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1. Introduction

My research interests lie in areas of representation theory, vertex operator algebras and

algebraic combinatorics—more precisely, involving the fascinating interplay between (integer)

partition identities and representation theory of a�ne Kac–Moody Lie algebras, using vertex-

operator-theoretic techniques. The highlight of my doctoral research (under the supervision

of Prof. Robert Wilson at Rutgers University) was the discovery of three new conjectured

partition identities, arising from the level 4 standard modules for the a�ne Kac–Moody Lie

algebra A(2)
2 . These identities a�ords interesting new features not seen in previously known

examples of this type.

2. History and Background

Historically, the discovery of vertex operator constructions of representations of a�ne

Kac–Moody Lie algebras was motivated by a conjectured interplay between classical partition

identities and standard modules for a�ne Kac–Moody Lie algebras.

2.1. Rogers–Ramanujan identities. The �rst famous example of such interplay arises from

the Rogers–Ramanujan identities, which may be stated as follows:

(1) The number of partitions of a nonnegative integer n in which the di�erence
between any two successive part is at least 2 is the same as the number of
partitions of n into parts congruent to 1 or 4 modulo 5.

(2) The number of partitions of a nonnegative integer n in which the di�erence
between any two successive part is at least 2 and such that the smallest part is
at least 2 is the same as the number of partitions of n into parts congruent to
2 or 3 modulo 5.

For each of these identities, the left-hand side counts the number of partitions satisfying

certain “di�erence conditions” and “initial conditions,” while the right-hand side counts the

number of partitions satisfying certain “congruence conditions.” In generating-function form,

for each of these identities, the LHS can be naturally expressed as an in�nite sum, and the RHS

as an in�nite product. Consequently, they are often informally referred to as the “sum-side”

and the “product-side,” respectively.

2.2. Lepowsky–Wilson’s approach. A connection between these identities and their gen-

eralizations, and standard modules for the a�ne Lie algebra A(1)
1 (= ŝl(2)) was discovered and

further elucidated in the early works of Lepowsky–Milne [LM78], Lepowsky–Wilson [LW78,

LW81, LW82, LW84, LW85], Lepowsky–Primc [LP85] and Meurman–Primc [MP87]. The work

of [LM78] led to the conjecture that the Rogers–Ramanujan identities “take place” in the level

3 standard modules for A(1)
1 .

In Lepowsky–Wilson’s vertex operator theoretic interpretation and proof of the Rogers–

Ramanujan identities [LW81, LW82, LW84], they showed that the product-sides (in generating-

function form) of these identities are precisely the graded dimensions (sometimes called
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“characters”) of certain in�nite-dimensional spaces, namely the “vacuum spaces” with respect

to the principal Heisenberg sublalgebra, of the level 3 standard A(1)
1 -modules. They constructed

bases for these modules—inventing certain vertex-operator-theoretic structures which they

called the Z-algebras—using monomials, acting on a highest weight vector, in certain new

operators (Z-operators) whose indices re�ected the di�erence and initial conditions, explaining

the sum-sides.

They extended their work to all the standard modules for A(1)
1 in [LW82, LW84, LW85],

giving a vertex-algebraic interpretation of a family of Rogers–Ramanujan-type identities,

discovered by Gordon–Andrews–Bressoud. The linear independence of the relevant monomials

for standard A(1)
1 -modules of level greater than 3 was not proved in [LW82, LW84, LW85].

This problem was solved by Meurman–Primc [MP87], providing a vertex-algebraic proof of

Gordan–Andrews–Bressoud identities beyond the case of Rogers–Ramanujan identities.

The concept of Z-algebra is universal, in that it treated all a�ne Lie algebras at all levels.

In this way, one gets very general partition identities. However, the hard part is to explicitly
construct a concrete basis re�ecting the sum-side information.

2.3. Capparelli’s identities. In his Ph.D. thesis [Cap88], S. Capparelli proposed a pair of

combinatorial identities based on the level 3 standard modules for the a�ne Lie algebra A(2)
2 .

He also demonstrated that the construction of the level 2 standard modules for A(2)
2 in this

way gives rise to another vertex-operator-theoretic interpretation of the classical Rogers–

Ramanujan identities (see also [Cap92, Cap93]). It was believed that once a few low level cases

for standard A(2)
2 -modules had been successfully analyzed, a general construction for all levels

would emerge. However, the cases for A(2)
2 turned out to be much harder and subtler than

those for A(1)
1 which had been extensively studied. One of Capparelli’s identities, arising from

the level 3 standard A(2)
2 -modules, may be stated as follows:

The number of partitions of a nonnegative integer n into parts di�erent from 1
and such that the di�erence of two successive parts is at least 2, and is exactly 2 or
3 only if their sum is a multiple of 3, is the same as the number of partitions of n
into parts congruent to ±2,±3 modulo 12.

