DIFFERENTIAL GEOMETRY END SEMESTER

(1) Show that the tangent bundle of even dimensional real projective space is not trivial.
(2) Calculate the Gaussian curvature of the surface embedded in \mathbb{R}^{3} obtained by revolving the circle $(x-2)^{2}+y^{2}=1$ around the z-axis at points $(1,0)$ and $(3,0)$. (Here the metric on the surface is assumed to be the induced metric from \mathbb{R}^{3}.
(3) Show that there is no metric on S^{2} having curvature bounded above by 0 and no metric on surface of genus g which is bounded below by 0 .

