E)+ 0.24

]

+ 0.22 as E → 4−.

(33)
On the other hand, σ(E) ∼ 2 − O(E3) when E → 0.

Stability of rotational pendula (E > 4): For su�ciently high
energies E ≥ Er

1 , the rotational pendulum solutions are stable. In
fact, as E decreases from ∞ to Er

1 , λ4 = e−iφ goes counterclockwise
around the unit circle from 1 to−1. There is a stable to unstable tran-
sition at Er

1 . As E decreases from Er

1 to Er

2 , λ4 is real and negative,
decreasing from −1 to −1.5 and then returning to −1 (see Fig. 4).
This is followed by a stable phase for Er

2 ≥ E ≥ Er

3 , where λ4 com-
pletes its passage counterclockwise around the unit circle reaching 1
at Er

3 . The last phase of this �rst cycle consists of an unstable phase
between Er

3 and Er

4 where λ4 is real and positive, increasing from 1
to 1.4 and then going down to 1. The structure of this cycle is to be
contrasted with those in the librational regime where λ4 made com-
plete revolutions around the unit circle in each stable phase and was
always positive in unstable phases. This is re�ected in the stability
index overshooting both 2 and −2 for rotational solutions but only
exceeding 2 in the librational case. Furthermore, as in the librational
case, there is an in�nite sequence of alternating stable and unstable
phases accumulating from above at E = 4, given by

stable energies =
[

Er

1 ,∞
)

∞
⋃

n=1

[

Er

2n+1,E
r

2n

]

and

unstable energies =
∞
⋃

n=1

(

Er

2n,E
r

2n−1

)

.

(34)

As before, with the exception of the two stable and one unstable inter-
vals of highest energy, the widths of the stable and unstable intervals

are approximately constant on a log scale,

wru
n = Er

2n−1 − Er

2n ≈ (Er

3 − Er

4 )× e−3(n−2) and

wrs
n+1 = Er

2n − Er

2n+1 ≈ (Er

4 − Er

5 )× e−3(n−2)
(35)

for n = 2, 3, 4, . . .. Here, Er

3 − Er

4 ≈ e−4.7(1 − e−1.1) and Er

4 − Er

5

≈ e−5.8(1 − e−4.3) are the lengths of the second unstable and third
stable intervals, while 3 ≈ 1.1 + 4.3 = 5.4 is the combined period.
The three highest energy phases are anomalous: (a) E ≥ Er

1 ≈ 5.60 is
a stable phase of in�nite width, (b) the unstable phase Er

1 > E > Er

2

≈ 4.48 has width 1.2 > 1.1 on a log scale and manifests more acute
instability and (c) the stable phase Er

2 ≥ E ≥ Er

3 ≈ 4.01 has a less
than typical width 3.9 < 4.3 (see Fig. 4). As before, we obtain the �t

σ ≈ −2.11 cos

[

1
√
3
log(E − 4)− 0.12

]

as E → 4+, (36)

while σ(E) ∼ 2 − O(1/E) when E → ∞.
Energy dependence of eigenvectors: Since the pendulum solu-

tions form a one-parameter family of periodic orbits (0,ϕ2, p1, 2p1)
with continuously varying time periods, a perturbation tangent to
this family takes a pendulum trajectory to a neighboring pendu-
lum trajectory and is therefore neutrally stable. These perturbations
span the 1-eigenspace span (v1, v2) of the monodromymatrix, where
v1 = (0, 1, 0, 0) = ∂ϕ2 and v2 = (0, 0, 1, 2) = ∂p1 + 2∂p2 . The other
two eigenvectors ofM have a simple dependence on energy and thus
help in ordering the eigenvalues λ3 and λ4 away from transitions. In
the “unstable” energy intervals,

(E`1,E
`
2) ∪ (Er

2 ,E
r

1 ) ∪ (E`3,E`4) ∪ (Er

4 ,E
r

3 ) ∪ · · ·, (37)

M = diag(1, 1, λ3, 1/λ3) in the basis (v1, v2, v+, v−) where v± =
(2a(E),−a(E),±b(E), 0). In the same basis,M = diag(1, 1,Rφ) in the
complementary “stable” energy intervals (0,E`1) ∪ (Er

1 ,∞) ∪ · · · .
Here, Rφ is the 2 × 2 rotation matrix (cosφ, sinφ| − sinφ, cosφ).
At the transition energies, either a or b vanishes so that v+ and v−
become collinear and continuity of eigenvectors with E cannot be
used to unambiguously order the corresponding eigenvalues across
transitions. For instance, the eigenvalue that went counterclockwise
around the unit circle for E < E`1 could be chosen to continue as the
real eigenvalue of magnitude either greater or lesser than one when
E exceeds E`1.