A q-series proof of this identity was given by G. Andrews [And94], proving Capparelli’s

conjecture. Capparelli also provided a direct vertex-operator-theoretic proof of his identities

by proving the linear independence of his spanning sets in [Cap96]. Another vertex-operator-

theoretic proof of Capparelli’s identities was independently given by Tamba–Xie [TX95].

3. Research Summary

3.1. New partition identities based on level 4 standard A(2)
2 -modules. In [Nan14a], I

gave combinatorial interpretations of the graded dimensions of the three inequivalent level

4 standard modules for the a�ne Kac–Moody Lie algebra A(2)
2 , and based on it, proposed a

new set of partition identities. The level 4 case involves much more subtlety and complexity

compared to the level 3 case, showing even more surprising results.

3.1.1. The statements. A partition of a nonnegative integer n may be described as a non-

increasing sequence (m1, . . . , ms), s ≥ 0, of positive integers such that ∑s
i=1 mi = n. For

each 1 ≤ i ≤ s, the number mi is referred to as a part of the partition; and s is the length.

A nonempty partition (m1, . . . , ms) is said to satisfy the di�erence condition [d1, . . . , ds−1] if

mi −mi+1 = di for all 1 ≤ i < s.

The new partition identities conjectured in [Nan14a] may be stated as follows:
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(1) The number of partitions of a nonnegative integer n into parts di�erent from
1 and such that there is no sub-partition satisfying the di�erence conditions
[1], [0, 0], [0, 2], [2, 0] or [0, 3], and such that there is no sub-partition with
an odd sum of parts satisfying the di�erence conditions [3, 0], [0, 4], [4, 0] or
[3, 2∗, 3, 0] (where 2∗ indicates zero or more occurrence of 2), is the same as
the number of partitions of n into parts congruent to ±2,±3 or ±4 modulo
14.

(2) The number of partitions of a nonnegative integer n such that 1, 2 and 3 may
occur at most once as a part, and such that there is no sub-partition satisfying
the di�erence conditions [1], [0, 0], [0, 2], [2, 0] or [0, 3], and such that there is
no sub-partition with an odd sum of parts satisfying the di�erence conditions
[3, 0], [0, 4], [4, 0] or [3, 2∗, 3, 0] (where 2∗ indicates zero or more occurrence
of 2), is the same as the number of partitions of n into parts congruent to
±1,±4 or ±6 modulo 14.

(3) The number of partitions of a nonnegative integer n into parts di�erent from
1and 3, such that 2 may occur at most once as a part, and such that there is
no sub-partition satisfying the di�erence condition [3, 2∗] (where 2∗ denotes
zero or more occurrence of 2) ending with a 2, and such that there is no sub-
partition satisfying the di�erence conditions [1], [0, 0], [0, 2], [2, 0] or [0, 3],
and such that there is no sub-partition with an odd sum of parts satisfying
the di�erence conditions [3, 0], [0, 4], [4, 0] or [3, 2∗, 3, 0], is the same as the
number of partitions of n into parts congruent to ±2,±5 or ±6 modulo 14.

Each of the above statements corresponds to computing the graded dimension of a level

4 standard A(2)
2 -module in two ways—from the principal specialization of the Weyl–Kac

character formula given by the numerator formula in [LM78, Lep78], describing the congruence

conditions on the product-side, and an explicit construction of a graded basis for the module,

describing the di�erence and initial conditions on the sum-side. The “spanning set” results in

[Nan14a] prove that for each nonnegative integer n, the LHS (the sum-side) is more than or

equal to the RHS (the product-side) in each of the above statements. A computer veri�cation

shows that the equality holds for at least n ≤ 170, n = 180, 190 and 200.

3.1.2. A brief overview. A level 4 standard module V for A(2)
2 may be viewed as embedded in

U⊗4
, where U is the (unique) basic module (i.e., level 1 standard module) for A(2)

2 . The starting

point in [Nan14a] is a spanning set consisting of elements of the form α(−λ)X(−µ)v0, where

v0 ∈ U⊗4
is a highest weight vector for V (depending on the particular level 4 module), and

α(•), X(•) are families of operators in End U⊗4
parametrized by certain partitions λ and µ.

