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The Maupertuis principle allows us to regard classical trajectories as reparametrized
geodesics of the Jacobi-Maupertuis (JM) metric on configuration space. We study this
geodesic reformulation of the planar three-body problem with both Newtonian and
attractive inverse-square potentials. The associated JM metrics possess translation
and rotation isometries in addition to scaling isometries for the inverse-square poten-
tial with zero energy E. The geodesic flow on the full configuration space C3 (with
collision points excluded) leads to corresponding flows on its Riemannian quotients:
the center of mass configuration space C2 and shape space R3 (as well as S3 and
the shape sphere S2 for the inverse-square potential when E = 0). The corresponding
Riemannian submersions are described explicitly in “Hopf” coordinates which are
particularly adapted to the isometries. For equal masses subject to inverse-square
potentials, Montgomery shows that the zero-energy “pair of pants” JM metric on the
shape sphere is geodesically complete and has negative gaussian curvature except
at Lagrange points. We extend this to a proof of boundedness and strict negativity
of scalar curvatures everywhere on C2, R3, and S3 with collision points removed.
Sectional curvatures are also found to be largely negative, indicating widespread
geodesic instabilities. We obtain asymptotic metrics near collisions, show that scalar
curvatures have finite limits, and observe that the geodesic reformulation “regular-
izes” pairwise and triple collisions on C2 and its quotients for arbitrary masses and
allowed energies. For the Newtonian potential with equal masses and zero energy,
we find that the scalar curvature on C2 is strictly negative though it could have
either sign on R3. However, unlike for the inverse-square potential, geodesics can
encounter curvature singularities at collisions in finite geodesic time. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4964340]

I. INTRODUCTION

The classical three-body problem and associated questions of stability have stimulated much
work in mechanics and nonlinear and chaotic dynamics.1–5 Quantum and fluid mechanical vari-
ants with potentials other than Newtonian are also of interest, e.g., the dynamics of two-electron
atoms and the water molecule,6 the N-vortex problem with logarithmic potentials,7 the prob-
lem of three identical bosons with inverse-square potentials (Efimov effect in cold atoms8,9), and
the Calogero-Moser system also with inverse-square potentials.10 We investigate a geometrical
approach to the planar three-body problem with Newtonian and attractive inverse-square potentials.
The inverse-square potential has some simplifying features over the Newtonian one due in part
to the nature of its scaling symmetry H(λr, λ−1p) = λ−2H(r,p). As a consequence, the sign of
energy E controls asymptotic behaviour: bodies fly apart or suffer a triple collision accordingly
as E is positive/negative, leaving open the special case E = 0.11 This follows from the Lagrange-
Jacobi identity Ï = 4E for the evolution of the moment of inertia I =


mir2

i . By contrast, for the
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Newtonian potential, H(λ−2/3r, λ1/3p) = λ2/3H(r,p) leads to Ï = 4E − 2V , which is not sufficient to
determine the long time behavior of I when E < 0.

Our approach is based on a geometric reformulation of Newtonian trajectories. It is well known
that trajectories of a free particle moving on a Riemannian manifold are geodesics of a mass/kinetic
metric mij defined by the kinetic energy 1

2 mij(x)ẋi ẋ j. Indeed, geodesic flow on a compact Riemann
surface of constant negative curvature is a prototypical model for chaos.6 In the presence of a
potential V , trajectories are reparametrized geodesics of the conformally related Jacobi-Maupertuis
(JM) metric gij = (E − V (x))mij (see Refs. 12 and 13 and Sec. II). The linear stability of geodesics to
perturbations is then controlled by sectional curvatures of the JM metric.

Several authors have tried to relate the geometry of the JM metric to chaos. For systems
with many degrees of freedom, Pettini et al.14–16 obtain an approximate expression for the largest
Lyapunov exponent in terms of curvatures. In Ref. 17 the geometric framework is applied to inves-
tigate chaos in the Hénon-Heiles system and a suitable average sectional curvature proposed as an
indicator of chaos for systems with few degrees of freedom (see also Ref. 18). While negativity
of curvature need not imply chaos, as the Kepler problem shows for E > 0, these works suggest
that chaos could arise both from negativity of curvature and from fluctuations in curvature through
parametric instabilities.

For the planar gravitational three-body problem (i.e., with pairwise Newtonian potentials), the
JM metric on the full configuration space R6 � C3 has isometries corresponding to translation and
rotation invariance groups C and U(1) (Sec. III A). This allows one to study the reduced dynamics
on the quotients: configuration space C2 � C3/C and shape space R3 � C2/U(1).19 Here, collision
configurations are excluded from C3 and its quotients. When the Newtonian potential is replaced
with the inverse-square potential, the zero-energy JM metric acquires a scaling isometry leading to
additional quotients: S3 � C2/scaling and the shape sphere S2 � R3/scaling (see Fig. 1(c)). Since
the three collision points have been removed, the (non-compact) shape sphere S2 has the topology
of a pair of pants and fundamental group given by the free group on two generators. As part of a
series of works on the planar three-body problem, Montgomery20 shows that for three equal masses
with inverse-square potentials (sometimes referred to as a “strong” force), the curvature of the JM
metric on S2 is negative except at the two Lagrange points, where it vanishes. As a corollary, he
shows the uniqueness of “figure 8” solution and establishes that collision solutions are dense within
bound ones. In Refs. 21 and 22, he uses the geometry of the shape sphere to show that zero angular
momentum negative energy solutions (other than the Lagrange homotheties) of the gravitational
three-body problem have at least one syzygy (collinearity).

In this paper, we begin by extending some of the Montgomery’s results on the geometry of the
shape sphere to that of the configuration space C2 (without any restriction on angular momentum)
and its quotients. Metrics on the quotients are obtained explicitly via Riemannian submersions

FIG. 1. (a) Position vectors x1,2,3 of masses relative to origin and Jacobi vectors J1,2,3. (b) The shape sphere is topologically a
2-sphere with the three collision points C1,2,3 removed, endowed with the quotient JM metric of negative gaussian curvature.
Coordinates and physical locations on the shape sphere are illustrated. 2η is the polar angle (0 ≤η ≤ π/2). 2ξ2 is the
azimuthal angle (0 ≤ ξ2 ≤ π). The “great circle” composed of the two longitudes ξ2= 0 and ξ2= π/2 consists of collinear
configurations (syzygies) which include C1,2,3 and the Euler points E1,2,3. Lagrange points L4,5 lie on the equator η = π/4.
The shape space R3 is a cone on the shape sphere. The origin r = 0 of shape space is the triple collision point. (c) Flowchart
of submersions.
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(Secs. III B and IV A) which simplify in “Hopf” coordinates, as the Killing vector fields (KVFs)
point along coordinate vector fields. These coordinates also facilitate our explicit computation of
metrics and curvatures near binary and triple collisions. We interpret Lagrange and Euler homoth-
eties (“central configurations”23) as radial geodesics at global and local minima of the conformal
factor in the JM metric for the inverse-square potential (Sec. III C) and thereby deduce geodesic
completeness of the configuration manifold C2 and its quotients R3 and S3 for arbitrary masses and
allowed energies. The estimates showing completeness on C2 are similar to those showing that the
classical action (integral of Lagrangian) diverges for collisional trajectories. In a private commu-
nication, R. Montgomery points out that this was known to Poincare and has been rediscovered
several times (see for example Refs. 24–26). Completeness establishes that the geodesic reformula-
tion “regularizes” pairwise and triple collisions by reparametrizing time so that any collision occurs
at t = ∞. In contrast with other regularizations,27,28 this does not involve an extrapolation of the dy-
namics past a collision nor a change in dependent variables. Unlike for the inverse-square potential,
we show that geodesics for the Newtonian potential can reach curvature singularities (binary/triple
collisions) in finite geodesic time (Sec. IV B). This may come as a surprise, since the Newtonian
potential is less singular than the inverse-square potential and masses collide sooner under New-
tonian evolution in the inverse-square potential. However, due to the reparametrization of time in
going from trajectories to geodesics, masses can collide in finite time in the Newtonian potential
while taking infinitely long to do so in the inverse-square potential. Indeed, for the attractive 1/rn

potential, the JM line-element leads to estimates ∝
 η0

0
dη

ηn/2 and
 r0

0
dr
rn/2 for the distances to binary

and triple collisions from a nearby location (Sec. III C). These diverge for n ≥ 2 and are finite for
n < 2.

To examine stability of geodesics, we evaluate scalar and sectional curvatures of the zero-
energy, equal-mass JM metrics on C2, and its quotients. For the inverse-square potential, we obtain
strictly negative upper bounds for scalar curvatures on C2, R3, and S3 (Sec. III D), indicating wide-
spread linear geodesic instability. Moreover, scalar curvatures are shown to be bounded below. In
particular, they remain finite and negative at binary and triple collisions. O’Neill’s theorem is used
to determine or bound various sectional curvatures on C2 using the more easily determined ones
on its Riemannian quotients; they are found to be largely negative (Sec. III E). On the other hand,
for the Newtonian potential, we find that the scalar curvature on C2 is strictly negative, though it
can have either sign on shape space R3 (Sec. IV A). Unlike for the inverse-square potential, scalar
curvatures → −∞ at collision points. We also discuss the geodesic instability of Lagrange rotation
and homothety solutions for equal masses (Sec. III F). We end with a cautionary remark comparing
stability of geodesics to that of corresponding trajectories, and simple examples are used to illustrate
that the two notions of stability need not always coincide. In this paper we have not touched upon
the interesting issues of long-term geodesic stability or chaos. It would be interesting to relate
the local geodesic instabilities discussed here to medium- and long-time behavior. The dynamical
consequences of sectional curvatures possessing either sign should also be of much interest.