Pitfall in trigonometric and quadratic approximation at low
energies: Interestingly, if for low energies (E � g), we use the simple
harmonic/trigonometric approximation to (25), ϕ̄2 ≈

√

E/g sinω0t

with ω0 =
√

3g/mr2 and E ≈ (mr2/3) ˙̄ϕ2
2 + gϕ̄2

2 and approximate
cos ϕ̄2 by 1 − ϕ̄2

2/2 in (29), we �nd that the eigenvalues of the mon-
odromy matrix are of the form e±iθ and e±iφ where θ and φ mono-
tonically increase from zero with energy upto moderate energies.
By contrast, as we saw above, two of the eigenvalues λ1,2 are always
equal to one, a fact which is not captured by this approximation.

B. Periodic isosceles “breather” solutions

We seek solutions where two of the separations remain equal
at all times: θi − θj = θj − θk where (i, j, k) is any permutation of
(1,2,3). Loosely, these are “breathers” where one rotor is always at
rest midway between the other two [see Fig. 3(b)]. For de�niteness,
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FIG. 5. Level contours of E on a phase portrait of the LG, LD, and R families of
isosceles periodic solutions.

suppose θ1 − θ2 = θ2 − θ3 or equivalently ϕ1 = ϕ2. Substituting this
in Eq. (7), we get a single evolution equation for ϕ1 = ϕ2 = ϕ,

mr2ϕ̈ = −g(sinϕ + sin 2ϕ), (38)

which may be interpreted as a simple pendulum with an additional
periodic force. As before, each periodic solution of this equationmay,
upon the inclusion of CM motion, be used to obtain quasiperiodic
solutions of the three-rotor problem.

At E = 0, the isosceles solutions reduce to the ground state G.
More generally, there are two families of librational breathers. With
E denoting energy in units of g, they are LG [oscillations around G
(ϕ = 0) for 0 ≤ E ≤ 9/2] and LD [oscillations around D (ϕ = π)

for 4 ≤ E ≤ 9/2] with monotonically growing time period which
diverges at the separatrix at E = 9/2 (see Fig. 5). For E > 9/2, we
have rotational modes R with time period diminishing with energy

[τ rot(E) ∼ 2π/
√
E as E → ∞]. At very high energies, one rotor is

at rest while the other two rotate rapidly in opposite directions.
Equation (38) may be reduced to quadrature by the use of the
conserved relative energy (9),

E = mr2ϕ̇2 + g(3 − 2 cosϕ − cos 2ϕ). (39)

For instance, in the case of the LG family,

ω0t√
3

=
1

√
2

∫ u

0

du
√

u(2 − u)(u2 − 3u + E/2)
, (40)

where u = 1 − cosϕ. The relative angle ϕ may be expressed in terms
of Jacobi elliptic functions. Substituting ε =

√
9 − 2E,

ϕ(t) = arccos

(

1 −
Eη2

2ε + (3 − ε)η2

)

where

η(t) = sn

(√
εω0t√
3

,

√

(ε − 1)(3 − ε)

8ε

)

. (41)

It turns out that the periods of both LG and LD families are given by
a common expression,

τ lib(E) =
4
√
3

ω0

√
ε
K

(

√

1

2
−

6 − E

4ε

)

for 0 ≤ E ≤ 4.5. (42)

As E → 4.5, τ lib diverges as 2
√
2/3 log(4.5 − E). The time period of

rotational solutions (for E ≥ 4.5) is

τ rot(E) =
4
√
3

ω0

(E2 − 4E)
−1/4

K

(√

1

2
+

6 − E

2
√
E2 − 4E

)

. (43)

Linear stability of breathers:The stability of isosceles solutions
as encoded in the stability index (σ = tr M − 2) is qualitatively dif-
ferent from that of the pendulum solutions. In particular, there is only
one unstable to stable transition occurring at E ≈ 8.97 (see Fig. 6).
Indeed, by computing the monodromies, we �nd that both families
LG and LD of librational solutions are unstable. The stability index
σLG grows monotonically from 2 to∞ as the energy increases from 0
to 4.5. In particular, even though arbitrarily low energy breathers are
small oscillations around the stable ground state G, they are them-
selves unstable to small perturbations. By contrast, we recall that
low energy pendulum solutions around G are stable. On the other
hand, the LD family of breathers is much more unstable, indeed, we
�nd that σLD increases from ≈ 5.3 × 104 to ∞ for 4 < E < 4.5. This
is perhaps not unexpected, given that they are oscillations around
the unstable static solution D. The rotational breathers are unsta-
ble for 4.5 < E < 8.97 with σR growing from −∞ to −2. These

FIG. 6. Absolute value of the stability index of the isosceles breathers as a
function of energy.
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divergences of σ indicate that isosceles solutions around E = 4.5 suf-
fer severe instabilities not seen in the pendulum solutions. Beyond
E = 8.97, the rotational breathers are stable with σR growing from
−2 to 2 as E → ∞. This stability of the breathers is also evident
from the Poincaré sections of Sec. VI. In fact, the isosceles solutions
go from intersecting the Poincaré surface “ϕ1 = 0” at hyperbolic to
elliptic �xed points as the energy is increased beyond E ≈ 8.97 (see
Figs. 9–11).

