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Perfect matching of a graph (motivating example) I

Definition 1.1

Given a graph G = (V ,E ) a perfect matching in G is a subset M of edge
set E , such that every vertex v ∈ V is adjacent to exactly one edge in M.

It need not always exist. For example, consider the K3 (triangle) graph
does not have a perfect matching.

Figure: Perfect matching in Petersen graph
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Perfect matching of a graph (motivating example) II

Problem 1.1

Given a graph G = (V ,E ), how will you check if the graph has a perfect
matching?

Well one of the computationally efficient ways is to consider something
called the Tutte matrix of the graph and check whether the determinant of
the matrix is zero or not. But determinants are polynomials that can be
represented in form of a ”small” arithmetic circuit, so checking whether a
graph has a perfect matching or not reduces to the problem of PIT as we
shall discuss and make more precise in subsequent slides.
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Arithmetic circuit

Definition 1.2

It is a directed acyclic graph with internal nodes that are arithmetic
operations +,× and the leaf nodes are variables xi s or field elements.
Note that this evaluates to a polynomial in F[x1, · · · , xn] = F[x ] and every
polynomial in F[x ] can be written in this form.

Figure: Arithmetic circuit
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Determinants I

Theorem 1.1

An n × n determinant can be represented by an arithmetic circuit of size
poly(n).

We proof using simple induction on order n. The n = 1 case is quite easy
to check. Now assume that the n × n determinant has poly(n) sized
arithmetic circuit, then (n + 1)× (n + 1) has a poly(n + 1) sized circuit
too. Consider the matrix A = [aij ]0≤i≤n+1,0≤i≤n+1

det(A) =
n+1∑
j=1

(−1)1+ja1,jA1,j

where Aij denotes the ijth minor of the matrix that = determinant of the
matrix we obtain by removing the ith row and jth column from the matrix
A.
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Determinants II

Now by induction hypothesis since A1j is n × n order matrix it a has
poly(n) sized circuit for every j ∈ 1, · · · n + 1 which means the determinant
det(A) from the equation (minor expansion) also has a poly(n) sized
circuit that is poly(n + 1) sized circuit. As it is a linear combination of
n + 1 many poly(n) sized circuits. This proves the theorem by induction.
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A slight detour: Permanents I

It is worth mentioning about another (relevant) polynomial somewhat
similar to determinant, for which if there is a polynomial sized circuit, is
still open. Recall the Leibniz formula of determinant of matrix
A = [aij ]0≤i≤n,0≤i≤n:

det(A) =
∑
σ∈S

sgn(σ)
n∏

i=1

ai ,σ(i)

On a similar line the permanent is defined as:

perm(A) :=
∑
σ∈S

n∏
i=1

ai ,σ(i)

We saw that the determinant has a small sized arithmetic circuit, but is
that the case of the permanent as well? This is still unsolved, the circuit
size lower bound of the permanent:
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A slight detour: Permanents II

Problem 1.2 (open)

Does there exist a polynomial sized arithmetic circuit for permanent of an
n × n matrix.

We used the Laplace expansion for determinant to get the small sized
circuit for the determinant, however nothing of such is known for
permanent. And directly using the definition of permanent to construct a
circuit will lead to circuit size to be exponential in n (Note that the
number of summands in the RHS is n!).

Bijayan Ray Circuit complexity (CMI student seminar) November 6, 2023 9 / 49



VP , VNP classes
VPand VNP are referred to as the algebraic version of the P and NP
class respectively.

Definition 1.3

VP class is a class of polynomials f that have a polynomial size circuit
over a fixed field. VNP class is the class of polynomials f of polynomial
degree such that given a monomial one can determine its coefficient in f
efficiently, with a polynomial size circuit.

Valiant showed [Val79] that permanent is in VNP and if the permanent
has a poly sized circuit then all polynomials in VNP will have a poly sized
circuit. So showing permanent has a ”small” circuit would imply
VP = VNP but it has been a long standing open problem whether that is
the case.

Problem 1.3 (open)

VP
?
= VNP

Bijayan Ray Circuit complexity (CMI student seminar) November 6, 2023 10 / 49



Questions one might ask...

