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Preface

Why Classical Mechanics?

Classical' mechanics traces its origins to the study of the motion of bodies. It is an
old subject whose basic principles were formulated in Galileo’s and Newton’s time
(1600s). However, the subject remains alive and continues to thrive. This is because
(a) itis the basis for the formulation of most physical systems and remains the predic-
tive framework in which we try to understand and control the vast majority of phys-
ical phenomena despite the advent of the quantum theory,? (b) the theoretical edifice
of mechanics has undergone repeated rejuvenation allowing it to be understood in
increasingly deep ways (Lagrangians, Hamiltonians, Poisson brackets, symplectic
forms, canonical transformations, Hamilton-Jacobi equation, perturbation theory,
Dirac-Bergmann constraints, Lax pairs, Kolmogorov-Arnold-Moser (KAM) theory,
symbolic dynamics, renormalization and so forth) and (c) old classical phenomena
like turbulence are yet to be satisfactorily understood and new phenomena such as
those surrounding integrable, chaotic, mixed and open systems pose fresh challenges.
The history of classical mechanics also reveals that the theoretical and computational
schemes developed to understand and solve Newton’s equations of mechanics (such
as conservation laws, variational principles, constraints, the Hamiltonian formulation
or that in terms of geodesics or Hamilton-Jacobi wavefronts) have a utility beyond the
validity of Newton’s laws. They have even been used to discover and formulate other
or more accurate laws of nature (such as those governing electromagnetism or the
quantum dynamics of relativistic particles and fields) as well as to set up effective or
statistical frameworks to deal with unexpected ‘emergent’ phenomena that arise in the
presence of nonlinearities or when many degrees of freedom interact. Furthermore,
developments in classical mechanics have been inspired by and used in numerous
practical problems of science and engineering such as projectile motion, timekeeping,

! The adjective classical conveys that it is the oldest and best established branch of mechanics.
Technically, the term classical is used to distinguish it from quantum mechanics.

2 Even phenomena or systems that require a quantum mechanical treatment are often fruitfully first
understood in some classical limit.
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construction of roads, bridges, dams, musical instruments and gyroscopes, flight of
airplanes, launching and placement of satellites and weather prediction. If we add to
this the beauty of the mathematical form of classical dynamics, we begin to see why
it remains a central part of physics research and education.

Scope of this Book

This book is meant primarily for postgraduate students of physics and their teachers.
However, it should also be of use to undergraduates, researchers and others inter-
ested in mechanics, especially when viewed as a part of the larger fabric of theoretical
physics. An attempt has been made to keep the book reasonably self-contained by
developing topics from basic principles and by providing physical context, intu-
ition and reasoning. Topics are presented in a manner that elucidates the thought
process behind calculations. Mathematical constructions and terms are motivated
and explained alongside physical developments. Readers should find them useful in
thinking about physics and communicating effectively. It is hoped that these features
will make the book suitable both for use in taught courses and self-study. Many
details and subtle issues are clarified, which should enable teachers to explain ideas
effectively. The process of learning mechanics is not linear: a novice is not expected
to follow, at the first instance, every concept that is presented. Things tend to become
clearer on subsequent readings. Footnotes are an integral part of this book and are
used to avoid interrupting the flow. They contain qualifications, explanations, addi-
tional material, etc. While some of them are meant for instructors and advanced
readers, many should be helpful even to first-time readers. Starred sections, on the
other hand, contain topics that may be skipped on a first reading without affecting the
continuity of the material. It is hoped that the reader will acquire a working knowl-
edge of, affinity and appreciation for mechanics, its challenges and its connections
to other areas of physics, as well as a degree of theoretical sophistication by working
through this book.

Genesis of this Book

The specific suggestion to write this book for the Texts and Readings in Physical
Sciences (TRiPS) series came from D. K. Jain of Hindustan Book Agency on 19
January, 2018, although he had mentioned it more casually earlier as well. He
followed this up with periodic exhortations to start writing. The fact that both my guru
S. G. Rajeev and my mama (maternal uncle) N. Mukunda (with E. C. G. Sudarshan)
had written advanced books on mechanics [1] and [2] was a source of inspiration, but
also made it a daunting task. Encouragement and feedback from students who took
my courses, my colleagues H. S. Mani, K. P. N. Murthy, A. Laddha and K. G. Arun
(who had seen my lecture notes) and D. Ghoshal helped convince me that it was
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all right to attempt yet another book on mechanics. Although my lecture notes had
been with me for a few years, it was not until the day after new year’s day, 15 April,
2020 that I started preparing the manuscript. The lock-down due to the COVID-19
pandemic played an important role in helping me get started and sustaining the effort.
I soon realized how inadequate my rough lecture notes were, but it took longer for
me to recognize just how much effort was needed to write this book! The process
itself has been fun and rewarding and I hope readers will enjoy this book.
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Prerequisites

Although most mathematical methods are developed along the way, we assume
some familiarity with calculus, vectors and matrices. Some of this background is
in Appendix A while more may be found in [8, 9, 10, 11, 12, 13, 14, 15]. Connec-
tions to electromagnetism, optics, thermodynamics, relativity, quantum and statistical
mechanics are occasionally pointed out. For those unfamiliar with these subjects,
such remarks may simply be ignored. Finally, it is hoped that a reader can begin
reading several of the chapters without having studied many of the preceding ones.