V. JACOBI-MAUPERTUIS METRIC AND CURVATURE

We now consider a geometric reformulation of the classical
three-rotor problem that suggests the emergence ofwidespread insta-
bilities for E > 4 from a largely stable phase at lower energies and
a return to regularity as E → ∞. This indicates the presence of an
“order-chaos-order” transition which will be con�rmed in Sec. VI.

It is well known that con�guration space trajectories of the
Lagrangian L = (1/2)mijq̇iq̇j − V(q)may be regarded as reparamet-
rized geodesics of the Jacobi-Maupertuis (JM) metric
gJMij = (E − V)mij which is conformal to the mass/kinetic metric
mij(q).9,10 The sectional curvatures of this metric have information
on the behavior of nearby trajectories with positive/negative curva-
ture associated with (linear) stability/instability. For the three-rotor
problem, the JM metric on the ϕ1-ϕ2 con�guration torus is given by

ds2JM =
2mr2

3
(E − V)(dϕ2

1 + dϕ1dϕ2 + dϕ2
2), (44)

where V = g[3 − cosϕ1 − cosϕ2 − cos(ϕ1 + ϕ2)]. Letting f denote
the conformal factor E − V and using the gradient and Laplacian
de�ned with respect to the �at kinetic metric, the corresponding
scalar curvature (2× the Gaussian curvature) is

R =
|∇f |2 − f1f

f 3
=

g2

mr2(E − V)3

[

6 +
(

2E

g
− 3

)(

3 −
V

g

)

+ cos(ϕ1 − ϕ2)+ cos(2ϕ1 + ϕ2)+ cos(ϕ1 + 2ϕ2)

]

. (45)

Behavior of JM curvature: For 0 ≤ E ≤ 4g, R is strictly posi-
tive in the classically allowed Hill region (V < E) and diverges on
the Hill boundary V = E where the conformal factor vanishes (see
Appendix A for a proof and the �rst two “bath-tub” plots of R in
Fig. 7). Thus the geodesic �ow should be stable for these energies.
Remarkably, we also �nd a near absence of chaos in all Poincaré sec-
tions for E . 3.8 g (see Figs. 9 and 12). We will see that Poincaré

surfaces show signi�cant chaotic regions for E > 4g. This is per-
haps related to the instabilities associated withR acquiring both signs
above this energy. Indeed, for 4g < E ≤ 9g/2, the above “bath-tub”
develops sinks around the saddles D(0,π), D(π , 0), and D(π ,π),
where R becomes negative, though it continues to diverge on the Hill
boundary which is a union of two closed curves encircling the local
maxima T(±2π/3,±2π/3). For E > 9g/2, the Hill region expands
to cover the whole torus. Here, though bounded, R takes either sign
while ensuring that the total curvature

∫

T2
R
√

det gij dϕ1 dϕ2 van-
ishes. For asymptotically high energies, the JM metric tends to the
�at metric Emij and R ∼ 1/E2 → 0 everywhere indicating a return
to regularity.

JM stability of static solutions: The static solutions G, D, and T
lie on the boundary of the Hill regions corresponding to the energies
EG, D, T = 0, 4g, and 4.5g. We de�ne the curvatures at G, D, and T by
letting E approach the appropriate limiting values in the following
formulas:

R(0,0) =
6g

mr2E2
, R(0,π),(π ,0),(π ,π) =

−2g/mr2

(E − 4g)2
,

and R(± 2π
3 ,± 2π

3

) =
−12g/mr2

(2E − 9g)2
. (46)

Thus, RG = ∞, while RD = RT = −∞ indicating that G is stable,
while D and T are unstable. These results on geodesic stability are
similar to those obtained from (16). Note that we do not de�ne the
curvatures at G, D, and T by approaching these points from within
the Hill regions as these limits are not de�ned for G and T and gives
+∞ for D. On the other hand, it is physically forbidden to approach
the Hill boundary from the outside. Thus, we approach G, D, and T
by varying the energy, while holding the location on the torus �xed.

VI. POINCARÉ SECTIONS: PERIODIC ORBITS & CHAOS

Here, we use Poincaré sections to study the transitions from reg-
ularity to chaos. By the Poincaré surface “ϕ1 = 0” at energy E (in
units of g), we mean the 2d surface ϕ1 = 0 contained in the corre-
sponding 3d compact energy level set. It may be parametrized by ϕ2
and p2 with the two possible values of p1(ϕ2, p2;E) determined by
energy. We record the points on the Poincaré surface where a tra-
jectory that begins on it returns to it under the return map, thus
obtaining a Poincaré section for the given initial condition (IC). A
section is called regular if it consists of a �nite set of points or is
supported on a �nite union of curves. Chaotic sections explore 2d

(a) (b) (c) (d) (e)

FIG. 7. Scalar curvature R of the JM metric on the Hill region of the ϕ1-ϕ2 torus. In the regions shaded gray, |R| is very large. We see that R > 0 for E ≤ 4g but has both
signs for E > 4g indicating instabilities.
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regions. We de�ne the chaotic region of a Poincaré surface at energy
E to be the union of all chaotic sections at that energy.