1 Evaluation at a point.

2 Identity testing.

3 Differentiation.

4 Interpolation.

5 Sparse interpolation.

6 Univariate PIT
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Polynomial identity testing

Problem 3.1 (open)

Given an arithmetic circuit C (in the form of graph (white box) or as a
blackbox where know the evaluation at a point is fast) find if it evaluates
to 0 in polynomial time (polynomial in s, n, d where s is size of circuit, n is
number of variables and d is the degree of the polynomial).
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P ,BPP classes

Definition 3.1

Complexity class P is a collection of problems that can be solved in
polynomial time.

Definition 3.2

Complexity class BPP is a collection of problems that can be solved in
randomized polynomial time. More precisely this means: there is a
probabilistic Turing machine such that

1 The machine runs in polynomial time for all inputs.

2 The machine gives the correct answer with ≥ 2/3 probability.

3 The machine gives an incorrect answer with ≤ 1/3 probability.
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PIT in BPP I

There is a randomized polynomial time algorithm solving the PIT.

Lemma 3.1 (Schwartz Zippel lemma [Sax09])

P ∈ F [x1, · · · xn] be a non-zero polynomial of degree d ≥ 0 over a field F
and take S a finite subset of F . Then,

Probr1,···rn∈S [P(r1, · · · , rn) = 0] ≤ d

|S |

From the lemma one can see that if the polynomial is nonzero then with
high probability it is not going to vanish on a finite subset of F , that is PIT
is solvable in randomized polynomial time. In other words, PIT is in BPP.
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PIT in BPP II

Proof of lemma 3.1
Inducting on n: the case n = 1 is easy to check since the polynomial can
have at most d roots and hence the probability of hitting a root is at most
d/|S |.
Now, assuming the statement is valid for all polynomials in x1 by writing it
as P(x1, · · · xn) =

∑d
i=0 x

i
1Pi (x2, · · · xn) and since P is a nonzero

polynomial, ∃i such that Pi is nonzero. Thus taking the largest such i ,
deg Pi ≤ (d − i). Now we randomly pick r2, · · · rn from S and applying
inductive hypothesis we have Prob[Pi (r2, · · · rn) = 0] ≤ d−i

|S | . Note if

Pi (r2, · · · rn) ̸= 0 then P(x1, r2, · · · rn) is of degree i so by univariate case:

Prob[P(r1, · · · rn) = 0|Pi (r2, · · · rn) ̸= 0] ≤ i

|S |
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PIT in BPP III

Now using probabilistic bounds one can see that

Probr1,··· ,rn∈S [P(r1, · · · rn) = 0]

≤ Prob[Pi (r2, · · · rn) = 0] + Prob[P(r1, · · · rn) = 0|Pi (r2, · · · rn) ̸= 0]

≤ d − i

|S |
+

i

|S |
≤ d

|S |

(1)
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Significance of PIT
?
∈ P

Problem 3.2 (open)

Is BPP = P ?

This is a harder problem than if PIT
?
∈ P, but proving PIT in P if at all

that is true will be a substantial progress towards this question.
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PIT for bounded depth circuits I

Theorem 3.1

Depth 2-PIT that is PIT for ΣΠ and ΠΣ circuits are solved. PIT for ΠΣΠ
is reducible to ΣΠ so is also solved.

Figure: Depth 3 ΣΠΣ circuit
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PIT for bounded depth circuits II

Problem 3.3 (open)

Does there exist a polynomial time solution for solving PIT for ΣΠΣ
circuit.