Arrangement of Material

The order of presentation is based on certain guiding principles. (1) Increasing
number of degrees of freedom: point particles (1D-3D), rigid bodies and then contin-
uous media. (2) A historical path through the development of the formalism of clas-
sical mechanics, progressing from the ideas of Galileo and Newton through the
Bernoullis, d’Alembert, Maupertuis, Euler, Lagrange, Hamilton, Poisson, Jacobi,
Lie, Hill, Poincaré, Lyapunov, etc. (3) Small oscillations to large oscillations: linear
to nonlinear equations of motion. (4) The idea that the study of concrete examples
often leads to general principles/formalisms which then inform on the behavior of
other model systems. (5) Configuration and phase spaces that are topologically trivial
(e.g., Euclidean spaces) followed by those that are not (e.g., circles, spheres, cylin-
ders). (6) Increasing mathematical sophistication. (7) Regular dynamics to chaotic
dynamics.

Outline of Chapters

For those who would like to begin with some mathematical and kinematical
preliminaries, Appendix A deals with vectors in Euclidean space, kinematics,
circular motion, polar coordinates, Taylor series, vector calculus, linear algebra
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and the Fourier transform. We begin our study of mechanics in Chap. 1 with the
Newtonian formulation of the motion of a particle on a line and discuss some of the
general phenomena that arise. The harmonic oscillator and pendulum are introduced
as important examples of systems with one degree of freedom. The notions of
oscillatory time period, time delay and inverse problems are introduced. Chapter 2
is devoted to Kepler’s two-body central force problem which is used to motivate and
illustrate the consequences of Newton’s laws of mechanics and gravity in the context
of planetary orbits. Replacing the gravitational force with the Coulomb force between
charged particles, we derive Rutherford’s differential cross section for the scattering
of alpha particles by gold nuclei. The utility of Keplerian orbits goes beyond the
two-body problem: we show how they turn up in the Euler and Lagrange solutions
of the three-body problem! With this background at hand, we move (in Chap. 3) to
the conceptual and formal development from Galileo’s principle of relativity to the
Newtonian, Euler-Lagrangian, Hamiltonian, Poisson bracket and Euler-Maupertuis
formalisms of mechanics. Chapter 3 has been placed after Chaps. 1 and 2 in keeping
with the adage that physics tends to be developed through the study of examples
or model systems. General principles often emerge from the study of specific
systems. A reader may of course go straight to Chap. 3 and return to the previous
chapters when necessary. In Chap. 4, we point out the shortcomings of Newtonian
mechanics in treating phenomena where speeds of particles or frames relative to an
inertial frame are comparable to that of light and give a brief introduction to special
relativistic mechanics. In Chap. 5, we return to nonrelativistic mechanics and adopt a
dynamical systems viewpoint where we think of mechanical systems in terms of their
associated vector fields on the state space. We then turn to a variety of examples in
Chaps. 6, 7, 8, 9: small oscillations for one degree of freedom, (not necessarily small)
oscillations of a simple pendulum and quartic anharmonic oscillator, rigid bodies
and motion in noninertial frames (with applications to Foucault’s pendulum and the
restricted three-body problem). The formalisms developed in earlier chapters are put
to use here, while new techniques (both exact and approximate) are also introduced.
We then return to general structural aspects by discussing canonical transformations,
angle-action variables and the Hamilton-Jacobi equation in Chaps. 10, 11, and 12,
where we also meet Poincaré recurrence, Liouville integrability, KAM tori and Lax
pairs. In Chap. 13, we go back to the study of small oscillations, this time around
static and periodic solutions of systems with two or more degrees of freedom.
Pendula coupled by a spring, a diatomic molecule and the double pendulum are
used to illustrate normal modes, while the Kapitza pendulum provides a context to
examine the stability of oscillations. In Chap. 14, we discuss several simple examples
of bifurcations of vector fields, which illustrate how the qualitative behavior of a
system can change as a control parameter is varied. This is followed in Chap. 15,
by examples of discrete-time and continuous-time dynamical systems (standard and
logistic maps, double pendulum and Lorenz oscillator) illustrating the passage from
regular to chaotic motion. The next four chapters (Chaps. 16, 17, 18, 19) provide an
introduction to continuum mechanics via d’ Alembert’s wave equation for vibrations
of a stretched string, Fourier’s equation for heat diffusion and Brownian motion
and finally fluid mechanics. Appendix A discusses mathematical and kinematical
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preliminaries while Appendix B contains an informal introduction to concepts from
the theory of manifolds, tensors, differential geometry, groups and Lie algebras that
we use in our treatment of mechanical systems. We end with a list of books that
treat related topics, cited references to the literature and a detailed index. Readers
are encouraged to attempt the end-of-chapter problems, which are an integral part
of the book. Each chapter begins with an introductory section providing conceptual
context, outlining topics to be treated and mentioning further developments.