A. Transition to chaos and global chaos

1. Numerical schemes and robustness of Poincaré
sections

We implement the following numerical schemes: ODE45:
explicit Runge-Kutta (RK) with di�erence order 5; RK4 and RK10:
implicit RK with di�erence orders 4 and 10 and SPRK2: symplectic
partitioned RK with di�erence order 2. Due to the accumulation of
errors, di�erent schemes (for the same ICs) sometimes produce tra-
jectories that cease to agree after some time, thus re�ecting the sensi-
tivity to ICs. Despite this, we �nd that the corresponding Poincaré
sections from all schemes are roughly the same when evolved for
su�ciently long times (see Fig. 8). Moreover, we �nd a strong cor-
relation between the degree to which di�erent schemes produce the

same trajectory and the degree of chaos as manifested in Poincaré
sections. As the agreement in trajectories between di�erent schemes
improves, the Poincaré sections go from chaotic to regular. Further-
more, for all ICs studied, the Poincaré sections on the surfacesϕ1 = 0,
ϕ2 = 0, p1 = 0 and p2 = 0 are qualitatively similar with regard to the
degree of stochasticity. Thus, we restrict to the “ϕ1 = 0” Poincaré sur-
face. The results presented below were obtained using the fastest of
the schemes, namely, ODE45.

2. Symmetry breaking accompanying the onset of
chaos

We �nd that for E . 4, all Poincaré sections (on the surface
“ϕ1 = 0”) are nearly regular and display left-right (ϕ2 → −ϕ2) and
up-down (p2 → −p2) symmetries (see Fig. 9). Though there are
indications of chaos even at these energies along the periphery of
the four stable lobes (e.g., near the unstable isosceles �xed points

(a)

(b) (c)

(d) (e)

FIG. 8. (a) The trajectories (e.g., |ϕ1|)
obtained via different numerical schemes
cease to agree after t ∼ 102 for the IC
ϕ1 = 6.23, ϕ2 = 3.00, p1 = −0.90 and
p2 = 1.87 with E = 9.98. (b)–(e) How-
ever, Poincaré sections (with ≈ 5 × 104

points) obtained via different schemes
are seen to explore qualitatively similar
regions when evolved till t = 105 (though
not for shorter times ∼ 103).
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(a) (b)

FIG. 9. Several Poincaré sections in
the energetically allowed “Hill” region on
the “ϕ1 = 0” surface for E = 2 and 3.
All sections (indicated by distinct colors
online) are largely regular and possess
up-down and left-right symmetries. The
Hill boundary is the librational pendulum
solution ϕ1 = 0. P, I and C indicate pen-
dulum, isosceles, and choreography peri-
odic solutions. More careful examination
of the vicinity of the Is shows small
chaotic sections.

I), chaotic sections occupy a negligible portion of the Hill region.
Chaotic sections make their �rst signi�cant appearance at E ≈ 4
along the �gure-8 shaped separatrix and along the outer periphery of
the regular “lobes” that �ank it (see Fig. 10). This transition to chaos
is accompanied by a spontaneous breaking of both the above symme-
tries. Interestingly, the ϕ2 → −ϕ2 symmetry (though not p2 → −p2)
seems to be restored when E & 4.4. The lack of p2 → −p2 symme-
try at high energies is not unexpected: rotors at high energies either
rotate clockwise or counterclockwise.

At moderate energies E & 4, we observe that all chaotic sec-
tions (irrespective of the ICs) occupy essentially the same region,
as typi�ed by the examples in Fig. 11. At somewhat higher energies
(e.g., E = 14), we �nd chaotic sections that �ll up both the entire

chaotic region and portions thereof when trajectories are evolved up
to t = 105. At yet higher energies [e.g., E = 18, Fig. 11(e)], there is
no single chaotic section that occupies the entire chaotic region as
the p2 → −p2 symmetry is broken.

3. Fraction of chaos and global chaos

For a range of energies beyond 4, we �nd that the area of
the chaotic region increases with E (see Figs. 10 and 11). At
E ≈ 5.5, the chaotic region coincides with the energetically allowed
portion of the Poincaré surface [see Fig. 11(c)]. Beyond this energy,
chaotic sections are supported on increasingly narrow bands [see
Fig. 11(e)]. This progression toward regularity is expected since the

(a) (b) (c)

FIG. 10. Several Poincaré sections on the “ϕ1 = 0” surface in the vicinity of E = 4 where the chaotic region (shaded, yellow online) makes its first significant appearance.
Distinct sections have different colors online. On each surface, one sees breaking of both up-down and left-right symmetries. Apart from a couple of exceptions on the E = 4
surface, the set of ICs is left-right and up-down symmetric. The boundary of the Hill region on the “ϕ1 = 0” Poincaré surface is the ϕ1 = 0 pendulum solution. It becomes
disconnected for E > 4 owing to the bifurcation of the librational pendula into clockwise and counterclockwise rotational pendula.
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(a) (b)