How about a special case with a restricted number of in-edges on the top
gate? For example consider the case Σ2ΠΣ that is checking whether

Πj(Σaijxi ) + Πj(Σia
′
ijxi ) = 0 ⇐⇒ Πj(Σiaijxi ) = −Πj(Σia

′
ijxi )

but using the property of unique factorization it reduces to a brute force
checking if the linear combinations are equal or not and that can be done
fast (polynomial in s, n time). You can ponder upon the case of constant
number of such in-edges of the top gate, in fact for which PIT is solved:

Theorem 3.2 (Bounded top-fanin depth 3)

PIT for Σ[d ]ΠΣ circuit is solved.
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PIT for bounded depth circuits III

Solving the PIT for depth 3 ΣΠΣ case would be a big progress towards
solving the general PIT since there are certain efficient depth reduction
algorithms ([SY+10]) reducing to the ΣΠΣ case. To read more about it
one can refer to Nitin Saxena’s survey [Sax08], Kayal and Saxena’s paper
on PIT for depth 3 circuits [KS07] and Shpilka’s survey [SY+10].
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Some applications of PIT I

1 A graph has no perfect matching if and only if the determinant of its
Tutte matrix is zero. A Tutte matrix of graph G = (V ,E ) is n × n
matrix A :

Ai ,j =


xi ,j (i , j) ∈ E and i < j

−xi ,j (i , j) ∈ E and i > j

0 otherwise

So the perfect matching problem is reduced to the PIT of the
determinant polynomial of the Tutte matrix.

2 Primality testing: It was observed by Agrawal and Biswas [AB03] that

n is prime ⇐⇒ (x + 1)n = (xn + 1)(mod n)

which can be used as:
Define P(x) = (x + 1)n − (xn −+1) then the primality of n question
reduces to testing whether P(x) is a zero polynomial or not over the
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Some applications of PIT II

ring Z/nZ. However P(x) has degree n and we want time complexity
being polynomial in log n, we cannot naively expand P(x). The idea
that was used in [AB03] was to test P(x) = 0(mod n,Q(x)) instead,
for a randomly chosen Q of degree O(log n) and as Q has a small
degree we can do this in poly(log n) time, using repeated squaring of
(x + 1) and x .
This was derandomized by Agrawal, Kayal, Saxena (AKS) [AKS04] to
give the first polynomial time algorithm for primality testing.
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What to do?

”If there is a problem you can’t solve, then there is an easier problem you
can solve: find it.”

– G. Polya
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Some terminology I

Definition 3.3 (Hitting set)

Given a collection C of n variate circuits f over a field F call a set H ⊂ F n

a hitting set of C when ∀f ∈ C, f ≡ 0 ⇐⇒ f (p) = 0 ∀p ∈ H.

Definition 3.4 (Sparsity)

The number of monomials m in a polynomial is called the sparsity of the
polynomial and the polynomial is called m-sparse polynomial.
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Some terminology II

Definition 3.5 (Fan-out and fan-in)

The maximum number of outputs of + or × gates in the arithmetic circuit
is called fan-out of the arithmetic circuits. Similarly, the maximum number
of inputs of + or × gates in the arithmetic circuit is called fan-out of the
arithmetic circuits.

Definition 3.6 (Noncommutative circuits)

A circuit C (x1, · · · , xn) over an algebra over a field F is called is
noncommutative if each of its multiplication gate has ordered inputs and
the variables do not commutate that xixj ̸= xjxi .
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Some known special cases

1 Sparse polynomials.

2 Depth-3 diagonal circuits ΣΛΣ (whitebox).
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Sparse case I

Theorem 3.3 ([Sax09])

p(x1, · · · xn) is a nonzero polynomial over field F with degree in each
variable < d and sparsity < m then there is an 1 ≤ r ≤ (mn log d)2 such
that p(y , yd , · · · , ydn−1)(mod y r − 1) ̸= 0

Proof:
Consider q(y) := p(y , yd , · · · , ydn−1) in F [y ] and note that in p the
monomial x i11 · · · x inn is mapped to monomial y i1+i2d+···indn01

in q and this is
one-one map since we have assumed i1, · · · , in < d (and for a number d
base representation is unique). Therefore q(y) ̸= 0. Take ya a monomial
with nonzero coefficient in q and look at q(y)(mod y r − 1).
If q(y) = 0(mod y r − 1) then ∃ monomial yb such that yb ̸= ya in q for
which yb = ya(mod y r − 1). But this is possible if and only if r |(b − a)
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Sparse case II