Planning a Course

A first course on mechanics for undergraduates has been taught by starting
with background on vectors, kinematics, polar coordinates and vector calculus
(Appendix A) followed by the framework of Newtonian mechanics (Sects. 3.
1, 3.2), Galileo’s relativity principle and Newton’s laws (Sect. 3.3), concepts
of phase space, conservation laws and their illustration via collisions (Sect. 3.
4), motion in one dimension (Sects. 1.1, 1.2), Kepler’s laws and Newton’s
law of gravity (Sect. 2.1), an introduction to the harmonic oscillator and
simple pendulum (Sects. 1.1, 6.1, 1.5), uniformly accelerated frames (Sect. 9.
1) and the elements of special relativity (Sects. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6).
A second course on mechanics could cover Lagrangian mechanics (Sects. 3.5, 3.
6, 3.7, 3.8, 3.9, 3.10), Hamiltonian mechanics (Sects. 3.14, 3.15), Poisson brackets
(Sect. 3.21), canonical transformations (Sects. 10.1, 10.4, time permitting), the
gravitational two-body problem (Sects. 2.2, 2.3), small oscillations and normal
modes (Sect. 13.1), damped harmonic oscillations (Sect. 6.4, time permitting),
rigid bodies (Sects. 8.1, 8.2, 8.3, 8.4, 8.5) and noninertial frames of reference
(Sect. 9.2). The content of a Master’s course would depend on student back-
ground. It may be based on a selection from the following topics, with some
being assigned as reading projects: motion in one dimension (Sects. 1.1, 1.2, 1.
5), the Kepler problem (Sects. 2.1, 2.2, 2.3, 2.4, 2.5), the formalism of Newtonian,
Lagrangian and Hamiltonian mechanics (Sects. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,
3.9, 3.10, 3.12, 3.14, 3.15, 3.18, 3.19, 3.21, 3.22), driven oscillations (Sect. 6.8)
or anharmonic oscillations (Sect. 7.1), rigid body dynamics (Sect. 8.6, 8.7, 8.9,
8.10, 8.11, 8.12), canonical transformations (Sects. 10.1, 10.2, 10.4, 10.5, 10.6,
10.7, 10.8, 10.10), angle-action variables (Sects. 11.1, 11.2, 11.3, 11.4) and the
Hamilton-Jacobi equation (Sects. 12.1, 12.3, 12.4). A course on nonlinear dynamics
could treat vector fields in one and two dimensions (Sects. 5.1, 5.2, 5.3, 5.4), planar
vector fields arising from small oscillations (Sects. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7),
the pendulum (Sect. 7.1) or anharmonic oscillator (Sects. 7.4, 7.5), infinitesimal
canonical transformations (Sect. 10.6), Liouville’s theorem (Sect. 10.8), Poincaré
recurrence (Sect. 10.9), angle-action variables (Sects. 11.1, 11.2, 11.3, 11.4), Liou-
ville integrability and KAM tori (Sect. 11.7), normal modes (Sect. 13.2), stability of
periodic solutions (Sect. 13.4), bifurcations of vector fields (Sects. 14.1, 14.2) and
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chaos (Sects. 15.1, 15.4). An introductory continuum mechanics course (sans elas-
ticity) may be based on the unstarred sections in Chaps. 16, 17, 18, 19. Mathematical
supplements from Appendix B may be introduced when the need arises or in a course
on mathematical methods of physics. In planning courses, instructors should feel free
to omit passages based on student background and time available. Many chapters are
self-contained, so teachers may treat topics in an order they are comfortable with.
For instance, motion in noninertial frames could be discussed before rigid bodies,
although the corotating frame of a rigid body is a nice example of a noninertial frame.
Finally, I hope to maintain a list of corrections/clarifications and additional resources
at the web address: http://www.cmi.ac.in/~govind.

Chennai, India Govind S. Krishnaswami
May 2024
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About This Book

This well-rounded and self-contained treatment of classical mechanics strikes a
balance between examples, concepts, phenomena and formalism. While addressed to
graduate students and their teachers, the minimal prerequisites and ground covered
should make it useful also to undergraduates and researchers. Starting with concep-
tual context, physical principles guide the development. Chapters are modular and the
presentation is precise yet accessible, with numerous remarks, footnotes and prob-
lems enriching the learning experience. Essentials such as Galilean and Newtonian
mechanics, the Kepler problem, Lagrangian and Hamiltonian mechanics, oscilla-
tions, rigid bodies and motion in noninertial frames lead up to discussions of canon-
ical transformations, angle-action variables, Hamilton-Jacobi and linear stability
theory. Bifurcations, nonlinear and chaotic dynamics as well as the wave, heat and
fluid equations receive substantial coverage. Techniques from linear algebra, differ-
ential equations, manifolds, vector and tensor calculus, groups, Lie and Poisson
algebras and symplectic and Riemannian geometry are gently introduced. A dynam-
ical systems viewpoint pervades the presentation. A salient feature is that classical
mechanics is viewed as part of the wider fabric of physics with connections to
quantum, thermal, electromagnetic, optical and relativistic physics highlighted. Thus,
this book will also be useful in allied areas and serve as a stepping stone for embarking
on research.
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