II. TRAJECTORIES AS GEODESICS OF THE JACOBI-MAUPERTUIS METRIC

For a system with configuration space M and Lagrangian L = (1/2)mij(x)ẋi ẋ j, Lagrange’s
equations are equivalent to the geodesic equations with respect to the “mass” or “kinetic metric”
mij. Remarkably, this connection between trajectories and geodesics extends to a system subject to a
potential V . Indeed, this is the content of Maupertuis’ principle of extremization of

 q2
q1

pdq holding
energy fixed.12,13 More precisely, the equations of motion (EOM)

mkiẍi(t) = −∂kV − 1
2
�
mik, j + mjk, i − mij,k

�
ẋi(t)ẋ j(t) (1)

may be regarded as reparametrized geodesic equations for the JM metric,

ds2 = gijdxidx j = (E − V )mijdxidx j (2)

on the classically allowed “Hill” region E − V ≥ 0. Notice that
√

2


ds =


pdq =
 (L + E)dt so

that the length of a geodesic is related to the classical action of the trajectory. The formula for the
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inverse JM metric gij = mij/(E − V ) may also be read off from the time-independent Hamilton-
Jacobi (HJ) equation (mij/2(E − V )) ∂iW∂jW = 1 by analogy with the rescaled kinetic metric
mij/2E appearing in the free particle HJ equation (mij/2E)∂iW∂jW = 1 (see p. 74 of Ref. 11). The
JM metric is conformal to the kinetic metric and depends parametrically on the conserved energy
E = 1

2 mijẋi ẋ j + V . The geodesic equations

ẍl(λ) = −1
2
glk �gki, j + gkj, i − gij,k

�
ẋi(λ)ẋ j(λ) (3)

for the JM metric reduce to (1) under the reparametrisation d/dλ = (1/σ)(d/dt), where σ =
(E − V )/√T . Here T = 1

2gijẋi ẋ j is the conserved “kinetic energy” along geodesics and equals
one-half for arc-length parametrization. To obtain σ, suppose y i(t) is a trajectory and zi(λ) the
corresponding geodesic. Then at a point xi = zi(λ) = y i(t), the velocities are related by σ żi = ẏ i

leading to

T = 1
2
gijżi ż j =

E − V
2

mijżi ż j =
E − V
2σ2 mij ẏ

i ẏ j =

(
E − V
σ

)2

. (4)

This reparametrization of time may be inconsequential in some cases [e.g., Lagrange rotational
solutions where σ is a constant since V is constant along the trajectory (see Sec. III F)] but
may have significant effects in others [e.g., Lagrange homothety solutions where the exponential
time-reparametrization regularizes triple collisions (see Sec. III C 2)] and could even lead to a
difference between linear stability of trajectories and corresponding geodesics (see Sec. III F).

The curvature of the JM metric encodes information on linear stability of geodesics (see
Sec. III E). For example, in the planar isotropic harmonic oscillator with potential kr2/2 in plane
polar coordinates, the gaussian curvature R = 16Ek/(2E − kr2)3 of the JM metric on configu-
ration space is non-negative everywhere indicating stability. In the planar Kepler problem with
Hamiltonian p2/2m − k/r , the gaussian curvature of the JM metric ds2 = m(E + k/r)(dr2 + r2dθ2)
is R = −Ek/(m(k + Er)3). R is everywhere negative/positive for E positive/negative and vanishes
identically for E = 0. This reflects the divergence of nearby hyperbolic orbits and oscillation of
nearby elliptical orbits. Negativity of curvature could lead to chaos, though not always, as the
hyperbolic orbits of the Kepler problem show. As noted, chaos could also arise from curvature
fluctuations.14

III. PLANAR THREE-BODY PROBLEM WITH INVERSE-SQUARE POTENTIAL

A. Jacobi-Maupertuis metric on configuration space and Hopf coordinates

We consider the three-body problem with masses moving on a plane regarded as the complex
plane C. Its 6D configuration space (with collision points excluded) is identified with C3. A point on
C3 represents a triangle on the complex plane with the masses m1,2,3 at its vertices x1,2,3 ∈ C. It is
convenient to work in Jacobi coordinates (Fig. 1(a)),

J1 = x2 − x1, J2 = x3 −
m1x1 + m2x2

m1 + m2
, and J3 =

m1x1 + m2x2 + m3x3

M3
, (5)

in which the kinetic energy KE = (1/2)i mi | ẋi |2 remains diagonal,

KE =
1
2


i

Mi | J̇i |2, where
1

M1
=

1
m1
+

1
m2

,
1

M2
=

1
m3
+

1
m1 + m2

, and M3 =

i

mi. (6)

The KE for motion about the center of mass (CM) is 1
2 (M1| J̇1|2 + M2| J̇2|2). The moment of inertia

about the origin I =
3

i=1 mi |xi |2 too remains diagonal in Jacobi coordinates (I =
3

i=1 Mi |Ji |2),
while about the CM we have ICM = M1|J1|2 + M2|J2|2. With U = −V =


i< j Gmim j/|xi − x j |2 de-

noting the (negative) potential energy, the JM metric for energy E on C3 is

ds2 = (E +U)
3

i=1

Mi |dJi |2, where U =
Gm1m2

|J1|2 +
Gm2m3

|J2 − µ1J1|2 +
Gm3m1

|J2 + µ2J1|2 (7)
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and µi = mi/(m1 + m2). Due to the inverse-square potential, G does not have the usual dimen-
sions. The metric is independent of the CM coordinates J3 and J̄3, while J1, J̄1, J2, and J̄2 are
invariant under translations xi → xi + a for a ∈ C. Thus translations act as isometries of (7). Sim-
ilarly, we will see that scalings (for E = 0) and rotations also act as isometries. These isometries
also act as symmetries of the Hamiltonian. For instance, the dilatation D =


i x⃗i · p⃗i =


iℜ(xi p̄i)

generates scale transformations xi → λxi and pi → λ−1pi via Poisson brackets: {xi,D} = xi and
{pi,D} = −pi. Since {H,D} = −2H , scaling is a symmetry of the Hamiltonian only when energy
vanishes.

The study of the geometry of the JM metric is greatly facilitated by first considering the
geometry of its quotients by isometries (for instance, geodesics on a quotient lift to horizontal
geodesics). Riemannian submersions29 provide a framework to define and compute metrics on these
quotients. Suppose (M, g) and (N,h) are two Riemannian manifolds and f : M → N a surjection.
Then the linearization df (p) : TpM → Tf (p)N is a surjection between tangent spaces. The vertical
subspace V (p) ⊆ TpM is defined to be the kernel of df while its orthogonal complement ker(df )⊥
with respect to the metric g is the horizontal subspace H(p). f is a Riemannian submersion if it
preserves lengths of horizontal vectors, i.e., if the isomorphism df (p) : ker(df (p))⊥ → Tf (p)N is an
isometry at each point. The Riemannian submersions we are interested in are associated to quotients
of a Riemannian manifold (M, g) by the action of a suitable group of isometries G. There is a natural
surjection f from M to the quotient M/G. Requiring f to be a Riemannian submersion defines the
quotient metric on M/G: the inner product of a pair of tangent vectors (u, v) to M/G is defined as the
inner product of any pair of horizontal preimages under the map df .

The surjection
�
J1, J̄1, J2, J̄2, J3, J̄3

�
→

�
J1, J̄1, J2, J̄2

�
defines a submersion from configuration

space C3 to its quotient C2 by translations. The vertical and horizontal subspaces are spanned by
∂J3, ∂J̄3

and ∂J1, ∂J̄1
, ∂J2, ∂J̄2

, respectively. Requiring the submersion to be Riemannian, the quotient
metric on C2 is

ds2 = (E +U)(M1 |dJ1|2 + M2 |dJ2|2). (8)

It is convenient to define rescaled coordinates on C2, zi =
√

MiJi, in terms of which (8) becomes
ds2 = (E +U)(|dz1|2 + |dz2|2). The kinetic energy in the CM frame is KE = (1/2)(| ż1|2 + | ż2|2)
while ICM = |z1|2 + |z2|2.

We now specialize to equal masses (mi = m) so that M1 = m/2,M2 = 2m/3, and µi = 1/2. The
metric on C2 is seen to be conformal to the flat Euclidean metric via the conformal factor E +U,

ds2 =
*.
,
E +

Gm3

2|z1|2 +
2Gm3

3|z2 − 1√
3

z1|2
+

2Gm3

3|z2 +
1√
3

z1|2
+/
-

�|dz1|2 + |dz2|2� . (9)

Rotations U(1) act as a group of isometries of C2, taking (z1, z2) → �
eiθz1,eiθz2

�
and leaving the

conformal factor invariant. Moreover if E = 0, then scaling zi → λzi for λ ∈ R+ is also an isometry.
Thus we may quotient the configuration manifold C2 successively by its isometries. We will see that
C2/ U(1) is the shape space R3 and C2/scaling is S3. Furthermore the quotient of C2 by both scaling
and rotations leads to the shape sphere S2 (see Fig. 1(c), note that collision points are excluded from
C2,R3,S3, and S2). Points on shape space R3 represent oriented congruence classes of triangles while
those on the shape sphere S2 represent oriented similarity classes of triangles. Each of these quotient
spaces may be given a JM metric by requiring the projection maps to be Riemannian submersions.
The geodesic dynamics on C2 is clarified by studying its projections to these quotient manifolds.
We will now describe these Riemannian submersions explicitly in local coordinates. This is greatly
facilitated by choosing coordinates (unlike z1, z2) on C2 in which the KVFs corresponding to the
isometries point along coordinate vector fields. As we will see, this ensures that the vertical sub-
spaces in the associated Riemannian submersions are spanned by coordinate vector fields. Thus we
introduce the Hopf coordinates (r, η, ξ1, ξ2) on C2 via the transformation

z1 = rei(ξ1+ξ2) sin η and z2 = rei(ξ1−ξ2) cos η. (10)