(because (y r − 1)|(y s − 1) ⇐⇒ r |s). Thus, to avoid picking such a
”bad” r we need one that satisfies

r ̸ |
∏

yb∈q(y),b ̸=a

(b − a) =: R

Note, integer R can be at most (dn)m in value. Since R has at most logR
prime factors and since we would consider encounter at least (logR + 1)
primes in the range 1 < r ≤ (logR)2 = (mn log d)2 which implies that we
have the required (prime) r such that q(y) ̸= 0(mod y r − 1).
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Sparse case III

Corollary 3.1

Sparse PIT can be solved in poly(s, n,m) where m is the sparsity of the
polynomial.

This follows immediately from the theorem above: Given an m−sparse
circuit C (x1, · · · , xn) over F , fix d := 2size(C) and for every
1 ≤ r ≤ (mn log d)2: compute d , d2, · · · dn−1(mod r) using repeated
squaring and then find the evaluations of C (y , yd , · · · ydn−1) over
F [y ]/(y r − 1) and we declare C is zero if and only if all the evaluations are
zero.
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Depth-3 diagonal whitebox circuit I

Definition 3.7

Depth-3 diagonal circuits Σ ∧ Σ circuits are arithmetic circuits that
computes polynomials of the form

p(x) =
k∑

j=1

ci (
n∑

i=1

aijxi )
dj

Basically, the Λ gate computes the power of its input using product gate.
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Depth-3 diagonal whitebox circuit II

Theorem 3.4 ([Sax08])

Over characteristic zero field, whitebox PIT for diagonal circuits∑k
j=1(

∑n
i=1 aijxi )

dj can be done in deterministic polynomial poly(nkd)
time where d = maxj dj .

This theorem was proven by Nitin Saxena in his 2008 paper [Sax08] using
duality trick which we state here as a lemma.
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Duality trick I

Lemma 3.2 ([Sax08])

Take a0, · · · an ∈ F of zero characteristic. Then we can compute univariate
polynomials fi ,j ’s in poly(nd) field operations such that for
t = (nd + d + 1)

(a0 + a1x1 + · · · anxn)d =
t∑

i=1

fi ,1(x1) · · · fi ,n(xn)

Proof:
Consider the exponential formal power series,

ex = 1 + x +
x2

2!
+ · · ·
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Duality trick II

The degree d truncation of ex be done as Td(x) = 1 + x + x2

2! + · · ·+ xd

d! .
Observe that:

(d!)−1 · (a0 + a1x1 + · · · anxn)d

= coefficient of zd in e((a0+a1x1+···+anxn)·z)

= coefficient of zd in ea0z · ea1x1z · · · eanxnz

= coefficient of zd in Td(a0z) · Td(a1x1z) · · ·Td(anxnz)

(2)

Now the product of Td(a0z) · Td(a1x1z) · · ·Td(anxnz) can be viewed as a
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Duality trick III

univariate polynomial in z of degree (nd + d). Thus its coefficient of zd

can be computed by evaluating the polynomials at (nd + d + 1) distinct
points α1, · · ·αnd+d+1 ∈ F and by interpolation we can compute
β1, · · · , βnd+d+1 such that

coefficient of zd in Td(a0z) · Td(a1x1z) · · ·Td(anxnz)

=
nd+d+1∑

i=1

Td(a0α) · Td(a1x1α) · · ·Td(anxnα)
(3)

This is the dual form of the expression (a0 + a1x1 + · · · anxn)d as required.
It can be seen that all the polynomials Tds can be computed in poly(nd)
time (i.e. field operations).
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Proof of theorem 3.4[Sax08] I

The proof uses the following theorem which we do not prove here:

Theorem 3.5 ([RS05] theorem 5 section 2)

Given a noncommutative arithmetic formula (circuit with fan-out of every
gate= 1) of size we s we can verify in time polynomial in s whether the
formula is identically zero or not.

