DIFFERENTIAL EQUATIONS

- (1) Let V be a continuous vector-field defined on a domain U in \mathbb{R}^n . Let x_0 be a point in U. Is it true that the differential equation $\frac{dx}{dt} = V(x)$ admits a solution $\phi(t)$ satisfying initial condition $\phi(0) = x_0$ defined on some open interval containing 0. Justify your answer.
- (2) Give at least two distinct examples of differential equations that do not admit unique solution but do admit a solution.
- (3) Let V_r be a smooth vector field defined on a sphere of radius r that is always tangential to the sphere on which it is defined. Define a vector field on \mathbb{R}^3 be declaring $V(x) = r^2(1-r^2)V_r(x)$. Show that for each t in \mathbb{R} the time t flow associated to this vector field is defined.
- (4) Draw the integral curves (flow -lines) corresponding to the following vectorfields defined on R².
 - V(x) = K.x, K an integer.
 - V(x,y) = (x, -y).
- (5) Suppose we are given two vector fields V_1 and V_2 defined on \mathbb{R}^n such that the vectors $V_1(x)$ and $V_2(x)$ are linearly independent for each x. Is is possible to find a diffeomorphism ϕ from a neighborhood V of 0 to a neighborhood Uof zero such that $(D\phi_x(V_1(x)), D\phi_x(V_2(x))) = (1, 0, 0, \dots, 0), (0, 1, 0, \dots, 0)$ for each x in V. Justify your answer.