To �nd a “tighter” spanning set matching the graded dimension as closely as possible, we need

relations among these elements.

There are two types of relations among the above elements. Some relations come from

relations among various monomials in the operators α(•), X(•) viewed inside End U⊗4
. They

explain the di�erence conditions on the sum-sides. (Note that the di�erence conditions are

the same in all the three partition identities above). The resulting sub-partitions, satisfying

these di�erence conditions in the sum-sides of the above three partition identities, are called

“forbidden” sub-partitions.

The other relations are speci�c to the particular level 4 module V. They are valid among

monomials in the operators α(•), X(•) applied to a highest weight vector v0 ∈ U⊗4
, depending

on the particular level 4 module V. These relations explain the initial conditions on the sum-

sides for the three partition identities stated above.
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3.1.3. The “surprise”. The most surprising and curious result in [Nan14a] is the discovery

of the forbidden sub-partitions of arbitrary lengths (described by the di�erence conditions

[3, 2∗, 3, 0]). In all previously known analogous situations arising from representations of

a�ne Kac–Moody Lie algebras, the forbidden sub-partitions could be described by di�erence

conditions of bounded length. For example, in Rogers–Ramanujan identities and Capparelli’s

identities, the forbidden sub-partitions are of the form (k + 1, k) with di�erence condition [1].
The proof of the relations in [Nan14a] corresponding to the forbidden sub-partitions of

arbitrary lengths is intricate, requiring to keep a lot of careful details in the calculations, but at

the same time, it shows some elegant “recursive” and “periodic” properties.

3.1.4. Experimental and computational approach. It is interesting to note how experimental

and computational methods played a large role in [Nan14a]. The discovery of the unexpected,

“exceptional” forbidden sub-partitions was facilitated by experimental methods using Maple (a

computer algebra system) programs.

Based on relations that we already knew at that time, we made educated guesses about

possible forbidden sub-partitions that we hadn’t discovered yet. We could then test our

hypotheses by checking against the graded dimensions of the standard module under in-

vestigation. This way, wrong guesses could be eliminated, and we could focus on possible

forbidden sub-partitions for which corresponding relations in the spanning set are yet to be

found. These experimental tools provided us with valuable insights and intuitions that led us

to the mathematically rigorous proofs of the corresponding relations.

Maple programs were also used (but not as an experimental tool) to carry out computations

that were too involved and complicated to do manually. These computations were essential in

the proofs for both the di�erence and initial conditions.

Finally, C programs were used to check the validity of the conjectured partition identi-

ties in [Nan14a]. The validity of these identities were veri�ed for n ≤ 170 and for n =
180, 190 and 200—giving us strong evidence in support of the conjectures.

All the programs that were used in [Nan14a] for computations and veri�cation are published

on my github page [Nan14b].

3.2. Classi�cation of hyperbolicDynkin diagrams. In another collaborative project [Car+10],

we presented classi�cation of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits.

We also gave a symmetrizability criterion for a Dynkin diagram, or equivalently, a generalized

Cartan matrix.

4. Research Agenda

I intend to continue on my current line of research to explore further connections between

combinatorial identities and representations of a�ne Kac–Moody Lie algebras, and to develop

a better understanding of them. Since the partition identities (stated in §3.1.1) and the cor-

responding analyses of the relations in [Nan14a] are �rst of its kind, I hope that this will

lead to discovery of similar (or, perhaps, even more complicated) partition identities from

other standard modules for various a�ne Kac–Moody Lie algebras. I would like to apply my

experimental methods as outlined in §3.1.4 to standard modules of higher levels for the algebra

A(2)
2 in order to gain deeper insights and intuitions about the general case.

I would also like to apply my tools to standard modules for other a�ne Kac–Moody Lie

algebras. In recent developments [KR14], using experimental methods, Kanade–Russell dis-

covered 6 new conjectured partition identities of Rogers–Ramanujan type. The product-sides
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of three of these identities appear to come from level 3 standard modules for D(3)
4 . In col-

laboration with S. Kanade, I would like to see if we can apply our methods to �nd possible

vertex-operator-theoretic interpretations and proofs of these identities.

Another of my research goals is to prove the linear independence of the spanning sets for

the level 4 standard A(2)
2 -modules and thereby proving my conjectures in [Nan14a].

Last but not least, I am always eager to learn, and open to collaborating opportunities in

related areas of research.
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