Here the radial coordinate r =
 |z1|2 + |z2|2 = √ICM ≥ 0 is a measure of the size of the triangle

with masses at its vertices. ξ2 determines the relative orientation of z1 and z2 while ξ1 fixes the
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orientation of the triangle as a whole. More precisely, 2ξ2 is the angle from the rescaled Jacobi
vector z2 to z1 while 2ξ1 is the sum of the angles subtended by z1 and z2 with the horizontal axis
in Fig. 1(a). Thus we may take 0 ≤ ξ1 + ξ2 ≤ 2π and 0 ≤ ξ1 − ξ2 ≤ 2π or equivalently, −π ≤ ξ2 ≤ π
and |ξ2| ≤ ξ1 ≤ 2π − |ξ2|. Finally, 0 ≤ η ≤ π/2 measures the relative magnitudes of z1 and z2,
indeed tan η = |z1|/|z2|. When r is held fixed, η, ξ1 and ξ2 furnish the standard Hopf coordinates
parametrizing the three sphere |z1|2 + |z2|2 = r2. For fixed r and η, ξ1 + ξ2 and ξ1 − ξ2 are periodic
coordinates on tori. These tori foliate the above three-sphere as η ranges between 0 and π/2. Fur-
thermore, as shown in Sec. III B, 2η and 2ξ2 are polar and azimuthal angles on the two-sphere
obtained as the quotient of S3 by rotations via the Hopf map.

Let us briefly motivate these coordinates and the identification of the above quotient spaces. We
begin by noting that the JM metric (9) on C2 is conformal to the flat Euclidean metric |dz1|2 + |dz2|2.
Recall that the cone on a Riemannian manifold (M,ds2

M) is the Cartesian product R+ × M with
metric dr2 + r2ds2

M, where r > 0 parameterizes R+. In particular, Euclidean C2 may be viewed as
a cone on the round three sphere S3. If S3 is parameterized by Hopf coordinates η, ξ1, and ξ2, then
this cone structure allows us to use r, η, ξ1, and ξ2 as coordinates on C2. Moreover, the Hopf map
defines a Riemannian submersion from the round S3 to the round two sphere S2.30 Indeed, if we
use Hopf coordinates η, ξ1, ξ2 on S3, then the Hopf map takes (η, ξ1, ξ2) → (η, ξ2) ∈ S2. In general,
if M → N is a Riemannian submersion, then there is a natural submersion from the cone on M
to the cone on N .31 In particular, the Hopf map extends to a Riemannian submersion from the
cone on the round S3 to the cone on the round S2, i.e., from Euclidean C2 to Euclidean R3 taking
(r, η, ξ1, ξ2) → (r, η, ξ2). As the conformal factor is independent of rotations, the same map defines a
Riemannian submersion from C2 with the JM metric to shape space R3 with its quotient JM metric.
Finally, for E = 0, scaling r⃗ → λr⃗ defines an isometry of the quotient JM metric on shape space R3.
Quotienting by this isometry we arrive at the shape sphere S2 with Montgomery’s “pair of pants”
metric. Alternatively, we may quotient C2 first by the scaling isometry of its JM metric to get S3 and
then by rotations to get S2 (see Fig. 1(c)).

With these motivations, we express the equal-mass JM metric on C2 in Hopf coordinates
[generalization to unequal masses is obtained by replacing Gm3h below with h̃(η, ξ2) given in
Eq. (31)],

ds2 =

(
E +

Gm3h(η, ξ2)
r2

) �
dr2 + r2 �dη2 + dξ2

1 − 2 cos 2η dξ1 dξ2 + dξ2
2

��
. (11)

It is convenient to write h(η, ξ2) = v1 + v2 + v3, where v1 = r2/(m|x2 − x3|2) is proportional to the
pairwise potential between m2 and m3 and cyclic permutations thereof. The vi are rotation and
scale-invariant, and therefore functions only of η and ξ2 in Hopf coordinates,

v1,2 =
2(

2 + cos 2η ∓
√

3 sin 2η cos 2ξ2

) and v3 =
1

2 sin2 η
. (12)

Notice that h → ∞ at pairwise collisions. The vi’s have the common range 1/2 ≤ vi < ∞ with
v3 = 1/2 when m3 is at the CM of m1 and m2, etc. We also have h ≥ 3 with equality when
v1 = v2 = v3, corresponding to Lagrange configurations with masses at vertices of an equilateral
triangle. To see this, we compute the moment of inertia ICM in two ways. On the one hand,
ICM = |z1|2 + |z2|2 = r2 . On the other hand, for equal masses the CM lies at the centroid of the trian-
gle defined by masses. Thus ICM is (4m/9)× the sum of the squares of the medians, which by Apol-
lonius’ theorem is equal to (3/4)× the sum of the squares of the sides. Hence ICM =

3
i=1 r2/3vi.

Comparing, we get
3

i=1 1/vi = 3. Since the arithmetic mean is bounded below by the harmonic
mean,

h/3 = (v1 + v2 + v3) /3 ≥ 3
�
v1
−1 + v2

−1 + v3
−1�−1

= 1. (13)

Lagrange, Euler, collinear, and collision configurations: The geometry of the JM metric dis-
plays an interesting behavior at Lagrange and collision configurations on C2 and its quotients.
We identify their locations in Hopf coordinates for equal masses. The Jacobi vectors in Hopf
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coordinates are

J1 =


2
m

rei(ξ1+ξ2) sin η and J2 =


3

2m
rei(ξ1−ξ2) cos η. (14)

At a Lagrange configuration, m1,2,3 are at vertices of an equilateral triangle. So |J2| =
√

3|J1|/2 (i.e.,
η = π/4) and J2 is ⊥ to J1 (i.e., ξ2 = ±π/4, the sign being fixed by the orientation of the triangle).
So Lagrange configurations L4,5 on C2 occur when η = π/4 and ξ2 = ±π/4 with r and ξ1 arbitrary.
On quotients of C2, L4,5 occur at the images under the corresponding projections. Since 2η and 2ξ2
are polar and azimuthal angles on the shape sphere, L4,5 are at diametrically opposite equatorial
locations (see Fig. 1(b)). Collinear configurations (syzygies) occur when J1 and J2 are (anti)parallel,
i.e., when ξ2 = 0 or π/2, with other coordinates arbitrary. On the shape sphere, syzygies occur on
the “great circle” through the poles corresponding to the longitudes 2ξ2 = 0 and π. Collisions are
special collinear configurations. By Ci we denote a collision of particles other than the ith one.
So C3 corresponds to J1 = 0 which lies at the “north pole” (η = 0) on S2. m2 and m3 collide when
J2 = J1/2 so η = π/3 and ξ2 = 0 at C1. Similarly, at C2, J2 = −J1/2 which corresponds to η = π/3
and ξ2 = π/2. The Euler configurations Ei for equal masses are collinear configurations where mass
mi is at the midpoint of the other two.

Finally, we note that the azimuth and co-latitude (θ and φ)20 are often used as coordinates
on the shape sphere, so that L4,5 are at the poles while C1,2,3 and E1,2,3 lie on the equator. This
coordinate system makes the symmetry under permutations of masses explicit, but is not convenient
near any of the collisions (e.g., sectional curvatures can be discontinuous). On the other hand, our
coordinates η and ξ2, which are related to θ and φ by suitable rotations,

sin φ = cos(2η − π/2) sin(2ξ2), cos φ sin θ = cos(2η − π/2) cos(2ξ2), cos φ cos θ = sin(2η − π

2
),

are convenient near C3 but not near E3 or C1,2 (sectional curvatues can be discontinuous, see
Sec. III E). The neighborhoods of the latter configurations may be studied by re-ordering the masses.

B. Quotient JM metrics on shape space, the three-sphere, and the shape sphere

Submersion from C2 to shape space R3: Rotations z j → eiθz j act as isometries of the JM metric
(11) on C2. In the Hopf coordinates of Eq. (10),

z1 = rei(ξ1+ξ2) sin η and z2 = rei(ξ1−ξ2) cos η, (15)

rotations are generated by translations ξ1 → ξ1 + θ and a discrete shift ξ2 → ξ2 + π (mod 2π). The
shift in ξ2 rotates zi → −zi, which is not achievable by a translation in ξ1 due to its restricted range,
|ξ2| ≤ ξ1 ≤ 2π − |ξ2| and −π ≤ ξ2 ≤ π. To quotient by this isometry, we define a submersion from
C2 → R3 taking

(r, η, ξ1, ξ2) → (r, η, ξ2) if ξ2 ≥ 0 and (r, η, ξ1, ξ2) → (r, η, ξ2 + π) if ξ2 < 0. (16)

The radial, polar, and azimuthal coordinates on R3 are given by r , 2η, and 2ξ2 with m1-m2 collisions
occurring on the ray η = 0. Under the linearization of this submersion at a point p ∈ C2, V (p) is
spanned by ∂ξ1 and H(p) by ∂r , ∂η, and cos 2η ∂ξ1 + ∂ξ2. These horizontal basis vectors are mapped,
respectively, to ∂r , ∂η, and ∂ξ2 under the linearization of the map. Requiring lengths of horizontal
vectors to be preserved, we arrive at the following quotient JM metric on R3, conformal to the flat
metric on R3:

ds2 =

(
E +

Gm3h(η, ξ2)
r2

) �
dr2 + r2 �dη2 + sin22η dξ2

2

��
. (17)

This metric may also be viewed as conformal to a cone on a round 2-sphere of radius one-half, since
0 ≤ 2η ≤ π and 0 ≤ 2ξ2 ≤ 2π are the polar and azimuthal angles.