(d) (e)

(c)

FIG. 11. The up-down symmetry remains broken, though the left-right symmetry is restored on Poincaré plots at higher energies. The periodic orbits corresponding to points
marked C are choreographies for E . 5.33.

system acquires an additional conserved quantity in the limit E →
∞. To quantify these observations, we �nd the “fraction of chaos” f
by exploiting the feature that the density of points in chaotic sections
is roughly uniform for all energies on the “ϕ1 = 0” surface (this is not
true for most other Poincaré surfaces). Thus, f is estimated by calcu-
lating the fraction of the area of the Hill region covered by chaotic
sections (see Appendix B and Fig. 12).

The near absence of chaos is re�ected in f approximately van-
ishing for E . 3.8. There is a rather sharp transition to chaos around
E ≈ 4 (f ≈ 4%, 20%, and 40% at E = 3.85, 4, and 4.1; see the lower
inset of Fig. 12). This is a bit unexpected from the viewpoint of the
KAM theory and might encode a novel mechanism by which KAM
tori break down in this system. Thereafter, f rapidly rises and reaches
themaximal value f ≈ 1 at E ≈ 5.33. As illustrated in the upper inset
of Fig. 12, this “fully chaotic” phase persists up to E ≈ 5.6. Interest-
ingly, we �nd that for this range of energies, f ≈ 1 on a variety of
Poincaré surfaces examined (see Fig. 13), so that thismay be regarded
as a phase of “global chaos.” Furthermore, the density of points is

uniform on all Poincaré surfaces in this phase of global chaos indicat-
ing some sort of ergodicity. Additionally, the pendula and breathers
are unstable in this phase (see Sec. IV) and it would be interesting to
knowwhether this is the case with all periodic solutions. Remarkably,
the cessation of the band of global chaos happens to coincide with the
energy Er

1 ≈ 5.6 above which pendulum solutions are always stable
(see Fig. 4). Beyond E ≈ 5.6, f decreases gradually to zero as E → ∞.
Interestingly, the sharp transition to chaos at E ≈ 4 is also re�ected
in the JM curvature of Sec. V going from being positive for E < 4
to admitting both signs for E > 4. It is noteworthy that the stable to
unstable transition energies in pendula also accumulate from both
sides at E = 4 (see Fig. 4).

B. Periodic solutions on the Poincaré surface “ϕ1 =0”

Here, we identify the points on the Poincaré surface correspond-
ing to the periodic pendulum and isosceles solutions. Remarkably,
careful examination of the Poincaré sections also leads us to a new
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FIG. 12. Energy dependence of the area of the chaotic region on the “ϕ1 = 0”
Poincaré surface as a fraction of the area of the Hill region.

family of periodic “choreography” solutions which are de�ned and
discussed further in Sec. VII.

Pendula: The ϕ1 = 0 pendulum solutions are everywhere tan-
gent to the Poincaré surface “ϕ1 = 0” and interestingly constitute
the “Hill” energy boundary (see Figs. 9–11). [Nb. This connection
between pendulum solutions and the Hill boundary is special to the
surfaces “ϕ1 = 0” and “ϕ2 = 0.”] By contrast, the other two classes
of pendulum trajectories (ϕ2 = 0 and ϕ1 + ϕ2 = 0) are transver-
sal to this surface, meeting it at the pendulum points P(0,±

√
E/3)

halfway to the boundary from the origin. These are period-2 and
period-1 �xed points for librational and rotational solutions, respec-
tively. Examination of the Poincaré sections indicates that pendulum
solutions must be stable for E . 3.9 and E & 5.6 leaving open the
question of their stability at intermediate energies. As discussed in
Sec. IV A, the pendulua go from being stable to unstable in�nitely
often as E → 4±. Additionally, by considering initial conditions near
the pendulum points, we �nd that the pendulum solutions lie within
the large chaotic section only between E ≈ 4.6 and the cessation of
global chaos at E ≈ 5.6.

Breathers: Unlike pendula, all isosceles breathers intersect the
“ϕ1 = 0” surface transversally at points on the vertical axis. Indeed,
the breathers de�ned by ϕ1 = ϕ2 and ϕ2 + 2ϕ1 = 0 intersect the sur-

face at the isosceles points I(0,±
√
E) which form a pair of period-2

�xed points forE < 4.5 and becomeperiod-1 in the rotational regime
(see Figs. 9–11). The breathers de�ned by ϕ1 + 2ϕ2 = 0 intersect the
surface at the period-1 �xed point at the origin. In agreement with
the conclusions of Sec. IV B, the Poincaré sections show that all three
isosceles points are unstable at low energies, lie in the large chaotic
section for 3.9 . E . 8.97 and are stable at higher energies.