Proof of theorem 3.4:
Suppose we are given a diagonal circuit C :

C (x1, · · · xn) =
k∑

i=1

ci l
di
i
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Proof of theorem 3.4[Sax08] II

where li =
∑n

i=1 aijxi are linear combinations. Then using the lemma 3.2
we can compute the dual form of each of the k multiplication gates such
that

C (x1, · · · xn) =
k∑

i=1

ndi+di+1∑
j=1

fi ,j ,1fi ,j ,1(x1) · · · fi ,j ,n(xn)

where the univariate polynomials fi ,j ,j ′s are of degree at most di .
Now observing that the variables in the circuit on the RHS of equation
above can be assumed to be noncommutative without affecting the output
(because

∑
k

∏
i pik(xi ) commutative is zero if and only if it is zero

considering xi s to be noncommutative), i.e. to the circuit C we can apply
Raz Sphilka’s identity testing algorithm ([RS05] theorem 5 section 2: refer
to 3.5) to the circuit (arithmetic formula) on the RHS of the equation
above we know deterministically whether C is zero or not. Hence PIT for
C is solved in poly(nkd) time (field operations).
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Some interesting open special cases

1 Depth-3 Diagonal circuits (blackbox).

2 Orbit of Sparse polynomial.
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Diagonal circuits

Problem 3.4 (open)

Given a blackbox access to the circuit CP of the polynomial of the form
P =

∑
j(
∑

i aij)
dj find if the polynomial P is zero polynomial or not in

polynomial time (i.e. polynomial in size of circuit, number of variables and
degree).

Since we are not given the whitebox access to the circuit (that is the
circuit is not explicitly given) the duality trick doesn’t work anymore.
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Orbit of Sparse polynomials

Problem 3.5 (open)

Given Cf ◦A the circuit of a polynomial f (A(x)) in the orbit of sparse
polynomial f where A ∈ GLn(R), find if the f is identity or not in
polynomial time (i.e. polynomial in size of circuit, number of variables and
degree).

As an easier exercise check why does the PIT solving algorithm for sparse
polynomial doesn’t work here directly.
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Other questions: Differentiation of circuits

Theorem 4.1 ([SY+10; BS83])

Given a n-variate polynomial f coming from arithmetic circuit Cf of size s
and depth d. Then there exist a circuit C ′

f of size O(s) and depth O(d)
computing the polynomials ∂x1(f ), · · · ∂xn(f ) simultaneously.

That is the first order partial derivatives can be computed with linear
blowup in circuit size and depth. It is however not known if it can be done
with an arithmetic circuit of the same size. And what about the case of
the second derivative?

Problem 4.1 ((open) [SY+10])

Does an analog of theorem 4.1 hold for second order partial derivatives?
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Other questions: Interpolation

Problem 4.2

Given blackbox or whitebox access to a circuit find the polynomial
corresponding to the circuit in polynomial in s, n, d time.

Note that it is stronger than finding the PIT.
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Other questions: Sparse interpolation

Problem 4.3

Given a blackbox or whitebox access to a circuit of a sparse polynomial,
find the sparse polynomial in polynomial in s, n, d time.

One can read more about it in Grenet’s recent workshop talk [Gre23].
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Other questions: Univariate PIT I

Problem 4.4 (open)

Given a blackbox or whitebox access to a circuit of a univariate polynomial
p(x) of size s and degree d. Determine if p(x) is zero or not in poly(s)
time.

Note that the general PIT can be reduced to univariate PIT using a
univariate substitution for example with a exponential degree blowup we
can have

xi → xd
i

where d = max
i

di

This works because if there exist monomials
∏

xdii −
∏

x
d ′
i

i ̸= 0 in a
polynomial they can never cancel out after the substitution because if they
cancels out that would imply there exist di , d

′
i such that:∑

i

d idi =
∑
i

d id ′
i ⇐⇒ di = d ′

i since d base representation is unique
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Other questions: Univariate PIT II

which is a contradiction since
∏

xdii −
∏

x
d ′
i

i ̸= 0.
Solving univariate PIT in poly(d) is trivial since a degree d univariate
polynomial over a field can not have more than d roots. However s sized
univariate circuit can have O(exp(s)) degree polynomial for example:

Figure: s sized circuit with degree 2s
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Thank you!
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