Submersion from shape space to the shape sphere: The group R+ of scalings (r, η, ξ2) →
(λr, η, ξ2) acts as an isometry of the zero-energy JM metric (17) on shape space R3. The orbits
are radial rays emanating from the origin (and the triple collision point at the origin, which we
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exclude). The quotient space R3/scaling is the shape sphere S2. We define a submersion from shape
space to the shape sphere taking (r, η, ξ2) → (η, ξ2). Under the linearization of this map at p ∈ R3,
V (p) = span(∂r). Its orthogonal complement H(p) is spanned by ∂η and ∂ξ2 which project to ∂η
and ∂ξ2 on S2. Requiring the submersion to be Riemannian, we get the quotient “pair of pants” JM
metric on the shape sphere which is conformal to the round metric on a 2-sphere of radius one-half,

ds2 = Gm3h(η, ξ2) �dη2 + sin2 2η dξ2
2

�
. (18)

Submersion from C2 to S3 and then to S2: For zero energy, it is also possible to quotient the
JM metric (11) on C2, first by its scaling isometries to get S3 and then by rotations to arrive at the
shape sphere. Interestingly, it follows from the Lagrange-Jacobi identity that when E and İ vanish,
r is constant and the motion is confined to a 3-sphere embedded in C2. To quotient by the scaling
isometries (r, η, ξ1, ξ2) → (λr, η, ξ1, ξ2) of C2, we define the submersion (r, η, ξ1, ξ2) → (η, ξ1, ξ2) to
S3, with ranges of coordinates as on C2. The vertical subspace is spanned by ∂r while ∂η, ∂ξ1, and
∂ξ2 span the horizontal subspace. The latter are mapped to ∂η, ∂ξ1, and ∂ξ2 on S3. The submersion is
Riemannian provided we endow S3 with the following conformally-round metric:

ds2 = Gm3h (η, ξ2) �dη2 + dξ2
1 − 2 cos 2η dξ1 dξ2 + dξ2

2

�
. (19)

Rotations generated by ξ1 → ξ1 + θ and ξ2 → ξ2 + π (mod 2π) act as isometries of this metric on S3.
We quotient by rotations to get the metric (18) on S2 via the Riemannian submersion defined by

(η, ξ1, ξ2) → (η, ξ2) if ξ2 ≥ 0 and (η, ξ1, ξ2) → (η, ξ2 + π) if ξ2 < 0. (20)

C. JM metric in the near-collision limit and its completeness

The equal-mass JM metric components on configuration space C2 and its quotients blow up
at 2- and 3-body collisions. However, we study the geometry in the neighbourhood of collision
configurations and show that the curvature remains finite in the limit. Remarkably, it takes infinite
geodesic time for collisions to occur which we show by establishing the geodesic completeness of
the JM metric on C2 and its quotients. By contrast, collisions can occur in finite time for the Newto-
nian 3-body evolution. The JM geodesic flow avoids finite time collisions by reparametrizing time
along Newtonian trajectories (see Eq. (3)). Thus the geodesic reformulation of the inverse-square
3-body problem “regularizes” pairwise and triple collisions.

1. Geometry near pairwise collisions

For equal masses (see Sec. III A), the first pair of masses collides when η = 0 (with other
coordinates arbitrary) while the other two binary collisions occur at C1 and C2 (see Fig. 1(b)). Triple
collisions occur when r = 0. Unlike for the Newtonian potential, sectional curvatures on coordinate
2-planes are finite at pairwise and triple collisions, though some JM metric (11) and Riemann tensor
components blow up. It is therefore interesting to study the near-collision geometry of the JM
metric.

The geometry of the equal-mass JM metric in the neigbourhood of a binary collision is the
same irrespective of which pair of bodies collide. Since Hopf coordinates are particularly conve-
nient around η = 0, we focus on collisions between the first pair of masses. Montgomery (see
Eq. 3.10c of Ref. 20) studied the near-collision geometry on S2 and showed that it is geodesically
complete. Let us briefly recall the argument. Expanding the equal-mass S2 metric (18) around the
collision point η = 0, we get

ds2 ≈
(

Gm3

2η2

) �
dη2 + 4η2 dξ2

2

�
=

Gm3

2ρ2 (dρ2 + ρ2dχ2), (21)

where ρ = 2η and χ = 2ξ2. ∂χ is a KVF, so “radial” curves with constant χ are geodesics. Ap-
proaching ρ = 0 along a “radial” geodesic shows that the collision point ρ = 0 is at an infinite
distance (Gm3/2

 0
ρ0

dρ/ρ) from any point (ρ0, χ) in its neighborhood (0 < ρ0 ≪ 1). The symme-
try of the metric under exchange of masses ensures that the same holds for the other two collision
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points: geodesics may be extended indefinitely. Thus the shape sphere (S2 with three collision points
excluded) is geodesically complete. To clarify the near-collision geometry let dλ = −dρ/

√
2ρ or

λ = − log(ρ/ρ0)/
√

2. This effectively stretches out the neighborhood of the collision point λ = ∞.
The asymptotic metric ds2 = Gm3 �dλ2 + dχ2/2

�
for 0 ≤ χ ≤ 2π and λ ≥ 0 is the metric on a

semi-infinite right-circular cylinder of radius 1/
√

2 with λ the coordinate along the height and χ
the azimuthal angle. Thus the JM metric looks like that of a semi-infinite cylinder near any of the
collision points.

More generally, for unequal masses, the near-collision metric (21) is ds2 ≈ Gm1m2M1
2η2

�
dη2

+ 4η2dξ2
2

�
(see Eqs. (7)-(10)) and essentially the same argument implies that the JM metric on the

shape sphere is geodesically complete for arbitrary masses.
Since S2 arises as a Riemannian submersion of R3, S3, and C2, the infinite distance to binary

collision points on the shape sphere can be used to show that the same holds on each of the higher
dimensional manifolds. To see this, consider the submersion from (say) C2 to S2. Any curve γ̃ on
C2 maps to a curve γ on S2 with l(γ̃) ≥ l(γ) since the lengths of horizontal vectors are preserved. If
there was a binary collision point at finite distance on C2, there would have to be a geodesic of finite
length ending at it. However, such a geodesic would project to a curve on the shape sphere of finite
length ending at a collision point, contradicting its completeness.

Thus we have shown that the JM metrics (necessarily of zero energy) on S2 and S3 with binary
collision points removed are geodesically complete for arbitrary masses. On the other hand, to
examine completeness on C2 and R3, we must allow for triple collisions as well as non-zero energy.
Geodesic completeness in these cases is shown in Sec. III C 2. In the sequel we examine the
near-collision geometry on R3, S3, and C2 in somewhat greater detail by Laurent expanding the JM
metric components around η = 0 and keeping only leading terms.

Shape space geometry near binary collisions: The equal-mass shape space metric around
η = 0, in the leading order, becomes

ds2 ≈ Gm3

2η2r2

�
dr2 + r2 �dη2 + 4η2 dξ2

2

��
= Gm3

(
2dr2

ρ2r2 +
dρ2

2ρ2 +
dχ2

2

)
, (22)

where ρ = 2η and χ = 2ξ2. We define new coordinates λ and κ by dλ = −dρ/
√

2ρ, dκ = dr/r so
that ρ = ρ0e−

√
2λ. In these coordinates the collision occurs at λ = ∞. The asymptotic metric is

ds2 ≈ Gm3 *
,

2
ρ2

0

e2
√

2λdκ2 + dλ2 +
1
2

dχ2+
-
, (23)

where 0 ≤ χ ≤ 2π (periodic), λ ≥ 0, and −∞ < κ < ∞. This metric has a constant scalar curvature
of −4/Gm3. The sectional curvature in the ∂λ − ∂κ plane is equal to −2/Gm3; it vanishes in the other
two coordinate planes. These values of scalar and sectional curvatures agree with the limiting values
at the 1-2 collision point calculated for the full metric on shape space. The near-collision topology
of shape space is that of the product manifold S1

χ × R+λ × Rκ.
Near-collision geometry on C2: The equal-mass JM metric in leading order around η = 0 is

ds2 ≈ Gm3

2η2r2

�
dr2 + r2 �dη2 + dξ2

1 − 2(1 − 2η2)dξ1dξ2 + dξ2
2

��
. (24)

Let us define new coordinates λ, κ, ξ± such that dλ = −dη/
√

2η, dκ = −dr/r , and ξ± = ξ1 ± ξ2.
0 ≤ ξ± ≤ 2π are periodic coordinates parametrizing a torus. The asymptotic metric is

ds2 ≈ Gm3
(

dκ2

2η2 + dλ2 +
1

2η2 dξ2
− +

1
2

dξ2
+

)
, (25)

where η = η0e−
√

2λ. This metric has a constant scalar curvature −12/Gm3. The sectional curvature
of any coordinate plane containing ∂ξ+ vanishes due to the product form of the metric. The sectional
curvatures of the remaining coordinate planes (∂κ − ∂λ, ∂κ − ∂ξ−, ∂ξ− − ∂λ) are equal to −2/Gm3.
The scalar and sectional curvatures (of corresponding planes) of this metric agree with the limiting
values computed from the full metric on C2.
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Near-collision geometry on S3: The submersion C2 → S3 takes (κ, λ, ξ±) → (λ, ξ±). As the
coordinate vector fields on C2 are orthogonal, from (25) the asymptotic metric on S3 near the 1-2
collision point is

ds2 ≈ Gm3
(
dλ2 +

1
2η2 dξ2

− +
1
2

dξ2
+

)
. (26)

This metric has a constant scalar curvature equal to −4/Gm3. The sectional curvatures on the λ − ξ−
coordinate 2-plane are −2/Gm3 while it vanishes on the other two coordinate 2-planes.