A new family of periodic solutions: The period-2 �xed points
C at the centers of the right and left lobes on the Poincaré surfaces of
Figs. 9 and 10 correspond to a new family of periodic solutions. Evi-
dently, they go from being stable to unstable as the energy crosses
E ≈ 5.33. We argue in Sec. VII that they are choreographies for
E . 5.33.

VII. CHOREOGRAPHIES

Choreographies are an interesting class of periodic solutions of
the n-body problem where all particles follow the same closed curve
equally separated in time.11 The Lagrange equilateral solution where
three equal masses move on a common circle and the stable zero-
angularmomentum�gure-8 solution discovered byMoore12 (see also
Ref. 13) are perhaps the simplest examples of choreographies in the
equal mass gravitational 3 body problem. Here, we consider chore-
ographies in the 3 rotor problem where the angles θi(t) of the three
rotorsmay be expressed in terms of a single 3τ -periodic function, say
θ1(t),

θ2(t) = θ1(t + τ) and θ3(t) = θ1(t + 2τ). (47)

This implies that the CM and relative coordinates ϕ0, ϕ1(t) and
ϕ2(t) = ϕ1(t + τ)must be 3τ periodic [see Fig. 14(a)] and satisfy the
delay algebraic equation

ϕ1(t)+ ϕ1(t + τ)+ ϕ1(t + 2τ)

= θ1 − θ2 + θ2 − θ3 + θ3 − θ1 ≡ 0 mod 2π . (48)

The EOM (7) become 3mr2ϕ̈0 = 0 and the pair of delay di�erential
equations

mr2ϕ̈1(t) = −g
[

2 sinϕ1(t)− sinϕ1(t + τ)

+ sin(ϕ1(t)+ ϕ1(t + τ))
]

and
(49)

mr2ϕ̈2(t) = mr2ϕ̈1(t + τ) = −g
[

2 sinϕ1(t + τ)

− sinϕ1(t)+ sin(ϕ1(t)+ ϕ1(t + τ))
]

.

In fact, the second equation in (49) follows from the �rst by use of
the delay algebraic equation (48). Moreover, using the de�nition of
ϕ0, the constant angular velocity of the CM

ϕ̇0 =
1

τ
[ϕ0(t + τ)− ϕ0(t)]

= −
1

3τ
[ϕ1(t)+ ϕ1(t + τ)+ ϕ1(t + 2τ)] . (50)

It is veri�ed that any 3τ periodic triple ϕ0,1,2 satisfying (48), (49),
and (50) leads to a choreography of the 3-rotor system. Thus, to
discover a choreography, we only need to �nd a 3τ -periodic func-
tion ϕ1 satisfying (48) and the �rst of the delay di�erential Eq. (49)
with the period 3τ self-consistently determined. Now, it is easy to
show that choreographies cannot exist at asymptotically high (rela-
tive) energies. In fact, at high energies, we may ignore the interaction
terms (∝ g) in (49) to get ϕ1(t) ≈ ωt + ϕ1(0) for |ω| � 1. However,
this is inconsistent with (48) which requires 3ωt ≡ 0 mod 2π at all
times. On the other hand, as discussed below, we do �nd examples of
choreographies at low and moderate relative energies.

A. Examples of choreographies

Uniformly rotating (at angular speed �) versions of the static
solutions G and T (but not D) (see Fig. 1) provide the simplest exam-
ples of choreographies with θ1(t) = �t and τ = 2π/� for G and
τ = 2π/3� for T where � is arbitrary. In the case of G, though all
particles coincide, they may also be regarded as separated by τ . The
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FIG. 13. Various Poincaré surfaces
showing global chaos at E = 5.516.

energies (9) of these two families of choreographies come from the
uniform CMmotion and a constant relative energy:

E(G)
tot =

3

2
mr2�2 and E(T)

tot =
3

2
mr2�2 +

9g

2
. (51)

These two families of choreographies have the scaling property: if
θ(t) with period 3τ describes a choreography in the sense of (47),
then θ(at) with period |3τ/a| also describes a choreography for any
real a. It turns out that the above two are the only such “scaling” fam-
ilies of choreographies. To see this, we note that both θ(t) and θ(at)
must satisfy the delay di�erential equation

θ̈ (t + τ)− θ̈ (t) =
−g

mr2

[

2 sin(θ(t + τ)− θ(t))

− sin(θ(t)− θ(t − τ))+ sin(θ(t + τ)− θ(t − τ))

]

, (52)

implying that either a2 = 1 or θ̈ (t + τ) = θ̈ (t). However, the latter
implies that θ̇ (t + τ)− θ̇ (t) = −ϕ̇1(t) is a constant which must van-
ish for the delay algebraic equation (48) to be satis�ed. Consequently,
ϕ̇2 must also vanish implying that the choreography is a uniformly
rotating version of G or T.