2. Geometry on R3 and C2 near triple collisions

We argue that the triple collision configuration (which occurs at r = 0 on C2 or shape space R3)
is at infinite distance from other configurations with respect to the equal-mass JM metrics (Eqs. (11)
and (17)), which may be written in the form

ds2 = (Gm3h/r2)dr2 + Gm3hgi jdxidx j . (27)

gij is the positive (round) metric on S3 (xi = (η, ξ1, ξ2)) or S2 (xi = (η, ξ2)) of radius one-half,

gC
2

ij =
*...
,

1 0 0
0 1 − cos 2η
0 − cos 2η 1

+///
-

and gR
3

ij =
*
,

1 0
0 sin 2η

+
-
. (28)

Together with our results on pairwise collisions (Sec. III C 1), it will follow that the manifolds are
geodesically complete. As a consequence, the geodesic flow reformulation of the 3-body problem
regularizes triple collisions. To show that triple collision points are at infinite distance, we will use
the previously obtained lower bound on the conformal factor, h(ξ2, η) ≥ 3 (see Eq. (13)).

Let γ(t) be a curve joining a non-collision point γ(t0) ≡ (r0, xi
0) and the triple collision point

γ(t1) ≡ (r = 0, xi
1). We show that its length l(γ) is infinite. Since Gm3hgij is a positive matrix,

l(γ) =
 t1

t0

dt


Gm3h

r2 ṙ2 + Gm3hgi j ẋi ẋ j ≥
 t1

t0

dt


Gm3h

r2 ṙ2. (29)

Now using |ṙ | ≥ −ṙ and h ≥ 3, we get

l(γ) ≥ −√3Gm3

 t1

t0

ṙ
r

dt =
√

3Gm3

 r0

0

dr
r
= ∞. (30)

In particular, a geodesic from a non-collision point to the triple collision point has infinite length.
Despite appearances, the above inequality l(γ) ≥ √3Gm3

 r0
0 dr/r does not imply that radial curves

are always geodesics. This is essentially because h along γ may be less than that on the correspond-
ing radial curve. However, if (η, ξ1, ξ2) is an angular location where h is minimal (locally), then
the radial curve with those angular coordinates is indeed a geodesic because a small perturbation
to the radial curve increases h and consequently its length. The global minima of h (h = 3) occur
at the Lagrange configurations L4,5 and local minima (h = 9/2) are at the Euler configurations
E1,2,3 indicating that radial curves at these angular locations are geodesics. In fact, the Christoffel
symbols Γirr vanish for i = η, ξ1, ξ2 at L4,5 and at E1,2,3 so that radial curves γ = (r(t), xi

0) satisfying
r̈ + Γrrr ṙ

2 = 0 are geodesics.
These radial geodesics at minima of h describe Lagrange and Euler homotheties (where the

masses move radially inwards/outwards to/from their CM which is the center of similitude). These
homotheties take infinite (geodesic) time to reach the triple collision. By contrast, the corresponding
Lagrange and Euler homothety solutions to Newton’s equations reach the collision point in finite
time. This difference is due to an exponential time-reparametrization of geodesics relative to trajec-
tories. In fact, if t is trajectory time and s arc-length along geodesics, then from Secs. II and III A,
σ = ds/dt =

√
2(E + 3Gm3/r2) since h = 3. Near a triple collision (small r), ds2 ≈ 3Gm3dr2/r2 so

that s ≈ − 1
2

√
3Gm3 log(1 − t/tc) → ∞ as t → tc = r(0)2/2√6Gm3 which is the approximate time

to collision. In fact, the exact collision time tc =
√

6Gm3
(
−1 +


1 + κr(0)2/6Gm3

)
/κ may be
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obtained by reducing Newton’s equations for Lagrange homotheties to the one body problem
r3r̈ = −6Gm3 whose conserved energy is κ = ṙ2 − 6Gm3/r2. These homothety solutions illustrate
how the geodesic flow reformulation regularizes the original Newtonian 3 body dynamics in the
inverse-square potential.

More generally, for unequal masses (7)-(10) give the JM metric ds2 = h̃dr2/r2 + g̃i jdxidx j,
where

h̃ =
Gm1m2M1

sin2 η
+

Gm2m3M2
�
cos η − µ1

√
M2/M1e2iξ2 sin η

�2 +
Gm1m3M2

�
cos η + µ2

√
M2/M1e2iξ2 sin η

�2 . (31)

Irrespective of the masses, g̃ij (28) is positive and h̃ has a strictly positive lower bound (e.g.,
Gm1m2M1). Thus by the same argument as above, triple collisions are at infinite distance. Combin-
ing this with the corresponding results for pairwise collision points (Sec. III C 1), we conclude that
the zero-energy JM metrics on C2 and R3 are geodesically complete for arbitrary masses.

For non-zero energy, ds2 = (E + h̃/r2)(dr2 + r2g̃ijdxidx j) which can be approximated with the
zero-energy JM metrics both near binary (say, η = 0) and triple (r = 0) collisions. If γ is a curve
ending at the triple collision, l(γ) ≥ l(γ̃), where γ̃ is a “tail end” of γ lying in a sufficiently small
neighborhood of r = 0 (i.e., r ≪ |h̃/E |1/2 which is guaranteed, say, if r ≪ |Gm1m2M1/E |1/2). But
then, l(γ̃) may be estimated using the zero-energy JM metric giving l(γ̃) = ∞. Thus l(γ) = ∞.
A similar argument shows that curves ending at binary collisions have infinite length. Thus we
conclude that the JM metrics on C2 and R3 are geodesically complete for arbitrary energies and
masses.

D. Scalar curvature for equal masses and zero energy

A geodesic through P in the direction u perturbed along v is linearly stable/unstable [see
Sec. III F] accordingly as the sectional curvature KP(u, v) is positive/negative. The scalar curvature
R at P is proportional to an average of sectional curvatures in planes through P (Sec. III E). Thus
R encodes an average notion of geodesic stability. Here, we evaluate the scalar curvature R of
the equal-mass zero-energy JM metric on C2 and its submersions to R3, S3, and S2. In each case,
due to the rotation and scaling isometries, R is a function only of the coordinates η and ξ2 that
parametrize the shape sphere. In Ref. 20 Montgomery proves that RS2 ≤ 0 with equality at Lagrange
and collision points (see Fig. 2). We generalize this result and prove that the scalar curvatures on
C2, R3, and S3 are strictly negative and bounded below (see Fig. 3) indicating widespread linear
instability of the geodesic dynamics. (Note that hyperbolicity of the configuration space quotiented
by translations, rotations, and scaling does not extend in a simple manner to the 4-body problem.32)

Scalar curvature on S2: The quotient JM metric on S2 (18) is conformal to the round (kinetic)
metric on a sphere of radius 1/2,

ds2
S2 = Gm3h(η, ξ2)ds2

kin, where ds2
kin = dη2 + sin2 2ηdξ2

2. (32)

FIG. 2. Gaussian curvature K (in units of 1/Gm3) on S2 for equal masses and E = 0. K = 0 at L4,5 and C1,2,3.
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FIG. 3. Scalar curvatures R on C2, S3, and R3 in units of 1/Gm3. R is strictly negative and has a global maximum at L4,5
in all cases. It attains a global minimum at C1,2,3 on C2 and a local maximum at collisions on R3 and S3. E1,2,3 are saddles
on C2 and global minima on R3 and S3.

Here the conformal factor (h = −(r2/Gm3)× potential energy) (12) is a strictly positive function on
the shape sphere with double poles at collision points. The scalar curvature of (32) is

RS2 =
1

Gm3h3

�
8h2 + |∇h|2 − h∆h

�
, (33)

where ∆ is the Laplacian and ∇ih = gij∂jh the gradient on S2 relative to the kinetic metric,

∆h = *
,

1
sin2 2η

∂2h
∂ξ2

2

+ 2 cot 2η
∂h
∂η
+

∂2h
∂η2

+
-

and |∇h|2 = 1
sin2 2η

(
∂h
∂ξ2

)2

+

(
∂h
∂η

)2

. (34)

In fact we have an explicit formula for the scalar curvature, RS2 = AB/C, where

A = 8 sin2 η
�(cos 2η + 2)2 − 3 sin2 2η cos2 2ξ2

�
, C = 3

�
2 sin2 2η cos 4ξ2 + cos 4η − 13

�3

and

B =
�
−8 sin4 2η cos 8ξ2 − 16 sin2 2η cos 4ξ2(cos 4η − 29) + 236 cos 4η − 3 cos 8η + 727

�
. (35)

As shown in Ref. 20 RS2 ≤ 0 with equality only at Lagrange and collision points. Negativity of RS2

also follows from (35): each factor in the numerator is ≥0 (the third vanishes at L4,5, the second at
C1,2, and the first at C3) while the denominator is strictly negative. We now use this to show that the
scalar curvatures on configuration space C2 and its quotients R3 and S3 are strictly negative.

Scalar curvature on C2: The equal-mass zero-energy JM metric on C2 from Eq. (11) is

ds2
C2 =

�
Gm3/r2� h(η, ξ2) �dr2 + r2 �dη2 + dξ2

1 − 2 cos 2η dξ1 dξ2 + dξ2
2

��
. (36)

The scalar curvature of this metric is expressible as

RC2 =
�
3/2Gm3h3� �4h2 + |∇h|2 − 2h∆h

�
, (37)

where ∆h and ∇h are the Laplacian and gradient with respect to the round metric on S2 of radius
one-half (34). Due to the scaling and rotation isometries, RC2 is in fact a function on the shape
sphere. The scalar curvatures on C2 (37) and S2(33) are simply related,

RC2 = 3RS2 −
�
3/2Gm3h3� �12h2 + |∇h|2� . (38)

This implies RC2 < 0 since the second term is strictly negative everywhere as we now show. Notice
that the second term can vanish only when h is infinite, i.e., at collisions. Taking advantage of the
fact that the geometry (on S2 and C2) in the neighborhood of all 3 collision points is the same for
equal masses, it suffices to check that the second term has a strictly negative limit at C3(η = 0). Near
η = 0, h ∼ 1/2η2 so that RC2 → −12/Gm3 < 0. Combining with the r-independence of RC2, we see
that the scalar curvature is non-singular at binary and triple collisions.

With a little more effort, we may obtain a non-zero upper bound for the Ricci scalar on C2.
Indeed, using RS2 ≤ 0 and the inequality 12h2 + |∇h|2 ≥ ζh3 proved in the Appendix, we find

RC2 < −3ζ/2Gm3, where ζ = 55/27. (39)

Numerically, we estimate the optimal value of ζ to be 8/3.
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Scalar curvatures on R3 and S3: Recall that the equal-mass zero-energy quotient JM metrics on
shape space R3 (17) and S3 (19) are

ds2
R3 =

�
Gm3h/r2� �dr2 + r2 �dη2 + sin2 2η dξ2

2

��

and

ds2
S3 = Gm3h

�
dη2 + dξ2

1 − 2 cos 2η dξ1 dξ2 + dξ2
2

�
. (40)

The corresponding scalar curvatures are

RR3 =
�
16h2 + 3|∇h|2 − 4h∆h

�
/2Gm3h3 and RS3 =

�
12h2 + 3|∇h|2 − 4h∆h

�
/2Gm3h3. (41)

Here ∆h and ∇h are as in Eq. (34). The scalar curvatures are related to that on S2 as follows:

RR3 = 2RS2 −
�
16h2 + |∇h|2� /2Gm3h3 and RS3 = 2RS2 −

�
20h2 + |∇h|2� /2Gm3h3. (42)

As in the case of C2, we check that the second terms in both relations are strictly negative. This im-
plies both the scalar curvatures are strictly negative. In fact, using the inequality 12h2 + |∇h|2 > ζh3

(see the Appendix), we find (non-optimal) non-zero upper bounds

RS3,R3 < −ζ/2Gm3, where ζ = 55/27. (43)

Moreover, we note that

RC2 = RS3 −
h∆h

Gm3h3 < RS3 and RS3 = RR3 −
4h2

2Gm3h3 ≤ RR3, (44)

with equality at collision configurations. Recalling that on the shape sphere, the scalar curvature
vanishes at collision points (in a limiting sense) and at Lagrange points, we have the following
inequalities:

0 ≥ RS2 > RR3 ≥ RS3 > RC2. (45)

Thus we have the remarkable result that the scalar curvatures of the JM metric on C2 and its
quotients by scaling (S3) and rotations (R3) are strictly negative everywhere and also strictly less
than that on S2. So the full geodesic flow on C2 is in a sense more unstable than the corresponding
flow on S2.

In addition to strict negativity, we may also show that the scalar curvatures are bounded below.
For instance, from Eq. (33) RS2 can go to −∞ only when ∆h → ∞ since h ≥ 3. Now from Eq. (34)
∆h can diverge only when sin 2η = 0 or when one of the relevant derivatives of h diverges. From
Eq. (12) this can happen only if η = 0 (C3) or η = π/2 (E3) or when one of the vi → ∞, i.e., at
collisions. However ∆h = 66 is finite at η = π/2 and we know from Sec. III C 1 that RS2 is finite at
collisions so that RS2 is bounded below. The same proof shows that scalar curvatures are bounded
below on R3,S3, and C2 as well.

E. Sectional curvature for three equal masses

In Sec. III D, we showed that the Ricci scalars R on configuration space and its quotients are
negative everywhere, save at Lagrange and collision points on the shape sphere where it vanishes.
However, R encodes the stability of geodesics only in an average sense. More precisely, a geodesic
through P in the direction u subject to a perturbation along v is linearly stable/unstable accordingly
as the sectional curvature KP(u, v) is positive/negative (see Sec. III F). Here, the sectional curvature
which is a function only of the 2-plane spanned by u and v generalizes the gaussian curvature to
higher dimensions. It is defined as the ratio of the curvature biquadratic r = g(R(u, v)v,u) to the
square of the area Ar(u, v)2 = g(u,u)g(v, v) − g(u, v)g(v,u) of the parallelogram spanned by u and
v . Here g(u, v) is the Riemannian inner product and R(u, v) = [∇u,∇v] − ∇[u, v] the curvature tensor
with components R(ei,e j)ek = Rl

k ijel in any basis for vector fields. Furthermore, if e1, . . . ,en are
an orthonormal basis for the tangent space at P, then the scalar curvature R =


i, j K(ei,e j) is

the sum of sectional curvatures in
� n

2

�
planes through P. It may also be regarded as an average

of the curvature biquadratic R =
 r (u, v)dµg(u)dµg(v), where dµg(u) = exp

�
−uiu jgij/2

�
du is the
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gaussian measure on tangent vectors with mean zero and covariance gij.33 Thus R provides an
averaged notion of stability. To get a more precise measure of linear stability of geodesics, we find
the sectional curvatures in various (coordinate) tangent 2-planes of the configuration space and its
quotients. On account of the isometries, these sectional curvatures are functions only of η and ξ2
[explicit expressions are omitted due to their length]. Unlike scalar curvatures which were shown
to be non-positive, we find planes in which sectional curvatures are non-positive as well as planes
where they can have either sign.

O’Neill’s theorem allows us to determine or bound certain sectional curvatures on the config-
uration space C2 in terms of the more easily determined curvatures on its quotients. Roughly, the
sectional curvature of a horizontal two-plane increases under a Riemannian submersion. Suppose
f : (M, g) → (N, g̃) is a Riemannian submersion. Then O’Neill’s theorem29 states that the sectional
curvature in any horizontal 2-plane at m ∈ M is less than or equal to that on the corresponding
2-plane at f (m) ∈ N ,

KN(df (X),df (Y )) = KM(X,Y ) + 3
4
|[X,Y ]V |2
Ar(X,Y )2 . (46)

Here X and Y are horizontal fields on M spanning a non-degenerate 2-plane (Ar(X,Y )2 , 0) and
[X,Y ]V is the vertical projection of their Lie bracket. In particular, the sectional curvatures are equal
everywhere if X and Y are coordinate vector fields.

We consider sectional curvatures in 6 interesting 2 planes on C2 which are horizontal with
respect to submersions to R3 and S3. Under the submersion from C2 to R3 (Sec. III B), the horizontal
basis vectors ∂r , ∂η, and ∂ξ ≡ cos 2η∂ξ1 + ∂ξ2 map, respectively, to ∂r , ∂η, and ∂ξ2 defining three
pairs of corresponding 2-planes. Since [∂r , ∂η] and [∂r , ∂ξ] vanish, we have KC2(∂r , ∂η) = KR3(∂r , ∂η)
and KC2(∂r , ∂ξ) = KR3(∂r , ∂ξ2). Fig. 4 shows that KC2(∂r , ∂η) is mostly negative, though it is not
continuous at E3, C1, and C2. On the other hand, KC2(∂r , ∂ξ) is largely negative except in a neigh-
bourhood of C3. Finally, as [∂ξ, ∂η]V = −2 sin 2η∂ξ1 , 0, we have KC2(∂η, ∂ξ) < KR3(∂η, ∂ξ2) with
equality at collisions. Moreover the submersion from R3 → S2 (Sec. III B) implies that KR3(∂η, ∂ξ2)
coincides with KS2(∂η, ∂ξ2) which vanishes at Lagrange and collision points and is strictly negative
elsewhere (see Sec. III D). Thus KC2(∂η, ∂ξ) vanishes at collision points and is strictly negative
everywhere else (see Fig. 4). In particular, Lagrange points are more unstable on the configuration
space C2 than on the shape sphere.

Under the submersion from C2 to S3 (Sec. III B), the horizontal basis vectors ∂η, ∂ξ1, and ∂ξ2
map, respectively, to ∂η, ∂ξ1, and ∂ξ2. The sectional curvatures on corresponding pairs of 2-planes
are equal, e.g., KC2(∂η, ∂ξ2) = KS3(∂η, ∂ξ2). As shown in Fig. 5, KC2(∂η, ∂ξ2) is negative everywhere
except in a neighbourhood of E3 where it can have either sign. The qualitative behavior of the
other two sectional curvatures KC2(∂ξ1, ∂ξ2) and KC2(∂ξ1, ∂η) is similar to that of KC2(∂r , ∂ξ2) and
KC2(∂r , ∂η) discussed above. The approximate symmetry under ∂ξ1↔ ∂r is not entirely surprising
given that ∂ξ1 and ∂r are vertical vectors in the submersions to R3 and S3, respectively.