B. Nonrotating choreographies

Remarkably, we have found another 1-parameter family of
choreographies [e.g., Fig. 14(a)] that start out as small oscillations
around G. At low energies, they have a period 3τ = 2π/ω0 and
reduce to

ϕ1(t) ≈
√

2E

3g
sin(ω0(t − t0)) for E � g, (53)
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(a)

(b)

FIG. 14. (a) A nonrotating choreography at E = 4g showing that the time lag
between ϕ1 and ϕ2 is one-third the period. (b) The time period 3τ of nonrotating
choreographies as a function of energy indicating divergence at E ≈ 5.33g.

where ω0 =
√

3g/mr2. It is easily veri�ed that (48) is identically sat-
is�ed while (49) is satis�ed for E � g. Moreover, using (50), we �nd
that the angular speed ϕ̇0 of the CM must vanish for (53) so that the
energy is purely from the relative motion. The phase trajectory cor-
responding to (53) intersects the ϕ1 = 0 Poincaré surface at the pair
of period-2 �xed points C(±

√

E/2g, 0)which lie at the centers of the
left and right stable “lobes” pictured in Fig. 9 at E = 2g and 3g.

More generally, we numerically �nd that when the ICs are cho-
sen at the stable �xed points at the centers of these lobes, the trajec-
tories are a one-parameter family of choreographies ϕ1(t;E) varying
continuously with E up toE ≈ 5.33. It can be argued that these chore-
ographies are nonrotating (involve no CM motion). Indeed, from
(50) and (48), we must have 3τ ϕ̇0 ≡ 0 mod 2π , implying that ϕ̇0
cannot jump discontinuously. Since, 3τ ϕ̇0 = 0 as E → 0 (53), it must
remain zerowhenE is continuously increased from 0 to 5.33. Though
we do not study their stability here by the monodromy approach, the
Poincaré sections (see Figs. 9 and 10) indicate that they are stable. As
shown in Fig. 14(b), the time period 3τ grows monotonically with E
and appears to diverge at E ≈ 5.33, which coincides with the begin-
ning of the band of “global chaos” (see Sec. VI). For E & 5.33, the
period-2 choreography points C on the “ϕ1 = 0” Poincaré surface
become unstable and lie in a chaotic region (see Fig. 11), prevent-
ing us from �nding such a choreography, if it exists, using the above
numerical technique.As argued before, choreographies are forbidden
at very high energies. For instance, on the “ϕ1 = 0” Poincaré surface
at E = 18 [see Fig. 11(e)], the analogs of the C points correspond

to unstable periodic orbits which are not choreographies. In fact,
we conjecture that this family of periodic solutions ceases to be a
choreography beyond E ≈ 5.33.

VIII. DISCUSSION

In this paper, we have studied the classical three-rotor prob-
lem and found novel signatures of its transition to chaos as well as a
phase of global chaos.We also discovered “pendulum” and “isosceles-
breather” periodic solutions as well as choreographies and discussed
their stability properties. Section I contains a concise summary of our
results. Here, we discuss some open questions arising from our work.

Though Poincaré sections indicate that the center of mass
dynamics of the three-rotor problem cannot possess any conserved
quantity other than energy, it would be reassuring to demonstrate
this. Analogously, the extension to our system, of Ziglin’s and
Melnikov’s arguments for nonintegrability is also of interest.14,15

While we found the trace of the monodromy for periodic “pen-
dulum” solutions numerically, it would be interesting to prove the
accumulation of stable to unstable phase transitions at E = 4g as
in Ref. 8 and establish its asymptotic periodicity on a log scale, for
instance by �nding an analytical expression for the stability index
as Yoshida5 does in the 2d anharmonic oscillator of Eq. (31). It
would also be interesting to explore a possible connection between
this accumulation of transitions and the accumulation of homoclinic
points at a hyperbolic �xed point in a chaotic system. The nature
of bifurcations6 and local scaling properties16 at these transitions are
also of interest. In another direction, one would like to understand
if there is any connection between the accumulation of transition
energies and the change in topology of the Hill region (V ≤ E) of
the con�guration torus as E crosses the value 4g at the three critical
points (saddles D) of the Morse function V (see Sec. III). One would
also like to analyze the onset of widespread chaos in this system using
methods such as those of Chirikov17 and Greene.18

We have argued that the 3 rotor system is integrable at E = 0
and ∞ (g = ∞, 0), where additional conserved quantities emerge.
One wonders whether it is “integrable” at any other energy. In other
words, is there any nontrivial energy hypersurface in phase space on
which all trajectories are periodic or quasiperiodic so that the corre-
sponding Poincaré sections are regular? Our estimate of the fraction
of chaos on the “ϕ1 = 0” Poincaré surface strongly suggests that any
integrable energy EI is either isolated or EI . 3.8g. However, even
for low energies, we expect chaotic sections in the neighborhood of
the isosceles points I (see Fig. 9). In fact, we conjecture that the 3
rotor problem has no nontrivial integrable energies unlike the 2d
anharmonic oscillator.5

As discussed in Sec. VI, Poincaré sections suggest a band of
global chaos for 5.33g . E . 5.6g. This is of course consistent with
the instability of pendulum and breather solutions in this energy
interval. Consequently, it would be interesting to investigate the
possible ergodic behavior of three rotors for such energies.