FIG. 4. Sectional curvatures on horizontal 2-planes of submersion from C2 to R3 in units of 1/Gm3. (a) KC2(∂r, ∂η)=
KR3(∂r, ∂η) ≤ 0 everywhere except in neighborhoods of E3. K =−2 at its global minimum C3 and K =−2/3 at L4,5. K →
0,−2 when C1,2 are approached holding η or ξ2 fixed. (b) KC2(∂r, ∂ξ)=KR3(∂r, ∂ξ2) is negative except in neighborhoods of
C3 and E3. K = 0 at its minimum C3 (η = 0) and K =−2/3 at L4,5. K → −2 or 0 on approaching C1,2 (η = π/3, ξ2= 0, π/2)
along η or ξ2 constant. (c) KC2(∂η, ∂ξ) ≤ KR3(∂η, ∂ξ2). KC2(∂η, ∂ξ)= 0 at global maxima C1,2,3 and is negative elsewhere.
K =−1 at its local maxima L4,5.
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FIG. 5. Sectional curvatures on horizontal 2-planes of submersion from C2 to S3 in units of 1/Gm3. (a) KC2(∂η, ∂ξ2)=
KS3(∂η, ∂ξ2) > 0 in a neighbourhood of E3 and negative elsewhere. K =−2 at its global minimum C3. K =−1 at its local
maxima L4,5. K → 0 or −1/2 upon approaching C1,2 along constant η or ξ2. (b) KC2(∂η, ∂ξ1)=KS3(∂η, ∂ξ1) > 0 in a
neighbourhood of E3 and is negative elsewhere. K =−2 at its global minimum C3 and K =−1/3 at L4,5. K → 0 or −2
upon approaching C1,2 holding η or ξ2 fixed. (c) KC2(∂ξ1, ∂ξ2)=KS3(∂ξ1, ∂ξ2) > 0 in some neighbourhoods of C3 and E3
and negative elsewhere. K = 0 at its local minimum C3. K =−1/3 at L4,5. K → −2 or 0 upon approaching C1,2 while holding
η or ξ2 fixed.

The remaining two coordinate 2-planes on C2 are not horizontal under either submersion. We
find that KC2(∂r , ∂ξ1) is negative everywhere except at L4,5 and KC2(∂r , ∂ξ2) is negative except around
E1,2.

F. Stability tensor and linear stability of geodesics

In this section we use the stability tensor (which provides a criterion for linear geodesic stabil-
ity) to discuss the stability of Lagrange rotational and homothety solutions. We end with a remark
on linear stability of trajectories and geodesics. Consider the n-dimensional configuration manifold
M with metric g. The geodesic deviation equation (GDE) for the evolution of the separating vector
(Jacobi field) y(t) between a geodesic x(t) and a neighboring geodesic is29

∇2
ẋ y = R(ẋ, y)ẋ = −R(y, ẋ)ẋ. (47)

We expand the Jacobi field y = ck(t)ek(t) in any basis ei(t) that is parallel transported along the
geodesic, i.e., ∇ẋek = 0 [ei(0) could be taken as coordinate vector fields at x(0)]. Taking the inner
product of the GDE with em and contracting with gim, we get c̈i = −Si

jc
j, where the “stability tensor”

Si
k
= Ri

jklẋ
j ẋl. As S is real symmetric, its eigenvectors f i can be chosen to form an orthonormal basis

for TxM . Writing y = dm fm, the GDE becomes d̈m = −κmdm (no sum on m), where κm is the eigen-
value of S corresponding to the eigenvector fm. The eigenvalues of S (say at t = 0) control the initial
evolution of the Jacobi fields in the corresponding eigendirections. Since κm = (Area⟨ fk, ẋ⟩)2K( fm, ẋ)
(Sec. III E), positive (negative) κ or K imply local stability (instability) for the initial evolution. We
note that calculating S and its eigenvalues at a given instant (say t = 0) requires no knowledge of the
time evolution of ei(t). So we may simply use the coordinate vector fields as the basis. Notice that
the tangent vector to the geodesic ẋ is always an eigendirection of S with eigenvalue zero.

Rotational Lagrange solutions in Newtonian potential: Consider the Lagrange rotational solu-
tions where three equal masses (mi = m) rotate at angular speed ω =


3Gm/a3 around their CM at

the vertices of an equilateral triangle of side a. The rotational trajectory on C2 in r, η, ξ1,2 coordinates
is given by x(t) = (a/√m, π/4,ωt,±π/4) with velocity vector ω∂ξ1. Note that trajectory and geodesic
times are proportional since σ = ds/dt = (E − V )/√T with V (r, η, ξ2) and T constant along x(t).
The stability tensor along the geodesic S = ω2 diag(1,−1/2,0,−1/2) is diagonal in the coordinate
basis r, η, ξ1, ξ2. As always, ẋ is a zero-mode. A perturbation along ∂r is linearly stable while those
directed along ∂η or ∂ξ2 are linearly unstable. Note that Routh’s criterion 27(m1m2 + m2m3 + m3m1) <
M2 3 predicts that Lagrange rotational solutions are linearly unstable for equal masses.

Lagrange homotheties: For equal masses, a Lagrange homothety solution is one where the
masses move radially (towards/away from their CM) while being at the vertices of equilateral
triangles. The geodesic in Hopf coordinates takes the form (r(t), η = π/4, ξ1, ξ2 = ±π/4) where ξ1
is arbitrary and independent of time. Though an explicit expression is not needed here, r(t) is the
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solution of r̈ + Γrrr ṙ
2 = 0 where Γrrr = −3Gm3/(Er3 + 3Gm3r) for the inverse-square potential. The

stability tensor is diagonal,

S =
6Gm3ṙ2

(3Gm3r + Er3)2 diag
�
0,−3Gm3 − 2Er2,−Er2,−3Gm3 − 2Er2� . (48)

For a given r and positive energy, perturbations along ∂ξ1,2 and ∂η are unstable while they are stable
when −3Gm3/r2 < E < −3Gm3/2r2. For intermediate (negative) energies, ∂η and ∂ξ2 are unstable
directions while ∂ξ1 is stable. For the Newtonian potential, we have similar conclusions following
from the corresponding stability tensor:

S =
3Gm5/2ṙ2

4r2(3Gm5/2 + Er)2 diag
�
0,−9Gm5/2 − 5Er,−2Er,−9Gm5/2 − 5Er

�
. (49)

We end this section with a cautionary remark. For a system whose trajectories can be regarded as
geodesics of the JM metric, the linear stability of geodesics may not coincide with linear stability
of corresponding trajectories. This may be due to the reparametrization of time (see Sec. III C 2 for
examples) as well as the restriction to energy conserving perturbations in the GDE. We illustrate
this with a 2D isotropic oscillator with spring constant k. Here the curvature of the JM metric (see
Sec. II) is R = 2Ek/T3, where T is the kinetic energy. Thus for positive k, geodesics are always
linearly stable while for negative k they are stable/unstable according as energy is negative/positive.
By contrast, linearizing the EOM δ̈xi = −(k/m)δxi shows that trajectories are linearly stable for
positive k and linearly unstable for negative k. This (possibly atypical) example illustrates the fact
that geodesic stability does not necessarily imply stability of trajectories.

IV. PLANAR THREE-BODY PROBLEM WITH NEWTONIAN POTENTIAL

A. JM metric and its curvature on configuration and shape space

In analogy with our geometric treatment of the planar motion of three masses subject to
inverse-square potentials, we briefly discuss the gravitational analogue with Newtonian potentials.
As before, the translation invariance of the Lagrangian

L =
1
2


i=1,2,3

mi ẋ2
i −


i< j

Gmim j

|xi − x j | (50)

allows us to go from the configuration space C3 to its quotient C2 endowed with the JM metric

ds2 =

(
E +

Gm1m2

|J1| +
Gm2m3

|J2 − µ1J1| +
Gm3m1

|J2 + µ2J1|
) �

M1|dJ1|2 + M2|dJ2|2� . (51)

The Jacobi coordinates J1,2, mass ratios µ1,2 and reduced masses M1,2 are as defined in Eqs. (5)–(7).
In rescaled Jacobi coordinates zi =

√
MiJi (8), the JM metric on C2 for equal masses becomes

ds2 =
*.
,
E +

Gm5/2

√
2|z1|

+

√
2Gm5/2

√
3|z2 − 1√

3
z1|
+

√
2Gm5/2

√
3|z2 +

1√
3

z1|
+/
-

�|dz1|2 + |dz2|2� . (52)

Rotations z j → eiθz j continue to act as isometries corresponding to the KVF ∂ξ1 in Hopf coordi-
nates (10), where the JM metric is

ds2 =
�
E + Gm5/2U/r

� �
dr2 + r2 �dη2 + dξ2

1 − 2 cos 2η dξ1 dξ2 + dξ2
2

��
,

with

U =
1

√
2 sin η

+

√
2

2 + cos 2η −
√

3 sin 2η cos 2ξ2

+

√
2

2 + cos 2η +
√

3 sin 2η cos 2ξ2

. (53)

Requiring the submersion (r, η, ξ1, ξ2) → (r, η, ξ2) from C2 to its quotient by rotations to be Rieman-
nian gives us the JM metric on shape space R3,
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FIG. 6. Ricci scalar R for zero energy and equal masses on C2 and R3 for the Newtonian potential (in units of 1/Gm5/2r ).
R on C2 is strictly negative while that on R3 can have either sign.

ds2 =
�
E + Gm5/2U/r

� �
dr2 + r2 �dη2 + sin2 2η dξ2

2

��
. (54)

Unlike for the inverse-square potential, scaling r → λr is not an isometry of the JM metric even
when E = 0. Thus we do not have a further submersion to the shape sphere. However, in what
follows, we will consider E = 0, as it leads to substantially simpler curvature formulae.