Finally, a deeper understanding of the physical mechanisms
underlying the onset of chaos in this system would be desirable,
along with an examination of quantummanifestations of the classical
chaos, given the connection tomodeling chains of coupled Josephson
junctions.
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APPENDIX A: POSITIVITY OF JM CURVATURE FOR
0 ≤ E ≤ 4g

Here, we prove that for 0 ≤ E ≤ 4g, the JM curvature R of
Sec. V is strictly positive in the Hill region (E > V) of the ϕ1-ϕ2
con�guration torus. It is negative outside and approaches ±∞ on
the Hill boundary E = V . It is convenient to work in coordinates
ϕ± = (ϕ1 ± ϕ2)/2 and de�ne P = cosϕ+ and Q = cosϕ−. In these
variables,

R =
g2NE(P,Q)

mr2(E − V)3
where NE = 5 + 2Q2 − 6PQ + 8P3Q

+
[

2E

g
− 3

]

(2P2 + 2PQ − 1). (A1)

Since E − V > 0 in the Hill region, it su�ces to show that NE ≥ 0
on the whole torus and strictly positive in the Hill region. It turns
out that (a)NE ≥ 0 for E = 0 and 4g and (b) for E = 0,NE vanishes
only at the ground state G while for E = 4g, it vanishes only at the
saddles D, with both G and the Ds lying on the Hill boundary. Since
G is distinct from the Ds, linearity of NE then implies that NE > 0
on the entire torus for 0 < E < 4g. It only remains to prove (a) and
(b).

To proceed, we regardNE as a function of the [−1, 1] × [−1, 1]
PQ-square. (i) When E = 0, N0 has only one local extremum in
the interior of the PQ-square at (0, 0) where N0(0, 0) = 8. On the
boundaries of the PQ-square,

N0(±1,Q) = 2(1 ∓ Q)2 ≥ 0 and

N0(P,±1) = 2(P ∓ 1)2(5 ± 4P) ≥ 0 (A2)

with N0 vanishing only at (1, 1) and (−1,−1) both of which corre-
spond to G. Thus,N0 ≥ 0 on the whole torus and vanishes only at G
which lies on the Hill boundary. (ii) When E = 4g, the local extrema

in the interior of the PQ-square are at (0, 0) and (±1,∓5/3)/
√
3,

where N4g takes the values 0 and 40/27. On the boundaries of the
PQ-square,

N4g(±1,Q) = 2(1 ± Q)(5 ± Q) ≥ 0 and

N4g(P,±1) = 2(1 ± P)(1 ± P + 4P2) ≥ 0 (A3)

with N4g vanishing only at (1,−1) and (−1, 1). Hence, for E = 4g,
N4g ≥ 0 on the whole torus and vanishes only at the three saddle
points (Ds) all of which lie on the Hill boundary.

APPENDIX B: MEASURING AREA OF CHAOTIC
REGION ON “ϕ1= 0” POINCARÉ SURFACE

To estimate the fraction of the area of the Hill region (at a given
E) occupied by the chaotic sections on the “ϕ1 = 0” Poincaré sur-
face, we need to assign an area to the corresponding scatterplot (e.g.,
see Fig. 11). We use the DelaunayMesh routine in Mathematica to
triangulate the scatterplot so that every point in the chaotic region
lies at the vertex of one or more triangles (see Fig. 15). For such a
triangulation and a given d > 0, the d-area of the chaotic region is
de�ned as the sum of the areas of those triangles with maximal edge
length ≤ d (accepted triangles in Fig. 15). Figure 16 shows that the

FIG. 15. Accepted (chaotic, shaded lighter/blue) and rejected (regular, shaded
darker/gray) triangles on the Delaunay Mesh for a sample chaotic region on the
“ϕ1 = 0” Poincaré surface at E = 7 for maximal edge length d = 1. The light
colored region on the periphery inside the Hill region consists of regular sections.

FIG. 16. Estimates of the fraction of chaos (area of accepted region/area of the
Hill region) for various choices of d. An optimal estimate for f is obtained by picking
d where f saturates. The three data sets displayed have n = 1, 3, 5 chaotic ICs,
each evolved for the same duration t = 105.
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area initially grows rapidly with d and then saturates for a range of
d. Our best estimate for the area of the chaotic region is obtained
by picking d in this range. Increasing d beyond this admits triangles
that are outside the chaotic region. Increasing the number of points
in the scatterplot (either by evolving each IC for a longer time or by
includingmore chaotic ICs, which is computationally more e�cient)
reduces errors and decreases the threshold value of d as illustrated in
Fig. 16.
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