Though we do not have a submersion to the shape sphere, the quantity U(η, ξ2) in the conformal
factor may be regarded as a function on a 2-sphere of radius one-half. This allows us to express the
scalar curvatures as

RC2 =
3

2Gm5/2rU3

�
3U2 + |∇U |2 − 2U∆U

�
and RR3 =

1
4Gm5/2rU3

�
30U2 + 6|∇U |2 − 8U∆U

�

(55)

where ∆U is the Laplacian and ∇U the gradient relative to the round metric on a 2-sphere of
radius 1/2. Evidently, both the scalar curvatures vanish in the limit r → ∞ of large moment of
inertia ICM = r2; they are plotted in Fig. 6. Numerically, we find that for any fixed r , RC2 is
strictly negative and reaches its global maximum −3/(2Gm5/2r) at the Lagrange configurations
L4,5, while RR3 has a positive global maximum 1/(2Gm5/2r) at the same locations. Note that
RR3 = 2RC2/3 + (9U2 + |∇U |2)/(2Gm5/2rU3). As argued in Eq. (38), the second term is strictly posi-
tive and vanishes only when r → ∞. Using the negativity of RC2, it follows that RR3 > RC2 with
(RR3 − RC2) attaining its minimum 2/(Gm5/2r) at L4,5. Thus in a sense, the geodesic dynamics on
C2 is more linearly unstable than on shape space. Like the Ricci scalars, sectional curvatures on
coordinate 2-planes are (1/r)× a function of η and ξ2. We find that sectional curvatures are largely
negative and often go to ±∞ at collision points (see Eq. (57)).

B. Near-collision geometry and “geodesic incompleteness”

Unlike for the inverse-square potential, the scalar curvatures on C2 and R3 (55) diverge at
binary and triple collisions. To examine the geometry near pairwise collisions of equal masses, it
suffices to study the geometry near C3 (η = 0, r , 0, ξ1,2 arbitrary) which represents a collision of
m1 and m2. We do so by retaining only those terms in the expansion of the zero-energy metrics
around η = 0,

ds2
C2 ≈

(
Gm5/2/

√
2ηr

) �
dr2 + r2 �dη2 + dξ2

1 − 2(1 − 2η2)dξ1dξ2 + dξ2
2

��

and

ds2
R3 ≈

�
Gm5/2/r

� (
1/
√

2η + 2


2/3
) �

dr2 + r2 �dη2 + 4η2dξ2
2

��
, (56)

that are necessary to arrive at the following curvatures to leading order in η,

on C2: R = −3/ϱ and K(∂η, ∂r,ξ1,2) = 2K(∂r , ∂ξ1,2) = −2K(∂ξ1, ∂ξ2) = −1/ϱ

on R3: R = −1/ϱ, and K(∂η, ∂r) = −2K(∂r , ∂ξ2) = −1/ϱ, K(∂η, ∂ξ2) = −
2
√

2/3
Gm5/2 , (57)
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where ϱ =
√

2Gm5/2ηr . The curvature singularity at η = 0 is evident in the simple poles in the Ricci
scalars and all but one of the sectional curvatures in coordinate planes.

We use the near-collision JM metric of Eq. (56) to show that a pairwise collision point lies at
finite geodesic distance from another point in its neighborhood. Thus, unlike for the inverse-square
potential, the geodesic reformulation does not regularize the gravitational three-body problem.
Consider a point P near η = 0 with coordinates (r, η0, ξ1, ξ2). We estimate its distance to the collision
point C3(r,0, ξ1, ξ2). To do so, we consider a curve γ of constant r , ξ1 and ξ2 running from P to C3
parametrized by η0 ≥ η ≥ 0. We will show that γ has finite length so that the geodesic distance to C3
must be finite. In fact, from (56),

Length(γ) =
 0

η0


Grm5/2
√

2

dη
√
η
= −2


Grm5/2
√

2

√
η0 < ∞. (58)

Furthermore, the image of γ under the Riemannian submersion to shape space R3 is a curve of even
shorter length ending at a collision point. Thus geodesics on C2 and R3 can reach binary collisions in
finite time, where the scalar curvature is singular. It is therefore interesting to study regularizations
of collisions in the three body problem and their geometric interpretation.
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APPENDIX: PROOF OF AN INEQUALITY TO GIVE AN UPPER BOUND
FOR THE SCALAR CURVATURE

Here we establish a strict lower bound on the quantity that appears in the relation (38) between
Ricci scalars on C2 and S2. Since Montgomery has shown that RS2 ≤ 0, this helps us establish
strictly negative upper bounds for the scalar curvatures on C2, R3 and S3. We will show here that

12h2 + |∇h|2 > ζh3, where ζ = 55/27 ≈ 2.04. (A1)

The best possible ζ is estimated numerically to be ζ = 8/3 and the minimum occurs at the Eu-
ler points E1,2,3. We define the power sum symmetric functions u2n =

3
i=1 v

n
i in terms of which

the pre-factor in the JM metric (12) is h = v1 + v2 + v3 = u2. In Ref. 20 Montgomery shows that
|∇h|2 = 4s where the symmetric polynomial

s = (1/2) �−2u2
2 + 4u2u4 − 3u2

4 + 3u8
�
. (A2)

This gives

12h2 + |∇h|2 = u3
2 (8A + 6B) , where A =

u2 + u4

u2
2

and B =
u8 − u2

4

u3
2

. (A3)

We will show below that A ≥ 17/27 and B > −1/2, from which Eq. (A1) follows (numerically we
find that B ≥ −32/81 which leads to the above-mentioned optimal value ζ = 8/3). To prove the
inequality for B, we define c = cos 2η and s = sin 2η cos 2ξ2 which lie in the interval [−1,1]. Then

u8 − u2
4

u3
2

> −1
2
⇔ u8 − u2

4 +
u3

2

2
> 0 ⇔ 3

8
�
20 − 3(c2 + s2)2 − 8c3 + 24cs2� > 0. (A4)

For the latter to hold it is sufficient that 17 − 8c3 + 24cs2 > 0 which is clearly true for 0 ≤ c ≤ 1.
For −1 ≤ c < 0, put c = −d. Then it is enough to show that 17 + 8d3 − 24d(1 − d2) > 0 since
s2 ≤ 1 − d2. This holds as the LHS is positive at its boundary points d = 0,1 as well as at its local
extremum d = 1/2.

The quantity A defined in Eq. (A3) is a symmetric function of v1, v2, and v3 which in turn
are functions of η and ξ2 (12) for 0 ≤ η ≤ π/2 and 0 ≤ ξ2 ≤ π. Since


i 1/vi = 3, we may regard
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FIG. 7. The boundary ∂D of the region D in the v1-v2 plane is given by the level curves ξ2= 0, π/2. These level curves run
from the collision point η = 0 to the Euler point η = π/2, passing through the collision points at v1=∞ or v2=∞ (where
η = π/3). The level curves ξ2= π/8, π/4,3π/8 in the interior D are also shown. Note that D lies within the quadrant
v1,2 ≥ 1/2.

A as a function of any pair, say v1 and v2. The allowed values of η and ξ2 define a domain
D̄ = D ⨿ ∂D in the v1-v2 plane. To show that A ≥ 17/27, we seek its global minimum, which must
lie either at a local extremum in the interior D or on the boundary ∂D. ∂D is defined by the curves
ξ2 = 0 and ξ2 = π/2 which meet at η = 0 and η = π/2 and include the points (v1 = ∞, v2 = 2/3)
and (v1 = 2/3, v2 = ∞) (see Fig. 7). This is because, for any fixed η, v1 and v2 (12) are mono-
tonic functions of ξ2 for 0 ≤ ξ2 ≤ π/2 and symmetric under reflection about ξ2 = π/2. Along ∂D,
A = (5 cos 6η + 22)/27 is independent of ξ2 and minimal at the Euler configurations η = π/6 and
π/2 with the common minimum value 17/27, which turns out to be the global minimum of A.
This is because its only local extremum in D is at the Lagrange configuration v1 = v2 = v3 = 1
where A = 2/3. To see this, we note that local extrema of A in D must lie at the intersections of
∂A/∂v1 = 0 and ∂A/∂v2 = 0. Now ∂A/∂v1 = (v1 − v3)F(v1, v2)/v2

1u3
2, where

F(v1, v2) = u2
�
v1 + v3 + 2

�
v2

1 + v1v3 + v
2
3

�	
− 2(v1 + v3)(u2 + u4). (A5)

For ∂A/∂v1 to vanish, either v1 = v3 or F(v1, v2) = 0 or one of the vi = ∞. The collision points
vi = ∞ do not lie in D. The conditions for ∂A/∂v2 to vanish are obtained via the exchange v1↔ v2.
The intersection of the conditions v1 = v3 and v2 = v3 lies at the Lagrange configurations vi = 1,
where A = 2/3. It turns out that the only intersection of v1 = v3 with F(v2, v1) = 0 or of v2 = v3 with
F(v1, v2) = 0 lying in D occurs at the above Lagrange configuration. For instance, when v1 = v3 = v ,
F(v2, v1) = −3v2(4v − 1)(v − 1)/(3v − 2)2 vanishes when v = 1 or v = 1/4 (which violates v ≥ 1/2).
Finally, we account for extrema lying on the zero loci of both F(v1, v2) and F(v2, v1), which using
u−2 = 3, must satisfy

F(v1, v2) − F(v2, v1) = (v1 − v2) [12v1v2v3 − (v1 + v2 + v3)] = 0. (A6)

So either v1 = v2 or 12v1v2v3 = u2. Now, we have shown above that the only extrema of A on
v1 = v3 in D lie at the Lagrange configurations. Since A is a symmetric function of the vi, it fol-
lows that its only extrema on v1 = v2 also lie at the Lagrange configurations. On the other hand,
12v1v2v3 − (v1 + v2 + v3) ≥ 0 for vi ≥ 1/2, with equality only at vi = 1/2 which is not in D. Thus the
only extremum of A in D is at the Lagrange configurations (where A = 2/3) and hence its global
minimum occurs on ∂D at the Euler configurations (where A = 17/27).
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